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  Fatty acid synthase (FASN), a 250- to 270-kDa cytosolic 
protein and one of the main lipogenic enzymes in mam-
mals, catalyzes reactions that contribute to the conversion 
of acetyl-CoA and malonyl-CoA to palmitate ( 1–4 ).  FASN  
gene transcription is under tight nutritional and hormonal 
control in lipogenic tissues, such as the liver and white adi-
pose tissue. The transcription factors for this gene, namely 
specifi city proteins 1 and 3 (Sp1 and Sp3), nuclear factor 
Y (NF-Y), and sterol regulatory element binding protein-1 
(SREBP-1), have cognate binding sites on the proximal 
promoter of the  FASN  ( 5–7 ). Additionally, tumor-associated 
FASN not only functions as a key component of the ana-
bolic energy-storage pathway but also confers growth and 
survival advantages to most human cancers, such as pros-
tate, breast, ovarian, endometrial, colorectal, lung, stom-
ach, and skin cancers ( 8–10 ). FASN plays an important 
role in cancer cell proliferation by providing a cell mem-
brane lipid component that is needed for rapid cell growth. 
Some anti-cancer drugs target FASN, aiming to repress 
FASN expression or inhibit FASN enzyme activity. An in-
crease in FASN expression is part of the overall genetic 
reprogramming of cancer cells, as evidenced by the concom-
itant increase in other SREBP-1c-regulated enzymes of the 
lipogenic pathways ( 4 ). 

      Abstract   Kr-pok (kidney cancer-related POZ domain and 
Krüppel-like protein) is a new proto-oncogenic POZ-domain 
transcription factor. Fatty acid synthase gene ( FASN ) en-
codes one of the key enzymes in fatty acids synthesis and is 
the only enzyme that synthesizes fatty acids in cancer cells. 
Sp1 and SREBP-1c are the two major transcription activa-
tors of  FASN . We investigated whether Kr-pok modulates 
transcription of the  FASN . FASN expression is signifi cantly 
decreased in  Kr-pok  knockout murine embryonic fi broblasts. 
Coimmunoprecipitation, GST fusion protein pull-down, 
and immunocytochemistry assays show that the zinc-fi nger 
domain of Kr-pok interacts directly with the bZIP DNA 
binding domain of SREBP-1. Electrophoretic mobility shift 
assay, oligonucleotide pull-down, and   chromatin immuno-
precipitation   assays showed that Kr-pok changes the tran-
scription factor binding dynamics of Sp1 and SREBP-1c to 
the SRE/E-box elements of the proximal promoter.   We 
found that Kr-pok expression increased during 3T3-L1 
preadipocyte differentiation and that FASN expression is 
decreased by the knockdown of Kr-pok. Kr-pok facilitates 
the SREBP-1c-mediated preadipocyte differentiation and/
or fatty acid synthesis. Kr-pok may act as an important regu-
lator of fatty acid synthesis and may induce rapid cancer cell 
proliferation by increasing palmitate synthesis.  —Jeon, B-N., 
Y-S. Kim, W-I. Choi, D-I. Koh, M-K. Kim, J-H. Yoon, M-Y. Kim, 
B. Hur, P. D-H. Paik, and M-W. Hur.  Kr-pok increases  FASN  
expression by modulating the DNA binding of SREBP-1c 
and Sp1 at the proximal promoter.  J. Lipid Res . 2012. 
 53: 755–766.   

 Supplementary key words kidney cancer-related POZ domain and 
Krüppel-like protein • sterol responsive element binding protein-1c • 
specifi city protein 1 • fatty acid synthase • transcription • oncoprotein • 
lipid • fatty acid 

 This work was supported by a Mid-career Researcher Program Grant (2009-
0081294) (M.-W. H.), a Do-Yak Program Grant (2011-0028817) (M.-W. H.), an 
Atomic Energy Research Grant (2008-2001735) (M.-W. H.), and a Medical 
Research Center Grant (2011-0030708) (M.-W. H.) from the National Research 
Foundation of the Korean Ministry of Education, Science and Technology. 

 Manuscript received 1 November 2011 and in revised form 24 January 2012. 

