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WEIGHTED REGRESSIONS ON TIME, DISCHARGE, AND SEASON (WRTDS),
WITH AN APPLICATION TO CHESAPEAKE BAY RIVER INPUTS'
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ABSTRACT: A new approach to the analysis of long-term surface water-quality data is proposed and imple-
mented. The goal of this approach is to increase the amount of information that is extracted from the types of
rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in repre-
sentations of the long-term trend, seasonal components, and discharge-related components of the behavior of the
water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history
of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in stream-
flow. The method employs the use of weighted regressions of concentrations on time, discharge, and season.
Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking
place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The
method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results
show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results
should prove useful in further examination of the causes of changes, or lack of changes, and may help inform
decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.
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INTRODUCTION information from the data that are collected, particu-
larly related to changes in water quality over time.

Furthermore, it is imperative that the results from

Given the importance of water quality to the
national and global environment and the efforts
being made to improve water quality, there is great
value in developing and using data analysis methods
aimed at deriving the greatest possible amount of

these analyses be used to help communicate the
water-quality changes that are taking place so that
the best information possible is used to guide deci-
sions about future efforts to protect and restore water
quality.

Paper No. JAWRA-10-0082-P of the Journal of the American Water Resources Association (JAWRA). Received May 18, 2010; accepted
July 30, 2010. © 2010 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the
USA. Discussions are open until six months from print publication.

2Respectively, Research Hydrologist, U.S. Geological Survey, 432 National Center, Reston, Virginia 20192; Hydrologist, U.S. Geological
Survey, Richmond, Virginia 23228; and Research Hydrologist, U.S. Geological Survey, Northborough, Massachusetts 01532 (E-Mail/Hirsch:

rhirsch@usgs.gov).

Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#

OnlineOpen_Terms

JouRNAL oF THE AMERICAN WATER RESOURCES ASSOCIATION

857 JAWRA



HirscH, MoYER, AND ARCHFIELD

The methods of analysis commonly used today were
largely developed 20 to 30 years ago (e.g., Lettenmaier,
1976; Hirsch et al., 1982, 1991; van Belle and Hughes,
1984; Gilbert, 1987). Much has changed in the inter-
vening years and this suggests the need to supple-
ment these methods with new approaches to
describing and understanding trends in water qual-
ity. The changes include: the existence of much larger
and longer datasets (e.g., sites with more than 600
observations over a 30-year period), completion of
many significant improvements in point-source con-
trols, increased attention to nonpoint sources of pollu-
tion, increased interest in the role that groundwater
plays in surface-water quality, and public attention
to evaluating the progress being made toward resolv-
ing ecosystem issues driven by water quality (e.g.,
Chesapeake Bay or Gulf of Mexico hypoxia). In addi-
tion to these changes in the hydrologic and public
policy landscape, there have also been changes in the
capabilities of computers, and new methods of explor-
atory data analysis and statistical graphics that can
be applied to these issues.

This paper puts forth a new approach for the anal-
ysis of long-term surface water-quality datasets. It is
designed to be used on datasets with the following
characteristics:

1. The number of samples collected at the sampling
site is in excess of 200.

2. The period of sample collection is at least
20 years.

3. There exists a complete record of daily discharge
values for the site over the entire period being
analyzed.

4. All sample analyses are above the laboratory
limit of detection (no “less than values”). There
is every reason to believe that this constraint
can be eliminated, but doing so is beyond the
scope of this paper.

5. The samples should be representative of the
entire cross-section of the river, such that multi-
plying the measured concentration times dis-
charge results in an unbiased estimate of flux.

6. At the sampling point, the river should not be so
“flashy” that the discharge at the time of sam-
pling is likely to be vastly different from the
daily average discharge. This is a matter of judg-
ment, but clearly the method is not appropriate
on small streams where discharge is likely to
rise and fall by an order of magnitude over the
course of a single day. For smaller streams, the
method could be extended by using a time step
finer than daily.

The method was designed with nutrients in mind
but is likely to work well with other major ions and
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suspended sediment. This paper provides the ratio-
nale for the method, illustrates some of the character-
istics of water-quality datasets that are discussed in
the presentation of the rationale, and defines the
mathematical approach and types of products it can
produce. In addition, the method described in this
paper is used to analyze datasets for total phosphorus
and dissolved nitrate plus nitrite for the major river
inputs to the Chesapeake Bay. This paper also
includes discussion of some of the methodological
issues not yet addressed by the methods. It is the
authors’ hope that the new approach presented here
will lead others toward further advances.

SEVEN DESIRED ATTRIBUTES OF A NEW
APPROACH FOR THE ANALYSIS OF LONG-TERM
WATER-QUALITY DATA

Observations about the problems encountered in
the scientific study and public policy debates over
surface-water quality suggest some desired attributes
that a set of new analytical methods should possess.
Some of these arise from methodological weaknesses
in the standard methods and some arise from unmet
needs. Many of the weaknesses mentioned would be
very difficult to resolve with smaller datasets.

The total phosphorus record collected at the USGS
streamgage 01594440 Patuxent River near Bowie,
Maryland, a part of the USGS River Input Monitor-
ing (RIM) program for the Chesapeake Bay, is used
to demonstrate the limitations of current methods.
These data cover a time period from 1978 through
early 2009 and consist of 773 measurements of total
phosphorus. The sampling frequency is somewhat
variable during the period of record, and in many
years is intentionally biased toward sampling at
higher discharges, because of their significant role in
the transport of pollutants to Chesapeake Bay. At the
streamgage site the watershed is 901 km? with a
substantial, and growing, suburban population (cen-
tered on Columbia, Maryland) but also contains sig-
nificant amounts of farmland and forests and two
large water-supply reservoirs. The historical total
phosphorus record reveals a substantial downwards
trend in concentration during the past 31 years dri-
ven by installation of advanced waste treatment at
sewage treatment plants in the basin as well as likely
impacts of national limits on phosphate detergents.
The profound decrease in concentration over the
31 years makes this dataset an extreme example.
Virtually any statistical approach would reveal the
trend. This large trend makes the total phosphorus
record for the Patuxent River near Bowie, a good case
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study because it illustrates some of the limitations of
traditional trend-analysis methods and shows why
enhanced methods are needed to answer some of the
questions that policy makers and the public ask
about progress in water-quality improvement.

The premise of the work presented in this paper is
that there is a need for new methods to analyze long-
term water-quality data and these should possess the
following attributes:

1. There is a need for methods that focus on
description of change. It is a foregone conclusion that
in any watershed on the planet, viewed at a time
scale of several decades, water-quality conditions are
changing. Water quality is nonstationary because of
changes in point sources, land use, land-use prac-
tices, and atmospheric deposition. Most of the com-
monly used approaches to water-quality trends are
oriented toward hypothesis testing rather than
description of an evolving pattern of change. Hypoth-
esis testing certainly has a valid role in the study of
water-quality trends. It provides a basis for categoriz-
ing individual monitoring sites in a large network,
for a specified time period, into three broad catego-
ries: those where concentrations are trending up,
those where concentrations are trending down, and
those where it is “too close to call.” But, for manage-
ment purposes, there is also a need for tools that will
help to elucidate the nature and magnitude of the
changes that are taking place. For example, one
might want to know: What is the direction and tim-
ing of the change? How do today’s conditions compare
to those of a decade ago or three decades ago? Has
progress toward meeting water-quality goals been
speeding up or slowing down or reversing directions?
Are improvements happening in some seasons and
not others? Are improvements happening at some
flow conditions and not others? What can we infer
from the answers to these latter questions about the
relative roles of point sources, groundwater sources,
or storm-runoff sources? The new method presented
in this paper provides the means to describe the long-
term evolution of water quality at the site, and poten-
tially point to causative mechanisms. Additional work
on quantifying the uncertainties of the method should
be able to add hypothesis testing to its capabilities.
Ideally, one would like to have a unified set of tools
that are capable of both hypothesis testing and some
of these more descriptive functions.

2. There is a need for approaches that do not
assume that the flow vs. concentration relation is con-
stant with time. The concept of a flow vs. concentration
relationship has long played a central role in water-
quality data analysis, and rightly so. See, for exam-
ple, Walling and Webb (1986), Cohn et al. (1989), or
Chanat et al. (2002). In most cases, there is a strong
relationship between discharge and the concentration
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of the constituent of interest. By considering this
relationship in the analysis, it becomes possible to
substantially reduce the variance in the dataset, thus
improving the power of hypothesis tests, the accuracy
of estimated trend slopes, or the accuracy of flux esti-
mates. The analytical approach described in this
paper builds on the idea that these relationships play
a crucial role in explaining significant parts of the
variability of water quality, but this approach departs
from the older methods in that there is no assump-
tion that the mathematical shape or form of that rela-
tionship remains constant over the record. In the
more traditional methods (Hirsch et al., 1982; Ester-
by, 1998; Sprague et al., 2009), water-quality trends
are generally defined by changes in the intercept of
such a relationship, with no allowance for the rela-
tionship to change shape or slope. In this new
approach, the relationship is free to change shape
and slope in response to the behavior observed in the
data.