  Published, JLR Papers in Press, February 13, 2012  
  DOI 10.1194/jlr.M022178  

 Kr-pok increases  FASN  expression by modulating 
the DNA binding of SREBP-1c and Sp1 at the 
proximal promoter  

  Bu-Nam   Jeon , *   Yeon-Sook   Kim , *   Won-Il   Choi , *   Dong-In   Koh , *   Min-Kyeong   Kim , *  
 Jae-Hyeon   Yoon , *   Min-Young   Kim , *   Benjamin   Hur ,  †    Philip Dong-Hyun   Paik ,  §   and  Man-Wook   Hur   1, *  

 Department of Biochemistry and Molecular Biology,* Brain Korea 21 Project for Medical Science, Severance 
Biomedical Research Institute,  Yonsei University School of Medicine , 134, ShinChon-Dong, SeoDaeMoon-
Ku, Seoul, 120-752, Korea; Department of Mechanical Information and Design Engineering, †  College of 
Science and Technology,  Hongik University , Seoul Korea  ; and Department of International Relations, §   London 
School of Economics and Political Science , London WC2A 2AE,  United Kingdom  

 Abbreviations: BTB/POZ, bric-à-brac, tramtrack, and broad com-
plex and pox virus zinc fi nger; ChIP, chromatin immunoprecipitation; 
CMV, cytomegalovirus; DAPI, 4’,6-diamidino-2-phenylindole; EMSA, 
electrophoretic mobility shift assay; FASN, fatty acid synthase; FBI-1, 
factor that binds to the inducer of short transcripts of human immuno-
defi ciency virus-1; GC-box, Sp1 binding GC-rich box; GST, glutathione 
S-transferase; IP, immunoprecipitation; IPTG, isopropyl-1-thio- � -D-
galactopyranoside; MEF, murine embryonic fi broblast; POK, POZ do-
main and Krüppel like; Sp1, specifi city protein 1; SRE, sterol responsive 
element; SREBP, sterol responsive element binding protein; ZF, zinc 
fi nger. 

  1  To whom correspondence should be addressed.  
  e-mail: mwhur2@yuhs.ac 

  The online version of this article (available at http://www.jlr.org) 
contains supplementary data in the form of one table and two fi gures. 



756 Journal of Lipid Research Volume 53, 2012

 Plasmid preparation 
 Various fatty acid synthase promoter-luciferase reporter gene 

plasmids were provided by Dr. Kyung-Sup Kim of the Yonsei 
University School of Medicine (Seoul, Korea) and Dr. Timothy 
F. Osborne of the Sanford/Burnham Medical Research Institute 
(Orlando, FL). pcDNA3.1-Kr-pok-Myc-His and pcDNA3.0-FLAG-
Kr-pok plasmids were prepared by cloning mouse brain cDNA 
fragments into pcDNA3.1 or pcDNA3.0 plasmids (Invitrogen). 
pcDNA3.1-Myc-SREBP-1c was prepared by cloning pCMV-SREBP-1c 
into the pcDNA3.1 plasmid (Invitrogen). To prepare recombi-
nant GST-POZ Kr-pok, GST-ZF Kr-pok, and GST-bZIP SREBP-1 
proteins, cDNA fragments encoding Kr-pok POZ, Kr-pok zinc fi n-
gers, and the SREBP-1 bZIP domain, respectively, were cloned 
into pGEX4T3 (Amersham Biosciences, Piscataway, NJ). All plas-
mid constructs were verifi ed by sequencing. 

 Total RNA isolation and RT-PCR or quantitative PCR 
 Total RNA was isolated from cells using TRIzol reagent (Invitro-

gen). cDNA was synthesized using 5  � g of total RNA, random hex-
amers (10 pmol), and superscript reverse transcriptase II (200 units) 
in a total volume of 20  � l using a reverse transcription kit (Invitro-
gen). PCR was performed using the following amplifi cation condi-
tions: 94°C denaturation for 3 min, 30 cycles of amplifi cation 
reaction (94°C for 30 s, 55°C for 30 s, 72°C for 30 s), and a fi nal 
extension reaction at 72°C for 5 min. Quantitative PCR was per-
formed using the SYBR Green PCR Master Mix (Applied Biosys-
tems, Carlsbad, CA) and ABI PRISM 7300 RT-PCR System (Applied 
Biosystems). GAPDH mRNA was used as a control. 