Figure 1 illustrates this point with the Patuxent
River total phosphorus data. In Figure 1, the data
are arbitrarily divided into an early period (1978-
1984, shown as circles) prior to the completion of
much of the point-source improvements, and a much
later period (2004-2009, shown as crosses) after suc-
cessful control of much of the point-source loading of
phosphorus. The point of this illustration is simply
that the shape of the discharge vs. concentration rela-
tionship has radically changed from the early period
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FIGURE 1. Total Phosphorus Concentration vs. Discharge, Patux-
ent River Near Bowie, Maryland, for Two Time Periods. Data from
1978 to 1984 shown as circles. Data from 2004 to 2009 shown as
crosses. Very substantial differences can be observed between the
concentration vs. discharge relationships for these two periods.
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to the later period. Because of the dominant role of
point sources of phosphorus in the early period, the
curve slopes strongly downward, reflecting dilution of
the sewage effluent. In the later period, the relation-
ship appears to be quite different. The general slope
is upwards, indicating the importance of nonpoint
sources of phosphorus, although in the lower range of
discharges, below about 10 m®/s, there remains an
indication of a dilution effect. Any attempt to describe
this behavior through the use of a single functional
form of a particular slope and shape, even if it allows
for a changing intercept over time, will be a poor
representation of the data and its lack of fit is likely
to introduce spurious trends that are an artifact of
the lack of fit. Clearly, any mathematical representa-
tion of the behavior of this dataset must accommo-
date radical changes in the shape of the discharge
vs. concentration relationship over the span of the
dataset.

3. The traditional approaches assume that there is
a seasonal pattern in the data that repeats year after
year; however, there is also the assumption that this
seasonal pattern remains the same throughout the
period of record. The timing of peaks and valleys in
the pattern may be shifting, due to shifts in dominant
processes, and the magnitude of this seasonal cycle
also may change over time. There is a need for an
approach that makes no assumption that the sea-
sonal pattern repeats in exactly the same cycle over

the period of record but rather allows the shape of
the seasonal pattern to evolve over time.

The problem is illustrated by the boxplots shown
in Figure 2. Here again the data are divided into two
groups (an early period when concentrations were
generally very high and a later period in which they
were much lower). In this illustration, the data are
limited to concentrations from days with discharge
<15 m®/s (to limit the influence of discharge on the
concentration record). The left panel shows the period
1978-1987 and the right panel shows the period 2000-
2008. Both panels reveal substantial seasonal varia-
tion with the highest concentrations in the summer
and early fall months and the lowest concentrations
in the winter and early spring months. The key point
to be made here is the change in amplitude of the
seasonal pattern. In the early period, the difference
between the August median and the February med-
ian is 0.385 mg/1 or a factor of 3.2. In the later per-
iod, the difference between the August median and
the February median is 0.067 mg/1 or a factor of 2.1.
In short, whether one approaches the characteriza-
tion of seasonality as an additive term or a multipli-
cative term (as would be the case in a model that
describes the behavior in log space), the amplitude of
the seasonal pattern is substantially reduced in the
later years. Here again, a single characterization of
the seasonal pattern is likely to create spurious
patterns in the data and needs to be avoided.

1.00 2.00
| |

0.50
|

0.20
|

Concentration in mg/|

0.10

1

°

-4

H o

4

HEE

0.02
|

0.01
|

Month

FIGURE 2. Boxplots of Total Phosphorus Concentration Grouped by Month, for Discharges <15 m®/s.
The left panel shows the early period (1978-1987) and right panel shows the later period (2000-2008).
The amplitude of the seasonal variation is substantially reduced in the later years.
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4. There is a need for an approach that allows the
way the trend is described to be driven by the data
and not assumed to follow a specific functional form
such as linear or quadratic. Trend patterns should
also be allowed to differ for different seasons or flow
conditions. One of the problematic consequences of
traditional methods that use linear or quadratic func-
tional forms is that the addition of new data at the
end of the record is likely to affect estimates of trend
slope many years in the past. New methods should be
designed in such a way that newly collected data will
have only minimal effects on the previous description
of the trends. New data should only influence inter-
pretations of the recent past, but not affect the inter-
pretations of conditions many years into the past. In
the traditional methods, whether parametric or non-
parametric, all the data are used to compute trend
slopes throughout the entire period of record.

Figure 3 shows how the shape of the trend can
depart from simple forms. In the left panel, for
August and September at low discharges (<4 m®/s),
we see that from 1978 through about 1995 the trend
is steeply downward. It declines by about 1.2 mg/1 or
90% over a 17-year period. Since about 1995, the con-
centrations have stayed relatively constant. Neither a
linear nor quadratic function would represent this
pattern appropriately. In the right panel, for higher
flows (between 4 and 30 m®/s), the pattern of change
is not as obvious. The decline extends past 1995 and
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is only a decline of about 0.5 mg/1 or about 75%, and
then since 1995 there is an indication of a modest
increase to the present. The figure makes two points:
the first is that trend slopes can change substantially
over time, and the second is that the pattern of the
trend can be different for different ranges of dis-
charge.

5. The new method should be able to provide
internally consistent results describing both concen-
tration and flux. Each of these variables provides
important perspectives on the causes and the conse-
quences of water-quality conditions. In most applica-
tions, both concentration and flux are important
outcome variables. Concentration is the key to ambi-
ent quality in the river reach being sampled,
whereas flux is the key to conditions in downstream
receiving waters (such as reservoirs or estuaries). Of
course, concentration and flux are closely related
(flux is equal to concentration multiplied by stream-
flow) but there can be substantial differences in the
character of the two kinds of results. For example, a
point-source control can dramatically reduce average
concentrations because the point-source effluent
makes up a substantial part of streamflow on many
days, but fluxes may be relatively unaffected by
these changes because the bulk of the pollutant
moves downstream on high flow days and is deter-
mined primarily by nonpoint sources. Trends in con-
centrations and trends in fluxes (when expressed as
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FIGURE 3. Total Phosophorus Concentrations for August and September vs. Time, Patuxent River Near Bowie, Maryland.
The left panel shows concentrations in samples for which discharge was <4 m®/s, right panel shows concentrations in sample
for which discharge was between 4 and 30 m®/s. Both panels show local polynomial regression, fitted to the logarithms
of the concentration data. The different trend patterns that exist at different ranges of discharge are shown.
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percentage changes over time) can be substantially
different and there is value in viewing the results
both through the metric of concentration and the
metric of flux.

6. The method should be designed to provide not
only a set of estimates of the time series of concentra-
tions and fluxes, but also a time series of estimates
wherein the variation in water quality that can be
attributed to the variation in streamflow has been
statistically removed. Both kinds of time series (with
and without the streamflow variability component)
have value and are important for addressing different
kinds of questions. The estimated concentration and
flux histories can be of great value in understanding
the drivers of an ecosystem. They identify times of
both high and low concentrations or flux, which may
help explain the history of ecological conditions (e.g.,
algal blooms, fish kills, periods of low light penetra-
tion or low dissolved oxygen, changes in aquatic vege-
tation type or density). Thus, they are useful for
testing ideas about the linkage between nutrient
inputs and ecological effects in a river, reservoir,
lake, or estuary. These records can be very useful as
inputs to water-quality and ecological models when
they are being tested by hindcasting experiments.
However, if the question being pursued is about the
effectiveness of control strategies in the watershed, it
is very helpful to create records that eliminate the
variation in water quality that is driven by stream-
flow. In this second case, the question is about how
the watershed is responding to activities on the land-
scape such as land-use change, point-source controls,
or implementation of best management practices.
One way to express the question is to ask, for a given
set of hydrologic conditions, are water-quality condi-
tions getting better or worse over time, and how
much better or worse? The random variations in
streamflow introduce considerable “noise” into the
record, making it very difficult to assess progress or
lack of progress toward long-term water-quality
goals. The goal is to produce records that not only
accurately reflect the actual water-quality history,
but also eliminate the variation in water quality due
to the random variations in streamflow.

7. In addition to providing quantitative estimates
of the time histories of concentration and flux, also it
would be useful to have within the overall method a
set of diagnostic tools that will assist the analyst in
understanding the nature of the changes that have
taken place over time. It is not enough to say that
fluxes have increased by, say 20%, over the last dec-
ade. Additional graphical methods should enable the
analyst to isolate particular times of year and/or
streamflow conditions during which the changes in
water-quality conditions are most focused. This kind
of analysis should be able to help distinguish among
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the following potential drivers: changes in point-
source effluents, changes in the quality of runoff from
the land surface, and changes in the quality of the
groundwater that is supporting base flow in the river.
This improved understanding of drivers can help to
sharpen the focus of strategies for water-quality
improvement.

These seven drivers have guided the development
of the Weighted Regressions on Time, Discharge, and
Season (WRTDS) method described in this report,
which is one possible approach to meeting the needs
described above. It is intended as a starting point for
a new generation of approaches to long-term water-
quality data analysis.