 Western blot analysis 
 Cells were harvested and lysed in RIPA buffer. Cell extracts 

(30 µg) were separated using 12% SDS-PAGE, transferred to an 
Immun-Blot TM  PVDF Membrane (Bio-Rad, Hercules, CA), and 
blocked in 5% skim milk (BD Biosciences, Sparks, MD). Blotted 
membranes were incubated with antibodies against FLAG-tag 
(Abcam, Cambridge, UK), GAPDH (Chemicon, Temecula, CA), 
SREBP-1, Sp1, and Myc-Tag (SantaCruz Biotech, Santa Cruz, CA) 
and then incubated with HRP-conjugated mouse, rabbit, or goat 
IgGs (Vector Laboratory, Burlingame, CA). A rabbit polyclonal anti-
body against Kr-pok by us as reported elsewhere ( 29 ). Protein bands 
were visualized with an ECL solution (PerkinElmer, Waltham, MA). 

 Determination of FASN enzyme activity 
 Cells (HCT116, LNcaP) infected with the recombinant adeno-

virus overexpressing Kr-pok, the shRNA Kr-pok knock-down, and 
the control adenovirus were cultured for 2 days, harvested, and 
lysed in RIPA buffer. FASN enzyme activity was analyzed by spec-
trophotometrically measuring the oxidation of NADPH by the 
conversion of Malonyl-CoA to palmitate. The reaction was initi-
ated by adding 100  � g of cell lysates to the assay mixture (0.1 M 
potassium phosphate buffer [pH 7.0], 30 µM Acetyl-CoA, 100 µM 
Malonyl-CoA, 0.1 mM NADPH, and 1 mM EDTA). The decrease 
in absorbance at 340 nm was monitored over 30 min. The oxidation 
of cell lysates was background corrected for NADPH oxidation in 
the presence of only Malonyl-CoA and Acetyl-CoA. 

 Immunoprecipitation assays 
 Cells were washed, pelleted, and resuspended in a lysis buffer 

that was supplemented with protease inhibitors. The cell lysate was 
precleared, and the supernatant was incubated with antibodies on 
a rotating platform at 4°C overnight, followed by incubation with 
protein A-Sepharose Fast Flow beads. The beads were collected, 
washed, and resuspended in equal volumes of 5× SDS loading buf-
fer. Immunoprecipitated proteins were separated with 12% SDS-
PAGE. The Western blot assay was performed as described above. 

 SREBPs are a family of basic helix-loop-helix leucine 
zipper transcription factors that are synthesized as inactive 
precursor proteins and are anchored to the ER (endoplas-
mic reticulum) membrane ( 11–13 ). SREBPs interact with 
SCAP (SREBP cleavage-activating protein), which is re-
tained in the ER by Insig protein ( 14 ). The SCAP-SREBP-
Insig complex is stabilized by cholesterol. When sterol 
levels are low, the SCAP-SREBP complex is released from 
Insig and moves to the Golgi, where the N-terminus of 
SREBP is cleaved by proteolysis and translocated to the 
nucleus. Activated SREBPs, by binding to the SRE ele-
ments, increase the transcription of many genes involved 
in cholesterol and fatty acid synthesis. There are three iso-
forms of SREBPs: SREBP-1a, SREBP-1c, and SREBP-2. 
SREBP-1a and SREBP-1c are transcribed from the same 
 SREBP-1  gene, but each is driven by a distinct promoter. 
SREBP-2 is encoded by a separate gene,  SREBP-2 , which 
encodes a single mRNA (13, 15 and references therein). 