THE METHOD: WEIGHTED REGRESSIONS
ON TIME, DISCHARGE, AND SEASON

Weighted Regressions on Time, Discharge, and Sea-
son has strong conceptual roots in a class of general
models for seasonal time series developed by W.S.
Cleveland (Cleveland, 1979; Cleveland and Devlin,
1988; Cleveland et al., 1990) and others over the past
30 years, but it has some distinct differences. The con-
cept is the following. The set of water-quality samples
over a period of several decades is likely to have been
collected under different sampling strategies. In par-
ticular, strategies may have shifted over time from a
focus on regularly scheduled sampling (bi-weekly,
monthly, or bi-monthly) to a mixed strategy including
some scheduled sampling and some event-driven sam-
pling to focus on high flows. It cannot be assumed that
a simple statistical analysis of the trend in the sample
values will be indicative of a trend in the population of
actual concentrations during the period of record.
Such an analysis is likely to be strongly influenced by
both the changing sampling strategy and the random
sequence of high- and low-flow conditions over the per-
iod. The alternative strategy used here is to use the
sample values to “inform” a flexible statistical model
of the behavior of concentrations over the period of
record. This flexible model will then be used to make
estimates of the concentration for every day of the
entire period of record. The model considers concen-
tration to be a product of four components (three
deterministic and one random). It simultaneously
decomposes the record into these four components:

Trend: the gradual evolution of conditions from
year to year. By definition, the trend component
is a smooth function of time, typical of a moving
average of a time series where the moving aver-
age is over a window of several years duration.
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Seasonal: the annual cycle of variation in water
quality that is generally consistent from year to
year, although it may gradually evolve over a
period of years. By definition, it is a pattern that
has a wavelength of a year but does not necessar-
ily follow a set functional form (such as a sine
wave). Its amplitude and phase shift and even its
shape can change gradually over the years.

Discharge: the influence that river discharge has on
water quality. This relationship is assumed to be
relatively smooth. The influence of discharge can
evolve over time due to changes in the dominant
processes. Downward slopes typify situations
where the dilution of point sources or base-flow
inputs is dominant; upward slopes typify situa-
tions where surface runoff processes dominate.
Over the period of record, changes in the relative
importance of these processes can result in sub-
stantial changes in this relationship, but the
changes are assumed to be gradual.

Random: after removal of the trend, seasonal, and
discharge effects, there still remains a substan-
tial amount of unexplained variation in the con-
centration data. This is the random component.
WRTDS does not require a detailed analysis of
the random component, although error analysis
of WRTDS results requires a set of assumptions
about the shape of the distribution of these ran-
dom errors and about their serial correlation.
This paper provides a limited analysis of these
random errors, but subsequent work (in progress)
will explore this more extensively as a part of a
larger effort at WRTDS-uncertainty analysis.

Given these assumptions, we then need a mathe-
matical form for estimating the expected concentra-
tions given any possible combination of (1) time
expressed in years (the Trend component), (2) time of
year (the Season component), and (3) discharge. The
model assumes that these influences are multiplica-
tive. The goal is to estimate daily concentrations (c)
but, because of the characteristics of the residuals,
the model is fit to the natural log of ¢, denoted as
In(c), which means that the model can be expressed
in additive form.

A regression equation (1) is used to express this
relationship, but the method of fitting this regression
is the crucial element of the method.

In(e) = fo + fut + o 1n(Q) + s sin(2t) ’
+ By cos(2nt) + & )

In Equation (1) the fitted coefficients are the f val-
ues, ¢ is the concentration, @ is discharge, ¢ is the
time in years, and ¢ is the unexplained variation.
This method departs from the more common
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approaches such as those used by Cohn et al. (1989)
in that the parameters of this equation are estimated
for every combination of @ and ¢ values where esti-
mates are required for the particular result or gra-
phic of interest. The functional form of Equation (1),
which is linear in ¢, linear in In(Q), and sinusoidal on
an annual period, does not imply that their coeffi-
cients apply throughout the entire domain of the
data, but rather that they are useful approximations
for describing relationships over a limited portion of
the domain. A weighted regression estimation system
that can yield an expected value of ¢ for any given
combination of @ and ¢ is at the center of the WRTDS
method. Define @, as the discharge (in cubic feet per
second) and ¢, as the time (in years) for which we
want an estimate of c¢. The logic of the estimation
method is that we will estimate the parameters of
Equation (1) using weighted regression where the
weights on each observation are based on the rele-
vance of that observation to the estimation point
(Q,, t,). The relevance of each observation is defined
here by a distance between the observation (Q;, ¢;)
and the estimation point. This distance has three
dimensions. The first is distance as measured by the
difference between ¢, and ¢; known as the “time dis-
tance.” The second is distance as measured by the
difference between the time of year at ¢, and the
time of year at ¢{; known as the “seasonal distance.”
The third is distance as measured by the difference
between In(®,) and In(®;) known as the “discharge
distance.” Cohn (2005, p. 9) also used a windowed
approach to the regression for some of the same
reasons that motivate the WRTDS method. Cohn’s
approach differs from WRTDS in that it did not use
weighted regression and is applied in one dimension
rather than the three dimensions used in WRTDS.
For all three of the distance measures, we will use
the same general weighting function. It is the “tri-
cube weight function” originally defined by Tukey
(1977). The form of the tricube weight function is:

_[Q-@/m’p ifld <h
w= { 0 if [d|>h @)

where w is the weight, d is the distance from the
estimation point to the data point, and A4 is the half-
window width. The function looks somewhat like a
normal distribution, but is a bit flatter at the top and
rather than approaching zero asymptotically, this
function goes to zero beyond the edges of the window.
It is shown in Figure 4, for A = 1.

Note that at a distance of half the half-window
width, the weight is 67% as large as it is in the
center of the function, and at a distance of three
quarters of the half-window width the weight is only
19% as large as it is in the center of the function.
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FIGURE 4. Tukey’s Tricube Weight Function (Tukey, 1977),
With the Half-Window Width () Set to 1.

This approach results in more stable and robust
results than a simple moving window approach, where
weights are 1 where distances are small and go to zero
abruptly where distances are large. As the simple
window moves through the sample space, the model
coefficients can change abruptly as particular highly
influential observations enter or leave the window
potentially resulting in abrupt changes in model esti-
mates over short spans of time. With the smoothing
approach to setting weights used in WRTDS, the influ-
ence of any given observation declines gradually to
zero as distances become greater. Thus, the response
to influential observations changes gradually across
the domain and the overall predictive model never
changes abruptly from one point in the domain to
another nearby point.

The overall weight for each data point to be used
in the weighted regression is determined as the prod-
uct of the three component weights. Note that when
any one of the three weights goes to zero, the overall
weight is zero. The weights are implemented as
follows:

Trend: For this weight, distance is measured in
terms of time in years. The half-window width is
specified in years. Experience thus far has sug-
gested that 10 years is a suitable half-window
width. With this width, those observations that
are more than about six years from the center of
the window have weights that are less than half
of the weights at the center of the window.
Experimentation has demonstrated that nar-
rower time windows result in high-frequency
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year-to-year variations in estimated concentra-
tions (holding discharge and season fixed). The
assumption used in WRTDS is that the trend
component changes in a smooth pattern over
time, rather than rising and falling over periods
of a year or two. This is explored below in the
section on method sensitivity.

Seasonal: The logic of the seasonal weights is that
those data points that are close to the time of the
year for which we want an estimate should have
high weights, but those that are in a different
part of the year should have low weights. For
example, January data are of little relevance in
predicting July values. This is implemented as
follows. If ¢, is the time variable for the estima-
tion point expressed in units of years, then, for
example July 1, 2009, would be 2009.5. The time
variable for the sample point expressed in units
of years is t;. Then dg (the “seasonal distance”) is
computed as follows

d =ty —t; (3)

Define r, as d rounded up to the next integer and

rq as d rounded down to the next integer. The

seasonal distance, dg is the difference in time of

year between ¢, and ¢;, which can be expressed as
ds = min(r, —d,d —rq) (4)
The seasonal weight can then be computed using
dg as the distance term. For example, if the esti-
mation point is July 1, 2009, and the sample
point is July 1, 2000, the value of d, = 0. This
means that, from a seasonal perspective, this
sample value is highly relevant for estimation.
For the same estimation point, if the sample
point was November 15, 2000, the value of
ds = 0.38. This means that, from a seasonal per-
spective, this sample has very limited relevance.
Experience has indicated that a half-window
width of 0.5 works well. In this case, the only
dates with zero weight are those exactly a half a
year from the estimation point, but all dates
more than about 3.6 months from the estimation
point have weights <0.5. In the two cases above,
the July 1 sample would have a seasonal weight
of 1 and the November 15 sample would have a
seasonal weight of only 0.19.

Discharge: This distance is measured in terms of
In(®), where @ is the daily discharge. Experience
to date has suggested a half-window width of 2.0
for smaller rivers such as the Patuxent River
near Bowie. That means that we only use data
where the flow is within two natural log cycles
of the discharge at the center of the window.
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For example, if the window was centered on
100 m®*/s (Q, = 100), then the window would
have nonzero weights for days with flow values
between 13.5 and 739 m®/s. The days with
weights of >0.5 would lie between about 30 and
332 m®/s. We might expect that on much larger
rivers, where the range of the logarithm of daily
discharges tends to be smaller, that the appropri-
ate half-window should be smaller.

The overall weight for each data point is the prod-
uct of these three individual weights. Thus, a data
point being a “long distance” from the estimation
point in any one of the three dimensions (time, sea-
son, or discharge) will disqualify it from being a part
of the regression, or at least greatly diminish its
importance. The half-window widths chosen may
seem overly liberal, but it is this multiplicative
screening process that makes that necessary. The use
of wide half-window widths is intended to prevent an
overly narrow description of the relevant “neighbor-
hood” for estimation, which could result in rapid vari-
ation of model coefficients across the range of @ and ¢
values. The net effect of this approach is shown in
Figure 5, which plots the overall weight for every one
of the 773 observations in the Patuxent River near
Bowie, total phosphorus dataset, when the estimation
point is set at January 1, 1995, and the discharge is
set at the long-term median of 10.5 m®/s. Note that
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the figure has an overall “bell shape” based on the
time window. We can also see a kind of vertical stripe
effect with higher weights near January 1 of each
year and lower weights around July 1 of each year.
The fitting procedure has a safety check to assure
that the estimates are based on a sufficient sample
size. At some estimation points, the windows may be
so restrictive that very few data points end up hav-
ing nonzero weights in the estimation of this four-
variable weighted regression equation. This is most
likely to happen at the “edges” of the estimation
space near the beginning or end of the record and at
the most extreme ends of the flow distribution. Given
that a large number of weighted regressions are used
in any application of the method, it is important that
the size of the sample be relatively large to guard
against regressions that predict highly extreme con-
centrations because the sample used in one particu-
lar regression contained a few unusual and highly
influential observations. Common rules of thumb for
multiple regression analysis suggest that for a four
variable model such as that being used here, a total
of 82 observations might be considered adequate
(see, e.g., Tabachnick and Fidell, 1996). Given that
these are weighted regressions and some of the
samples may be used but only carry a very low
weight, an arbitrary determination was made to
require at least 100 observations with nonzero
weights. This is implemented in the software as

o
e o oo o
° o © & 8 )
o o o
o ° o 1) oo
@ o o o o 80
o
oo o
A X
© o o °
c 7 ® o o [o] %o
= o o o ° ° o
> [o) O% ® o
2 o o 8 © o
o ° o
<
o (o]
o o ] 8 o
o o
° e
o | [e] 0 o @ o
° o ° 2 @ o o 9
0% o
o ° % o 9 o
o ° 8 3 Sﬂ o ° S8
SH{® & o %9 o @ ©° o W D
T T T
1993 1994 1995 1996 1997

Year

FIGURE 5. Weights Computed for the Patuxent River Near Bowie, Maryland, for January 1, 1995, and a Discharge of 10.5 m®/s (the long-
term median). Note the general bell-shaped form of the weights. The right panel is an expansion of the four years centered around January
1, 1995. It demonstrates the seasonal patterns of the weights, with a maximum around January 1 of each year and a minimum around July
1 of each year. Note a few particularly low weights in January of 1996. These weights are very low because these samples were collected
during a flood, resulting in a very low discharge weight, and thus a very low overall weight.
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follows: if there are 100 or more observations with
nonzero weights, then the weighted regression is
run; however, if there are fewer than 100 observa-
tions, then all three of the half-window widths are
increased by 10% and new weights are assigned to
each value. If there are at least 100 observations
with nonzero weights, then the weighted regression
is run. Otherwise, the software iterates through this
widening process until they are wide enough to have
at least 100 observations with nonzero weight. Even
with this provision for a minimum sample size for
each regression, there are instances where at the
edges of the sample space there may be a bit of
“sawtooth” behavior seen in plots of estimated con-
centrations vs. time or discharge. This behavior is a
result of the window-widening process. It can affect
the appearance of some of the graphics that are pre-
sented in the next section, and often it serves as a
reminder to the analyst to restrain the estimation
process to only the parts of the time, discharge, and
season space that are realistic. The setting of this
minimum sample size, as well as the selection of
window widths, is an appropriate subject for further
exploration. Experiments run with substantially nar-
rower window widths than those suggested here can
lead to changes of 10% or even slightly more in
terms of summary statistics for individual years or
trend slopes over periods of five or fewer years. At
time scales of 10 years or more, however, these
choices of windows appear to have very little influ-
ence on the size of the observed trends.

In summary, this weighting process results in a
set of weights on every observation in the dataset,
based on the selected values of ¢, and @, The
weighted regression is run and then the fitted coeffi-
cients are used to estimate the expected value of In(c)
for that specific time and discharge. However, the
results desired are not the expected value of In(c) but
rather, the expected value of c¢. The problem of
re-transformation bias is well understood and several
methods are available to remove this bias (Bradu and
Mundlak, 1970; Cohn et al., 1989, 1992). The simplest
and possibly the most robust form of transformation
bias correction is the smearing estimator, developed
by Duan (1983). The bias correction for WRTDS is
implemented as a weighted form of the smearing esti-
mator. If Y is the expected value of In(c) for any given
discharge and time, then the unbiased estimate of ¢
for that discharge and time is

¢ =aexp(Y) (5)
where
> w;exp(e)
= (6)
Wi
i=1
JAWRA

and ¢; is the ith residual from the weighted model, n
is the total number of observations in the dataset,
and w; is the weight on the ith observation.

The WRTDS approach provides a nearly unbiased
and relatively free-form approach to estimating the
expected value of concentration for any given date and
discharge. A wide range of graphical approaches are
possible (and several of them have been implemented)
to explore the WRTDS model’s representation of the
evolving behavior of the system. The following section
uses one of these graphical approaches in an overview
of results and model sensitivities.

MODEL RESULTS AND SENSITIVITIES

One approach to exploring the nature of the
changes in water quality in the record is to select a
specific discharge and a specific time of year and use
WRTDS to compute the expected concentrations on
that date for every year in the period of record for
that specified discharge. These expected concentra-
tion values can be graphed as a function of time.
Three different discharge values can be plotted on
the same graph. Figure 6 is an example of this. The
selected date is May 1 and three specific discharges
are selected and plotted on this figure. They are
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FIGURE 6. Estimated Concentration of Total Phosphorus, Patux-
ent River Near Bowie, Maryland, Evaluated at May 1 of Each Year
for Discharge Values of 5 (solid), 9 (dashed), and 30 (dotted) m?/s.
Note the crossover of the curves around 1986. Prior to that time,
concentration tended to fall with increasing discharge. After that
time, concentration rose with increasing discharge.
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5 m®/s (approximately the 10th percentile flow for
May 1), 9 m®/s (approximately the 50th percentile
flow for May 1), and 30 m®/s (approximately the 95th
percentile flow for May 1). Figure 6 shows that the
most substantial decreases in concentration have
taken place at the lowest discharge, and that those
decreases seem to be continuing to the present,
although the decline was the steepest in the 1980s.
At the median discharge, the decreases are still sub-
stantial, although they started from a lower initial
value they have ended up being quite close to the val-
ues for the lowest flows. In contrast to these results,
at a high discharge, the decrease has been much less
substantial and actually shows some indication of
increases in the last 10 years of the record. The rea-
son for these differences is that the point-source con-
trols, that were so significant in terms of low flow
conditions, have less effect at the higher discharges.
For example, the results shown in Figure 6 indicate
that between May 1, 1980, and May 1, 2007, for a
discharge of 5 m®/s, the expected concentration
decreased from 0.71 to 0.076 mg/l, a decrease of
0.63 mg/1 or 89%. But, for a discharge of 30 m®/s, the
expected concentrations for those dates decreased
from 0.33 to 0.16 mg/l, a decrease of 0.17 mg/1 or
54%. Thus, expressed either in absolute terms or per-
centage terms, the decrease over that 27-year time
span was much larger for a low discharge than for a
high discharge.
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Exploring the question of the sensitivity of the
results to the window widths, Figure 7 shows two
examples of variations on the results shown in Fig-
ure 6. Figure 7 shows the rapid, year-to-year fluctua-
tions that arise when the time half-window width is
reduced from 10 to 5 years. The implicit assumption
of the WRTDS approach is that there is an underlying
“behavior” of the system that evolves rather slowly
over time and represents the net effect of many small
changes in many small portions of the watershed. If
the curves such as those shown here are fluctuating
at time scales of a year or two, the assumption is that
the method is “overfitting” the model and is actually
tracking the random outcomes of the set of samples in
the dataset rather than following a pattern that is
representative of underlying changes in watershed.
The right panel in Figure 7 shows the results of a
change in the discharge window from 2 (as shown in
Figure 6) to 1. Here, the differences are less clear and
there is no particularly compelling argument that can
be used to choose one half-window width in preference
to the other. This topic of “optimal” window widths is
an important topic for further study. Such an evalua-
tion requires the use of datasets that are substantially
denser than the ones used in this study so that error
properties associated with different window widths
can be evaluated. What can be said at this point from
a significant amount of testing is that, over a wide
range of possible window widths, the general nature
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FIGURE 7. This Figure Presents the Same Analysis as Shown in Figure 6, Where the Half-Window Widths
Were 10 Years, 2 Log Units of Discharge and 0.5 Years for the Seasonal Window. The three discharge values are 5 (solid),
9 (dashed), and 30 (dotted) m®/s. In the left panel, the half-window width for time has been reduced
to five years. In the right panel, the half-window width for discharge has been reduced to 1 log unit.
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of the results is quite consistent. The estimates of
average concentrations and direction and slope of the
trends are consistent. The differences are in the
extent of smaller variations at time scales of about
five years or less. These three examples (Figures 6
and 7) demonstrate results that all tell similar stories
about the three decades of change that has taken
place in the watershed.