 The POZ domain-containing proteins play various cel-
lular regulatory roles by interacting with regulatory pro-
teins or by controlling transcription of target gene 
expression ( 16–18 ). In particular, interactions between 
some of the POK family proteins and co-regulators are 
major determinants in differentiation, development, he-
matopoiesis, tumor suppression, and oncogenesis ( 19–31 ). 
FBI-1, one of the POK family transcription factors, was re-
cently identifi ed as a potential determinant of adipocyte 
differentiation ( 25–27 ). Kr-pok, a recently characterized 
proto-oncoprotein, contains a POZ-domain and four 
Krüppel-like ZFs that are similar to those of FBI-1 in two 
key functional domains: the POZ-domain (81% similarity) 
and the four Krüppel-like ZFs (88% similarity) (supplemen-
tary  Fig. I ) ( 28, 29 ). Accordingly, Kr-pok is expected to 
have some properties comparable to those of FBI-1, such 
as adipocyte differentiation and cell proliferation. 

 In this study, we found that Kr-pok and SREBP-1c inter-
act to synergistically activate  FASN  expression. Kr-pok 
changes the binding dynamics of SREBP-1c and Sp1 at the 
core regulatory elements of the  FASN  promoter, which re-
sults in the transcriptional up-regulation of FASN. Kr-pok 
may be one of the key regulators of fatty acid synthesis and 
cancer cell proliferation. 

 MATERIALS AND METHODS 

 Cell culture 
 Stable HEK293T-Rex-Kr-pok cells, which are inducible by 

doxycycline, were prepared by transfecting mammalian Flp-In TM  
T-REx TM  host HEK293 cells with pOG44 and pcDNA5/FRT/
TO © -Kr-pok plasmids and selecting with hygromycin and blas-
ticidin (Invitrogen, Carlsbad, CA). To prepare  Kr-pok +/+   and 
 Kr-pok  � / �    mouse embryonic fi broblasts (MEFs), pregnant female 
 Kr-pok  +/ �   mice were mated with  Kr-pok  +/ �   male mice and eutha-
nized at 13.5 days post coitum. The embryos were homogenized, 
treated with a trypsin-EDTA solution, and placed in a CO 2  incu-
bator for 6 h. Fresh DMEM was added to the culture media, and 
embryo homogenates were continuously incubated to obtain 
MEFs. HEK293A, HCT116, and LNcaP cells were cultured in 
DMEM (Gibco-BRL, Gaithersburg, MD) supplemented with 10% 
FBS (Gibco-BRL). 



Kr-pok activates transcription of  FASN 757

were incubated with 1  � g of biotinylated double-stranded oligo-
nucleotides. The sequence of the SRE/E-box oligonucleotide 
was 5 ′ -GTCCAGCCCATGTGGCGTGGC-3 ′  (only the top strand is 
listed). The mixtures were incubated with Streptavidin-agarose 
beads for 2 h to collect the DNA-protein complex and then spun, 
and the pellets were washed with HKMG buffer. The precipitates 
were resolved by 10% SDS-PAGE and analyzed using Western blot. 

 Chromatin immunoprecipitation assays 
 Using chromatin immunoprecipitation (ChIP) assays, we in-

vestigated the molecular interaction between Sp1 or SREBP-1c 
and the SREBP-1c binding site on the  FASN  promoter in the 
presence of Kr-pok. Subconfl uent HEK293A cells on a culture 
dish were transfected with pcDNA3.0-FLAG Kr-pok and/or 
pcDNA3.1-SREBP-1c using Lipofectamine Plus and grown 
for an additional 48 h. The cells were fi xed with formaldehyde 
(fi nal concentration, 1%) to cross-link Kr-pok, SREBP-1c, and 
Sp1 onto the  FASN  promoter. The remaining ChIP procedures 
were performed as reported previously ( 27 ). PCR reactions 
of immunoprecipitated DNA were carried out using oligonu-
cleotide primer sets designed to amplify the  FASN  gene region. 
FASN WT or MT primers (forward: 5 ′ -CAGGCG CGTTCCC-
GCGCAGG-3 ′ ; reverse: 5 ′ -GAG AG CGAGGCTGGAGCGCG-3 ′ ) 
and FAS2 or FAS3 primers (forward: 5 ′ -TCCAAAC TCATCAAT-
GTA-3 ′ ; reverse: 5 ′ -AAAGC AATTGTT CCAGGAACCAGGG-3 ′ ) 
were used for the ChIP assays. 