One way to consider the usefulness of the WRTDS
approach is to explore the residuals from use of
the model in comparison with other reasonable
approaches. The WRTDS method was used to com-
pute estimates for the 773 days on which actual sam-
ple concentration values are available for total
phosphorus. These residuals were computed in log
space. The residual is the difference between the
actual In(c) and the WRTDS estimate of In(c) (the
bias correction was not used in these calculations).
These residuals follow a distribution that is quite
symmetrical, although the distribution has tails that
are heavier than those of a normal distribution. An
equivalent R? value for these estimates is 56%. That
is, the WRTDS explains 56% of the total variance in
the dataset. If we compare that with a model based
on Equation (1), with the coefficients all fixed
throughout the record, the R? is 35%. Thus, the tech-
nique results in a substantial reduction in variance,
although it must be recognized that there remains a
very large amount of unexplained variance in these
data (and the other datasets explored later in this
study). Appendix S1 reviews the error properties of
WRTDS compared with five simpler models for this
dataset and for dissolved nitrate plus nitrite concen-
trations in samples collected at the USGS streamgage
01491000 Choptank River near Greensboro, Mary-
land (discussed later in this paper). In both cases, the
WRTDS equivalent R? value is substantially higher
than simpler models and the WRTDS better reflects
the nature of the trend that is taking place.

Computation of Concentration and Flux Histories

The ultimate product of the WRTDS is a time ser-
ies of estimated concentration and flux for the entire
period of record. The first approach to this is to com-
pute these histories using the actual history of dis-
charge that happened over the period of record. In
this approach, WRTDS is used to estimate an
expected concentration for every single day of the
record by using the actual daily discharge for that
day and the time variable representing that day. To
save on computational effort, rather than doing a
new estimate of the weighted regression equation for
each day, a matrix of regression results is created
and the estimate for any given day is determined
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using linear interpolation of the results stored in this
matrix. This matrix of regression results is three
dimensional. The first dimension is time in years.
The second dimension is time in months from 1 to 12.
The third dimension consists of 12 levels of discharge
equally spaced in log space spanning the full range of
observed daily discharge values in the record. This
process of interpolation in this three dimensional
matrix of results is used to estimate concentration
values for each day of the study period. The computa-
tional savings from using this interpolation method is
rather small for the purposes described here, but in a
subsequent step in the analysis (flow-normalization,
discussed below), it reduces the number of weighted
regression estimates required by about a factor of 80
for a record of 31 years. Analysis of the interpolation
method compared to running the weighted regression
analysis for each day reveals that the interpolation
adds a small amount of error. When aggregated to
annual values, there is almost always less than a 1%
difference between the interpolated results and the
more direct approach.

Figure 8 provides two examples of this estimation
process. Each graph covers a period of slightly more
than two years and shows the observed concentrations
(as circles) and the daily predicted values using
WRTDS. The left panel shows a period when the con-
centrations were high but were coming down as a
result of the sewage treatment plant upgrades. The
right panel (drawn to the same scale) shows the pat-
tern about a decade later. One thing that is immedi-
ately clear from these two panels is that WRTDS
generally matches the substantial decline in concen-
tration. They also show how pronounced the seasonal
pattern was in the early period and how subdued it
became in the later period. In addition, the panels
show that the predicted values are always less vari-
able than the observed concentrations. During periods
when the model predicts low values, the actual values
are likely to be even lower and in periods when the
predictions are high the actual values are often
higher. This is to be expected for any regression-based
estimation scheme. These graphs are reminders that
the estimates always “regress to the mean” but should
be unbiased estimates overall. Thus, a set of WRTDS
estimates should not be used to estimate the fre-
quency of exceedance of a threshold, although it can
be used in the process of making such estimates.

These concentration estimates computed as
described above can then be used to make flux esti-
mates:

f=286.40¢Q (7)

Here, f is the expected value of flux, in kg/day, ¢
is the expected value of concentration in mg/l, @ is
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FIGURE 8. Observed Concentrations (circles) and Predicted Concentrations (lines), Using the WRTDS Model,
for Total Phosphorus Concentration, Patuxent River Near Bowie, Maryland, for Two Different Time Periods:
November 1981 to January 1984 (left panel) and November 1992 to January 1995 (right panel).
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FIGURE 9. Left Panel Shows the Estimated Monthly (light line) and Annual (heavy line) Estimated Concentrations
for Total Phosphorus for the Patuxent River Near Bowie, Maryland. The right panel shows the monthly and annual estimated flux.

daily discharge in m®/s, and 86.40 is the unit conver-
sion factor. These time series of estimates can then
be summarized into time series of monthly averages
and then into annual averages either of which can be
graphed vs. time.

Figure 9 shows the estimated monthly and annual
concentration (left panel) and flux (right panel) for
the Patuxent River dataset. Several features are
noticeable in these panels. They both show substan-
tial declines over time. Both show a strong seasonal
pattern, but in the case of concentration, the season-
ality and overall trend in the annual averages is
much more regular whereas the flux records show
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much more random variation from the overall
decline. Both records show the effect of the very high
discharge years of 1996 and particularly 2003,
although these effects are much more pronounced in
the flux record than in the concentration record.

Flow-Normalization

As mentioned in Item 6 of “Seven desired attri-
butes of a new approach for the analysis of long-
term water-quality data,” the method should produce
not only estimates of concentrations and fluxes for
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the entire period of record, but also histories of con-
centrations and fluxes in a manner that removes the
random variations in these quantities that arise
from the random variations in discharge that took
place over the period of record. For example, con-
sider a hypothetical watershed in which there have
been no changes in land use, land-use practices,
point-source loadings or any other human-driven fac-
tors during the period of record. In this example,
consider the possibility that the last few years of the
record were drought years, and the constituent of
interest was one that had lower concentrations at
lower discharges, then it is likely that the last few
years of the record would be ones of low concentra-
tion and very low flux. We would want our method
of analysis to recognize that the observed changes in
concentration or flux, although very real, are not
indicative of any actual improvement in watershed
conditions, and that when the drought ends concen-
trations and fluxes will return to higher levels.
Thus, when our interest is in the progress being
made in the watershed toward the attainment of
water-quality goals, we need a method that will
assure us that the trend we perceive is a result of a
change in the way the watershed responds to the
full range of hydrologic conditions and not simply a
result of the temporal pattern of hydrologic condi-
tions that happened to have taken place in our per-
iod of record. Accomplishing this motivates the
development of the “flow-normalization” procedure
described below.

Flow-normalization eliminates the influence of the
temporal pattern of discharge, by viewing the dis-
charge on any given day as a random sample of the
discharges that might have taken place on that day.
Thus, the method requires some means of estimating
the probability distribution of discharge values for
that day. Flow-normalization uses the actual histori-
cal sample of discharge values for a given day, with
each historical value being assigned an equal proba-
bility of happening in any given year. This empirical
approach avoids the challenges of developing a sto-
chastic streamflow model to generate a set of poten-
tial streamflow realizations. The discharge that
occurred on any given day of the record is assumed to
be one sample from the probability distribution of dis-
charge for that particular day of the year.

Using the Patuxent River example, for any given
date, such as April 20, 2003, the flow-normalized con-
centration estimate assumes that all 31 of the April
20 discharge values in the record (from 1978 to 2008)
were equally likely to have happened on April 20,
2003. Thus, to compute the flow-normalized estimate
of concentration for April 20, 2003, the method esti-
mates 31 values of concentration using the WRTDS
model with the time variable set to April 20, 2003,
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but with the discharge variable set to each one of the
31 historical discharge values for April 20. The “flow-
normalized concentration” is simply the mean of
these 31 estimated concentration values. Similarly,
the “flow-normalized flux” is the mean of 31 flux val-
ues computed by using the WRTDS model.

Implementation of the approach, although being
conceptually simple, is computationally intensive. For
example, for the 31-year record on the Patuxent River,
there are 11,323 days for which flow-normalized
concentration estimates are made, but because each of
these is an average of 31 values, the WRTDS model is
producing about 351,000 (~31 x 11,323) individual
estimates of concentration. It is because of this highly
repetitive process that the method has been imple-
mented as an interpolation scheme using a set of 4,464
weighted regression estimates (for this particular
record length) rather than calculating the full set of
about 351,000 weighted regression estimates.

The flow-normalized concentration and flux esti-
mates can be summarized into time series of monthly
averages, which, in turn, can be summarized into
annual averages. The annual averages of flow-
normalized estimates can be superimposed on a
graph of the annual estimates (Figure 10). The
resulting flow-normalized annual concentration and
flux histories are very smooth temporally because
they eliminate all the variation that is due to the ran-
dom variation in streamflow. These results should
provide a much clearer indication of true progress (or
deterioration) toward (or away from) the achievement
of water-quality goals. What is meant by “true pro-
gress (or deterioration)” is change in water-quality
drivers such as land use, land-use practices, or point-
source loading. Because the flow-normalized records
are not driven by random variations in streamflow
and because they are much more stable than the
actual record of water quality, they are appropriate
to use when computing changes over time.

For our example case, one can make statements
such as the following. For flow-normalized concentra-
tion, the change over the period 1980 through 2008
has an average slope of —0.026 mg/l1 per year, or
—3.1% per year. For flow-normalized flux, the average
slope is —14 kg/day per year, or at an average rate of
—2.7% per year. Considering the substantial change
in the rates of decrease evident in Figure 10 and con-
cerns that decision makers may have about recent
rates of improvement, one might want to express
these rates of change in terms of individual time
intervals. Table 1 is an example of such a display,
using periods of about a decade in length. It conveys
the dramatic decline in the rate of change of both
flow-normalized concentration and flow-normalized
flux over time. In the case of the flux results, there is
a slight indication of a trend-reversal in the 2000
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FIGURE 10. The Left Panel Is the Annual Average Estimated Total Phosphorus Concentration (light line) and the Flow-Normalized
Annual Average Estimate (heavy line), for the Patuxent River Near Bowie, Maryland. The right panel contains flux estimates.
In both cases, the annual estimates (light line) are the same as those plotted as the heavy line in the two panels of Figure 9.

through 2008 period. The indications of this reversal
are rather weak, but they certainly suggest that
fluxes are likely not continuing to decline at rates
such as those that were observed in previous decades.

In general, annual average concentrations (actual
or flow-normalized) will tend to reflect conditions over
the many days of low to moderate flow, and these are
strongly determined by point sources and base-flow
contributions. Conversely, annual average flux values
(actual or flow-normalized) will tend to reflect condi-
tions on the relatively few days of the year with very
high streamflow, and thus they are strongly deter-
mined by nonpoint-source runoff-related contribu-
tions. Because the flow-normalized values remove a
substantial amount of variability from the annual
averages, they are suitable for evaluating long-term
trends. In general, a trend in the annual average
flow-normalized concentration is more indicative of
trends in point-source or base-flow contributions, and
a trend in the annual average flow-normalized flux is
more indicative of trends in nonpoint-source runoff-
related contributions. Thus, the results seen in
Table 1 suggest continuing modest reductions in

TABLE 1. Trend Slopes for Flow-Normalized Concentration
and Flux, for Various Time Periods, Total Phosphorus,
Patuxent River Near Bowie, Maryland.

Concentration
Results Flux Results

Slope Slope Slope Slope
Time (mg/1 per (% per (kg/day per (% per
Span year) year) year) year)
1980-1990 -0.051 -7.2 -28 -5.9
1990-2000 -0.0076 -3.9 -6 -3.2
2000-2008 —-0.00094 -0.8 +0 +0.2
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point-source loadings but modest increases in load-
ings at higher discharges (associated with nonpoint
sources). Tables and graphs of the sort shown in Fig-
ure 10 and Table 1 should prove to be useful in dis-
cussions with decision makers and the public about
the types of progress that are (or are not) being
made.

The right panel of Figure 10 demonstrates how
estimates of slope or change between any two years
of the flux record are highly dependent on the partic-
ular choice of starting or ending date for computing
the change. This is also true for concentration
records, but is generally less pronounced. Estimates
of change based on the flow-normalized records will
be much more stable over time and serve as a much
more meaningful representation of progress toward
water-quality goals. As an example: the estimated
change in flux between 2002 and 2008 is an increase
of 55%, but between 2003 and 2008, it is a decrease
of 70% (because 2002 was a year of much lower flow
than 2008 and 2003 was a year of much higher
flow than 2008). In contrast, the estimated change in
flow-normalized flux between 2002 and 2008 is a
decrease of 1%, but between 2003 and 2008, it is a
decrease of 4%. These latter expressions of change
provide the public and decision makers with a much
clearer and consistent perception of the rate of pro-
gress taking place in the watershed.

Having said all of this about the advantages of using
these flow-normalized records to describe progress, it
should not be forgotten that when the questions relate
to the actual time-history of concentrations or fluxes,
one should not use the flow-normalized records. The
particular pattern of low- and high-flow months or
years that has happened can be crucial to the eco-
logical history of the river or a downstream receiving
water body (such as Chesapeake Bay). The estimates
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of concentration or flux computed without flow-
normalization are appropriate for many purposes such
as: calibrating or testing models of processes that
take place in the river or downstream water body,
for assessing the threats to human health for those
who come in contact with the water, or the treatment
costs for waters withdrawn from the system and
treated.

The flow-normalization method is only appropriate
if we believe that the probability distribution of dis-
charge for a given day of the year has not changed
over the period of record. This would rule out its use
if there have been substantial changes in the pro-
cesses that govern streamflow in the watershed over
the period of water-quality record. Examples of such
changes could include: construction of a large dam
upstream of the monitoring location, a substantial
decline in groundwater levels that leads to a reduc-
tion in base flow, a substantial change in the con-
sumptive use of water, or a substantial change in
climate. If one or more of these had taken place
upstream of the monitoring location during the period
of water-quality record being studied, the flow-
normalization method would not be appropriate.
Determining if flow-normalization is appropriate should
be viewed as a matter of judgment. The determina-
tion that a statistically significant trend exists in
some aspect of the discharge record (e.g., trends in
certain months or trends in low flows) is not a suffi-
cient basis for rejecting the use of flow-normalization.
The appropriate question to ask is whether the
changes in discharge that have taken place during
this period of record are likely to have a practical
significance for the water-quality record of the
watershed. Conducting formal hypothesis tests for
stationarity is not appropriate for making this deter-
mination, given that it would require 365 tests, and
certainly the null hypothesis would be rejected in
some cases. At this point in the development of the
WRTDS method this issue of nonstationarity of dis-
charge is simply a caveat. The question that the user
must pose to determine if the use of this simple flow-
normalization procedure is appropriate is this: is
there a strong basis for believing that the probability
distribution of streamflow for any portion of the year
has substantially changed between the beginning and
end of the period of water-quality record and is this
change large enough to be of practical significance?
Development of formal procedures for the flow-
normalization process in light of substantial nonsta-
tionarity of discharge would be an important future
WRTDS enhancement.

It is important to provide a note of caution about
interpretations of the flow-normalized records near
either end of the time series. A smoothing procedure
such as WRTDS will always produce less stable
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estimates near the ends than in the middle (this
applies both to the actual estimates and the flow-
normalized estimates). One should expect that after
another year of data is collected, estimates for the
last few years will be somewhat different than those
that are computed today. This makes sense because
we are using observations both before and after any
given time of interest to help inform those estimates.
Experiments have been run on several records to sim-
ulate changes due to the addition of new data. What
these experiments show is modest changes in the
trend magnitude of flow-normalized records as the
first year or two are added to the record (a few per-
cent), followed by very small changes (typically a per-
cent or less) as a few more years are added to the
record. In those cases where the underlying change
in water quality is rather abrupt, the estimates at
the end of the record may change by a larger amount,
because WRTDS flow-normalized records are desig-
ned to provide a relatively smooth description of
changes in the behavior of the system. When the
changes are largely driven by changes in nonpoint
sources or groundwater inputs or cumulative changes
across a large number of point sources, this assump-
tion of gradual change is likely to be appropriate. If
the conditions were dominated by a single point
source that underwent a major upgrade, then the
WRTDS approach could have the effect of making a
very abrupt change in water quality appear gradual.
For the large watersheds for which these methods
are designed, this potential shortcoming of the
method is of limited consequences.

A Second Example from the Chesapeake
Bay Watershed, Nitrogen Concentrations
in the Choptank River

A second example to consider briefly is the dis-
solved nitrate plus nitrite record from the Choptank
River at a streamgage near Greensboro, Maryland.
It has characteristics quite different from the Patux-
ent River total phosphorus example. The Choptank
basin has a low population density and a high inten-
sity of agriculture. In this case, the nutrient of inter-
est is nitrogen. It may be preferable to do this
analysis for total nitrogen, but those records contain
some censored values. Because the WRTDS method
has yet to be implemented and tested for censored
values, the analysis here will be for dissolved nitrate
plus nitrite. (This extension of the method is a very
high priority for future enhancements of WRTDS.)
Unlike the Patuxent River site, there are no sewage
treatment plants upstream. Also, in this situation,
groundwater is an important source of the nutrient
and it has been documented that groundwater nitrate
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concentrations have been increasing over the years
1988-2001 (Debrewer et al., 2008). This dataset con-
sists of 557 observations from 1979 through 2008. A
good way to view the changes that have happened in
the system is to use WRTDS to consider changes in
concentration over the period at a particular time of
year at three selected discharge values (similar to
Figure 6). In this case, the date selected is April 1,
and the three discharge values are 1.5 m®/s (near the
10th percentile discharge for this time of year),
7 m®/s (near the 75th percentile), and 14 m®/s (near
the 90th percentile). These results are plotted in
Figure 11. This figure shows that concentrations are
consistently higher for lower discharges such as 1.5
or 7 m®/s, when compared with 14 m?/s, but in addi-
tion the trend in concentration at the lowest of these
flows is much more pronounced than the trend at the
higher discharges. For example, at a discharge of
1.5 m®/s, the increase from April 1, 1980, to April 1,
2006, is from 0.90 to 1.43 mg/l, an increase of
0.53 mg/1 or 59%. For a discharge of 14 m?®/s, the
increase is from 0.83 to 1.06 mg/l, an increase of
0.23 mg/l1 or 28%. This suggests that much of the
increase in nitrate plus nitrite in this stream comes
from the groundwater discharge to the stream. There
may also be increases in the concentrations that come
in storm flow, but they are not as large (in absolute
or relative terms) as the increases at low flow. The
crossover in the curves for the two lower discharge
values suggests that in the early years, at times of
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FIGURE 11. Estimated Concentration of Dissolved Nitrate Plus
Nitrite, Choptank River Near Greensboro, Maryland, Evaluated at
April 1 of Each Year for Discharge Values of 1.5 (solid line), 7
(dashed line), and 14 (dotted line) m®/s, Showing the Much Steeper
Rise of Concentration at Low Flows Than at High Flows.
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very low discharge, the base flow that made up most
of streamflow was coming from deeper, less-contami-
nated parts of the aquifer, but over time these deeper
parts of the flow system were becoming more affected
by nitrate contamination from the surface. If these
results are viewed from the perspective of a discharge
vs. concentration relationship, we see that the shape
of that relationship has changed over the 30-year per-
iod. In the early years, the slope of the concentration
vs. discharge curve goes from positive to negative as
discharge increases, but in the past 20 years the
entire curve is downward sloping. This is another
good example of the issue raised in the beginning of
this paper, related to the second desired attribute of
a new method: a highly flexible representation of the
discharge vs. concentration relationship.