 Preparation of recombinant adenovirus overexpressing 
Kr-pok and shRNA against Kr-pok mRNA 

 The Kr-pok cDNA was cloned into an adenovirus E1 shuttle 
vector pCA14 (Microbix, Mississauga, Ontario, Canada) to gen-
erate pCA14-Kr-pok. To prepare a recombinant adenovirus ex-
pressing shRNA against Kr-pok, annealed shRNA DNA sequences 
(sense: 5 ′ -GATCCCTCCAGTGCATCGTGAATGTTTTTCAAGA
GA (loop)-ACATTCACGATGCACTGGATTTTTTTGGAA(loop)-
A-3 ′ ; antisense: 5 ′ -AGCTTTTCCAAAAA(loop)-AATCCAGTGC-
ATCGTGAATGTTCTCTTGAA(loop)-AAACATTCACGATGC A-
CTGGAGG-3 ′ ) were cloned into pSilencer 2.0-U6 (Ambion, 
Austin, TX) and subcloned into the p � E1sp1A vector. The 
pCA14-Kr-pok shuttle vector or p � E1sp1A-U6-shKr-pok vector 
and the adenovirus vector vmdl324Bst were linearized by restric-
tion enzyme digestion for homologous recombination into  E. coli  
BJ518. The homologous recombinant adenoviral plasmid was di-
gested and transfected into HEK293 cells to generate the adeno-
virus expressing Kr-pok (dl324-Kr-pok) or shRNA against Kr-pok 
(dl324-shKr-pok). 

 Knock-down of Srebp-1c mRNA by siRNA 
 siRNAs against Srebp-1c mRNA were designed and purchased 

from Bioneer (Seoul, Korea): siSrebp-1c, 5 ′ -CCACGGAG CC-
AUGGAUUGCACAUUUdTdT-3 ′ , 5 ′ -AAAUGUGCAA UCCAUG-
GCUCCGUGGdTdT-3 ′ . The siRNAs (50 pmol) were transfected 
into 3T3-L1 cells using Lipofectamine TM  RNAiMAX (Invitrogen). 

 Differentiation of 3T3L1 preadipocyte 
 3T3-L1 preadipocytes were maintained at low passage and 

grown to confl uence in DMEM supplemented with 10% calf se-
rum (Gibco-BRL). Differentiation was induced by placing 2 day 
postconfl uent cultures in DMEM supplemented with 10% calf 
serum for up to 8 days. The medium for differentiating 3T3-L1 
preadipocytes was supplemented with 0.525 mM methylisobu-
tylxanthine (Sigma, MO), 1  � M dexamethasone (Sigma), and 
0.167  � M insulin (Roche). Forty-eight hours later, this medium 
was replaced with medium supplemented only with 0.167  � M in-
sulin (Roche). 

 GST fusion protein purifi cation, in vitro transcription 
and translation, and GST fusion protein pull-down assays 

 Recombinant GST, GST-POZ Kr-pok, GST-ZF Kr-pok, and 
GST-bZIP SREBP-1 fusion proteins were prepared from  Escheri-
chia coli  BL21 (DE3) cells grown overnight at 18°C in medium 
containing 0.2 mM IPTG. The  E. coli  were lysed and purifi ed using 
glutathione-agarose 4 bead affi nity chromatography (Peptron, 
Taejeon, Korea). The purifi ed proteins were then resolved with 
12% SDS-PAGE to quantitate and assess purity. Kr-pok and 
SREBP-1c polypeptides were prepared using the TNT extract in 
the presence of [ 35 S]methionine (Promega, Madison, WI). GST 
fusion protein-agarose bead complexes were incubated with in 
vitro translated [ 35 S]methionine (1175.0 Ci/mol) labeled Kr-pok 
or SREBP-1c polypeptides at 4°C for 4 h in HEMG buffer. The 
reaction mixtures were centrifuged, the pellets were rinsed, and 
the bound proteins were separated using 12% SDS-PAGE. The 
gels were then exposed to X-ray fi lm (Kodak, Rochester, NY). 