The results of computations of estimated concen-
trations and fluxes as monthly and annual averages
are shown in Figure 12. The upward trend in con-
centration is quite clear, viewed either in the
monthly or annual time series. Because concentra-
tions are lower at times of higher discharge, two
high flow years, 1996 and 2003, stand out as years
of low concentration. The flux history is less clear
because higher discharges, while having lower con-
centrations, carry higher fluxes. These same two wet
years appear as positive spikes in the long-term flux
record. Showing the monthly record can be useful in
helping nontechnical audiences understand the very
large range of variability of this system, with fluxes
changing by as much as two orders of magnitude
from month to month. These graphs also demon-
strate how misleading short-term trends can be.
From 2003 to 2008, this watershed has experienced
progressively dryer conditions each year. (At the
time when this analysis was being carried out, it
was already clear that 2009 was a much wetter year
than the years just before it. There is no reason to
think that this six-year trend is more than a random
occurrence). As a consequence, average concentra-
tions as estimated by WRTDS have increased by
36% between 2003 and 2008. In contrast, the esti-
mated flux has decreased by 59% over this same per-
iod. These contradictory results are not helpful to
decision makers and the public who want to under-
stand progress toward clean water goals. These
changes are primarily artifacts of the particular pat-
tern of streamflow over this period and tell us very
little about progress toward the goals of reduced
nutrient inputs to the Chesapeake Bay.

Thus, the flow-normalized estimates shown in
Figure 13 are quite useful. It shows the overall
trends taking place, with the influence of random dis-
charge-induced variations removed. Figure 13 shows
that both concentration and flux have been increas-
ing at a rather constant rate over the entire period
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FIGURE 12. Left Panel Shows the Estimated Monthly (light line) and Annual (heavy line) Estimated Concentrations for Dissolved Nitrate

Plus Nitrite, Choptank River Near Greensboro, Maryland. The right panel shows the monthly and annual estimated flux.
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FIGURE 13. The Left Panel Is the Annual Average Estimated Dissolved Nitrate Plus Nitrite Concentration (light line) and the Flow-
Normalized Annual Average Estimate (heavy line), for the Choptank Rver Near Greensboro, Maryland. The right panel contains flux
estimates. In both cases, the annual estimates (light line) are the same as those plotted as the heavy line in the two panels of Figure 12.

and that the particular pattern of streamflow condi-
tions over the 2003-2008 period have confounded the
story, making the concentration trend appear much
steeper than is realistically the case, and making the
flux trend appear to be the opposite sign because of
the particular sequence of discharges that went from
very high to low over that period. From a flow-nor-
malized perspective, concentrations rose by only
about 10% over the years 2003-2008 and flux rose by
about 8%. Table 2 shows the pattern of slope changes
over different decades. These results suggest some
degree of acceleration of the increase in the 2000 to
2008 period when compared with the 1990 to 2000
period. This is important information for decision
makers concerned about progress on nitrogen control
in this watershed. Water quality in terms of dis-
solved nitrate plus nitrite is deteriorating and
appears to be doing so at an increasing rate. This is
true whether it is evaluated in terms of concentra-
tions or fluxes.
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TABLE 2. Trend Slopes for Flow-Normalized Annual Average
Values for Various Time Periods, Dissolved Nitrate Plus Nitrite,

Choptank River Near Greensboro, Maryland.

Concentration
Results Flux Results

Slope Slope Slope Slope
Time (mg/1 per (% per (kg/day per (% per
Span year) year) year) year)
1980-1990 +0.013 +14 +6.4 +2.2
1990-2000 +0.012 +1.1 +2.5 +0.7
2000-2008 +0.021 +1.8 +5.9 +1.6

APPLICATION ACROSS THE CHESAPEAKE
BAY WATERSHED

One of the motivations for the type of analysis

874

developed here is that it can be applied in a consis-
tent manner across the many rivers that enter an
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estuary such as Chesapeake Bay, and can provide
estimated time series (at time steps of days, months,
years, or even decades) of fluxes from each of the sev-
eral monitored rivers that enter the estuary. In the
case of the Chesapeake Bay, the RIM network has
consistently collected water-quality and discharge
data for nine rivers over the roughly 30-year period
from 1979 to 2009. The RIM sites sample water from
about 78% of the land area of the Chesapeake Bay
watershed (Langland et al., 1995). The Patuxent and
Choptank River datasets used above are both prod-
ucts of this network. The network monitoring sites
are located as far downstream as possible, but above
the head of tide, for the nine largest rivers draining
to the Bay. They constitute an important part of the
total inputs of nutrients to the Bay (based on the
Chesapeake Bay Program Watershed model, Phase
4.3, they are currently estimated to be about 60% of
total phosphorus and total nitrogen, source personal
communication, Katie Foreman, Chesapeake Bay Pro-
gram Office, January 2010). To determine the total
inputs to the Bay, inputs from these rivers must be
combined with inputs from the part of the watershed
that is not monitored (both via surface-water inputs
and via groundwater), from the point sources that
are downstream of the monitoring sites, and from the
atmospheric inputs directly to the bay.

The RIM datasets were all analyzed using
WRTDS, with the same half-window widths in all
cases (time, 10 years; discharge, 2 natural log units;
and season, 0.5 year). All of these sites had an aver-
age of 15 to 24 samples per year on average. If the
analysis was being conducted on a set of sites with
substantially different sampling densities, it might
have been appropriate to vary the windows across
sites. The analyses include both total phosphorus and
dissolved nitrate plus nitrite, both flux and concen-
tration, and both annual estimates and flow-normal-
ized estimates. This paper will not explore the other
components of the inputs to the bay and makes no

attempt to compute trends in total inputs. However,
we believe that the results are useful to describe pat-
terns of long-term change for individual tributaries
and to make comparisons across the tributaries.

Table 3 names the RIM sites, showing their drain-
age areas, land use, and amount of major wastewater
discharges upstream. A map of these sites and their
upstream watersheds is shown in Appendix S2 of the
Supporting Information.

Figure 14 aggregates the analyses of total phos-
phorus fluxes across all of the RIM sites into a single
graphic, showing the annual average estimates and
the flow-normalized annual average estimates for all
of the sites. Given that the sizes of the nine water-
sheds range over more than two orders of magnitude,
for purposes of comparison, the fluxes are recalcu-
lated as yields (yield is flux per unit drainage area)
expressed as kg/day/km? and all nine watersheds are
shown at the same scale. Four of the watersheds
shown in Figure 14 have much lower yields than the
others (Pamunkey, Mattaponi, Appomattox, and Sus-
quehanna). The first three of these drain almost
entirely Coastal Plain and Piedmont watersheds and
thus have low stream gradients throughout their
length. The Susquehanna is sampled at the down-
stream end of a series of reservoirs where substantial
amounts of sediment and associated phosphorus are
deposited. The Patuxent record as discussed above
shows the very substantial decrease in phosphorus
flux over the 31-year record. Five of the watersheds
had positive slopes for the whole period, and three
others had negative slopes but of a much lower mag-
nitude than the Patuxent. From a total bay
watershed perspective it is important to note that the
two largest rivers (Susquehanna and Potomac) both
had long-term decreases in flux. Three sites show
increases during the 2000-2008 period of more than
about 1.5% per year: the Rappahannock (8.4% per
year), the James (+2.5% per year), and the Choptank
(+1.9% per year). All of the others are showing either

TABLE 3. River Input Monitoring Program Data Collection Sites, With Information About Drainage Area, Land Use,
and Wastewater Discharges (U.S. Geological Survey, 2010, http://va.water.usgs.gov/chesbay/RIMP/generalinfo.html).

Upstream Land

Land Use (%) Major Upstream

Surface Area Wastewater
Station Name (km?) Urban Agricultural Forested Other Discharges (m®/day)
Susquehanna River near Conowingo, Maryland 70,200 2 29 67 2 1,650,000
Potomac River at Chain Bridge, Washington, D.C. 30,000 3 35 61 1 477,000
James River at Cartersville, Virginia 16,200 1 16 80 3 338,000
Rappahannock River near Fredericksburg, Virginia 4,130 1 36 61 2 17,800
Appomattox River at Matoaca, Virginia 3,480 1 20 72 7 4,200
Pamunkey River near Hanover, Virginia 2,790 1 24 68 7 18,900
Mattaponi near Beulahville, Virginia 1,560 1 19 69 11 400
Patuxent River at Bowie, Maryland 901 13 41 38 8 114,000
Choptank River near Greensboro, Maryland 293 1 50 29 20 0.0
Land-use data from Vogelmann et al. (1998).
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FIGURE 14. Total Phosphorus Yields for the Nine River Input Monitoring Sites Using WRTDS Method.
Circles are the average annual estimates. The line represents the flow-normalized annual estimates.

small increases or small decreases during the most
recent eight-year period. Table 4 summarizes these
results for total phosphorus fluxes, expressed both as
rates of change in percentage terms as well as abso-
lute changes in terms of actual fluxes. Similar results
for total phosphorus concentration (graphical and
tabular) are shown in Appendix S2 of the Supporting
Information.

Figure 15 presents the same type of results for dis-
solved nitrate plus nitrite. For nitrate plus nitrite
four sites stand out as having consistently lower
yields: Mattaponi, Pamunkey, Appomatox, and
James. Over the full period of record only two of
them show substantial relative rates of change: the
Choptank River (+1.8% per year) and the Patuxent
River (-1.2% per year). The Choptank nitrogen
trends were discussed above. The Patuxent nitrogen
trends are likely a result of the investments made in
advanced wastewater treatment in the watershed.
Over the full period the percentage changes in the
two largest rivers were small, +0.2% per year for the
Susquehanna and -0.1% per year for the Potomac,
but these represent the largest absolute changes in
flux of any of the rivers. Over the shorter more-recent
period of 2000-2008, two sites show annual rates of
increasing flux of >1% per year (Choptank and
James) and four sites show decreases of >1% per year
(Patuxent, Potomac, Pamunkey, and Appomatox).
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TABLE 4. Changes in Total Phosphorus Flux for the Nine
RIM Sites for Two Periods: 1978-2008 and 2000-2008.

1978-2008 2000-2008

Slope Flux Slope Flux

(% per Change (% per Change
River year) (kg/day) year) (kg/day)
Susquehanna -0.4 -990 +1.9 +970
Potomac -0.3 -530 -2.0 -940
James +0.5 +480 +2.5 +590
Rappahannock +4.0 +780 +8.4 +580
Appomattox -0.2 -10 +0.8 +12
Patuxent -2.5 -400 +0.2 +2
Pamunkey +1.2 +64 +1.1 +19
Mattaponi +0.7 +12 +0.1 +0
Choptank +0.3 +3 +1.9 +5

Flux change is the flow-normalized annual flux estimate at the end
of the period minus the flow-normalized annual flux estimate at
the beginning of the period. The slope is this flux change per year
expressed in percentage terms over the period.

This recent period shows rather substantial declines
in the two largest rivers and these translate into
large reductions in the total river inputs of nitrate
plus nitrite to the bay.

Tabular results for dissolved nitrate plus nitrite
fluxes are given in Table 5. Similar graphs and tables
are shown for concentration histories in Appendix S2.
Appendix S3 contains tables of the complete set of
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FIGURE 15. Dissolved Nitrate Plus Nitrite Yields for the Nine River Input Monitoring Sites Using WRTDS Method.
Circles are the average annual estimates. The line represents the flow-normalized annual estimates.

TABLE 5. Changes in Dissolved Nitrate Plus Nitrite Flux for
the Nine RIM Sites for Two Periods: 1978-2008 and 2000-2008.

1978-2008 2000-2008

Slope Flux Slope Flux

(% per Change (% per Change
River year) (kg/day) year) (kg/day)
Susquehanna +0.2 +6,400 -0.9 -8,600
Potomac -0.1 -1,200 -1.5 —4,800
James -0.5 -880 +1.2 +400
Rappahannock +0.1 +69 +0.4 +71
Appomattox +0.2 +21 -1.3 -55
Patuxent -1.2 -560 -1.9 -160
Pamunkey -1.0 —240 -14 -73
Mattaponi +0.3 +17 +0.7 +10
Choptank +1.8 +147 +1.6 +48

Flux change is the flow-normalized annual flux estimate at the end
of the period minus the flow-normalized annual flux estimate at
the beginning of the period. The slope is this flux change per year
expressed in percentage terms over the period.

results for both total phosphorus and dissolved
nitrate plus nitrite, for both flux and concentration,
and both annual estimates and flow-normalized
annual estimates. Using these tables, amounts of
change and rates of change can be computed for any
time span covering the 31-year period.
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The results presented for the RIM network are
intended to be indicative of the kinds of representa-
tions of long-term variations and trends that are
possible with the WRTDS method. It is not the goal
of this paper to explore explanations of the patterns
revealed in the analysis. However, it is the goal of
this paper to demonstrate the rich set of questions
that the analysis can raise. As mentioned in the
seventh item of “Seven desired attributes of a new
approach for the analysis of long-term water-quality
data,” the outputs are intended to be useful not
only as measures of relative success for achieve-
ment of water-quality goals but also as a gateway
to diagnostic analysis of the nature of and possible
reasons for the changes that are being observed.
These results can serve as a starting place for more
detailed explorations of concentration and flux
histories focused on various times of year and/or
various flow conditions. These results can also be
related to information about the history of changes
in the watershed (population, point-source loadings,
fertilizer applications, land use change, and many
other topics). The WRTDS approach provides a vari-
ety of tools to use in a diagnostic manner to better
describe and understand the changes taking place
and thus to help guide future nutrient-control strat-
egies.
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SUGGESTED TOPICS FOR EXPLORATION
AND FUTURE IMPROVEMENTS IN WRTDS

This paper is intended to introduce a new
approach to water-quality trend analysis. In the
course of its development and through discussions
with many experienced practitioners, we see a set of
methodological questions and extensions that should
be the subject of ongoing or future development. The
following is a list of suggested topics in need of future
exploration or improvements in WRTDS.

1. At present, WRTDS does not have the capability
of analyzing censored data (records where some
observations are recorded as “less than” the limit
of detection). Conceptually, this is an improve-
ment that can readily be made using censored
regression approaches. There would certainly be
questions about the degree of censoring that the
method can tolerate and questions of statistical
robustness, but it should be possible to make this
improvement.

2. This approach considers only three factors influ-
encing concentration: time, time of year, and the
discharge on the day of sampling. There is good
reason to consider the history of discharge (at
time scales of days to years) as explanatory
variables (see, e.g., Hirsch, 1988; Evans and
Davies, 1998; Vecchia, 2005; Vecchia et al.,
2009). Concentrations are influenced not just by
the discharge at the time of sampling, but by
whether discharge is rising or falling, or
whether the watershed has experienced weeks
or months of particularly dry or wet conditions.
Adding these factors to the analysis may prove
useful for increasing the accuracy of the method,
although it will add complexity and potential
model error.

3. As mentioned above, the flow-normalization
method is built on an assumption that stream-
flow is stationary (for any given time of
year). There is a need to generalize the flow-
normalization method to consider the role of
changing streamflow conditions due to factors
such as reservoir storage, groundwater declines,
or climate change.

4. In addition to estimates of averages of concentra-
tions and fluxes, it would be useful to have the
method report out temporally varying estimates
of the probability of exceeding some threshold
(based on considerations of human or ecosystem
health). The results of the regressions could be
expressed, not in terms of an expected value, as
is done here, but in terms of an estimated proba-
bility that on any given day the concentration
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would have exceeded a specific threshold (e.g., a
water-quality standard). The analysis could then
report out estimates of long-term history of the
frequency with which those thresholds have been
exceeded.

. Another improvement in the WRTDS system

would be the simultaneous consideration of mul-
tiple water-quality variables. Particularly,
where the goal is diagnostic analysis of water-
quality conditions, it is useful to consider ques-
tions such as the relative amounts of different
forms of a particular element (e.g., nitrate,
nitrite, ammonia, total nitrogen, etc.). The ten-
dency for some forms to move with particles, oth-
ers to move in dissolved form, some to move
through groundwater, and some to react and
change form in transport, can be exploited to
help understand source, transport, and fate.
These multivariate approaches may prove to be
useful.

. The method as presently implemented has no

objective rules for setting the window widths for
the smoothing. By working with larger and more
complete datasets that can be subsampled, it
may be possible to optimize the selection of win-
dow widths.

. Finally, the subject of error analysis is a crucial

one to consider. Similar to the error analysis
work by Gilroy et al. (1990), for a regression-
based approach, there is a need for a method
that can be used to estimate the uncertainty of
estimates for individual months or years. The
WRTDS results do not provide a “standard error”
for any of the estimates made, and do not pro-
vide a means for conducting hypothesis tests or
stating that a trend is so many percent per year,
plus or minus some amount of uncertainty.
Although the addition of uncertainty estimates
would be desirable, it is less problematic when
one views the analysis as a broadly descriptive
and diagnostic function rather than a hypothesis
testing function. Our underlying philosophy in
this work is that water-quality change is a given,
the task at hand is to provide a meaningful
description of the nature and magnitude of the
change.

CONCLUSION

This paper is intended to open up the discussion of
water-quality trends to new approaches that strive to
extract the greatest amount of information from the
data collected and to provide the greatest possible
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insight to inform policy. The WRTDS method is pre-
sented as a very specific, formal implementation of a
new philosophy about water-quality data analysis. At
this stage of the development, experimentation and
improvement on this method is strongly encouraged.
What is imperative is that water-quality professionals
strive to use the rich datasets that are now available
to extract the greatest amount of information from
the data and communicate it to decision makers and
the public.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article:

Appendix S1. Uncertainty analysis.

Appendix S2. Concentration results for the nine River Input
Monitoring sites.

Appendix S3. The tables in this appendix provide estimates of
concentration in mg/1, and flux (in both lbs/day and kg/day) for all
sites, for total phosphorus and for dissolved nitrate plus nitrite,
showing annual estimates and flow-normalized annual estimates.

Please note: Neither AWRA nor Wiley-Blackwell is responsible
for the content or functionality of any supporting materials sup-
plied by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the article.

[Correction after Online publication September 7, 2010: Figure
13c axis unit names changed.]
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