 Immunostaining and cellular localization of Kr-pok and 
SREBP-1c 

 HEK293A cells were grown on coverslips placed in a culture 
dish. The cells were then transfected with pcDNA3.0-FLAG-Kr-pok 
and pcDNA3.1-SREBP-1c-Myc plasmids. After 24 h, the cells were 
washed with cold PBS and fi xed in 97:3 cold methanol:formalde-
hyde for 20 min at  � 20°C. The cells were permeabilized in 0.2% 
Triton X-100 and washed with PBS. Next, the cells were incubated in 
5% normal horse serum and then incubated with mouse anti-FLAG 
primary antibody for 2 h at room temperature. The cells were 
washed and incubated with FITC-conjugated anti-mouse IgG sec-
ondary antibody (Invitrogen). For double staining, the cells were 
washed and incubated with rabbit anti-Myc antibody and then with 
Rhodamine-conjugated anti-rabbit IgG secondary antibody (Invitro-
gen). After DAPI staining, washing, and mounting, the immuno-
stained cells were examined on a Carl Zeiss LSM 510 confocal laser 
scanning microscope (Carl Zeiss, Germany). 

 Transcriptional analysis of 6xSRE and various FASN gene 
promoters 

 HEK293A cells were transiently cotransfected with the SREBP-1c 
expression plasmid, increasing amounts of the Kr-pok expression 
plasmid, and the reporter plasmid (pGL2-6xSRE-Luc, pGL2-FAS1, 
2, 3-Luc, and pGL3-FASN Wt or Mt-Luc reporter fusion plas-
mids) using Lipofectamine Plus reagent (Invitrogen). After 24 h 
of incubation, the cells were harvested and analyzed for luciferase 
activity. The reporter activity was normalized with cotransfected 
 � -galactosidase activity or protein concentration for transfection 
effi ciency. 

 Electrophoretic mobility shift assay 
 The oligonucleotide probes were annealed by heating at 93°C 

for 5 min and then slowly cooled to room temperature. The an-
nealed oligonucleotides were prepared by labeling with [ � - 32 P]
ATP and Klenow enzyme by incubating for 30 min at 37°C (Roche, 
Nutley, NJ).  32 P-labeled, double-stranded oligonucleotide probes 
were purifi ed with Sephadex TM  G-50 (Amersham Biosciences, 
Uppsala, Sweden). The sequences of the oligonucleotides used in 
the EMSA are as follows (only the top strand is listed): FASN SRE/
E-box: 5 ′ -GATCGTCCAGCCCATGTGGCGT GGC-3 ′ . The remain-
ing procedure was performed as reported previously ( 27 ). 

 Oligonucleotide pull-down assays 
 HEK293A cells transfected with pcDNA3.0-FLAG-Kr-pok and/

or pcDNA3.0-SREBP-1c-Myc were lysed in HKMG buffer (10 mM 
HEPES [pH 7.9], 10 mM KCl, 5 mM MgCl 2 , 10% glycerol, 1 mM 
dithiothreitol, and 0.5% Nonidet P-40). The cellular extracts 
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 Kr-pok increases transcriptional activation of the FASN 
gene by interacting with SREBP-1c 

 We have shown that Kr-pok increases transcription of 
the  FASN  gene and interacts with SREBP-1. We analyzed 
the functional signifi cance of the protein interaction be-
tween Kr-pok and SREBP-1 on the SREBP-1 target genes, 
including FASN. First, SREBP-1c alone is able to activate 
transcription on the artifi cial 6×(SRE)-Luc promoter. Al-
though Kr-pok is not able to activate transcription alone, 
Kr-pok increases transcription in the presence of SREBP-1c 
in HEK293A cells (  Fig. 3A  ).  These data suggest that the 
interaction between Kr-pok and SREBP-1c is important for 
synergistic transcriptional activation of SREBP-1c target 
genes with SRE. 

 We also tested how Kr-pok and SREBP-1c regulated 
transcription of the human  FASN  gene promoter with 
proximal SREs and long upstream regulatory sequences 
( � 2.7 kb from Tss +1) in HEK293A cells. Kr-pok alone 
showed no effect on the transcription of the pGL3-FASN-
Luc promoter. SREBP-1c increased transcription 8-fold, 
and Kr-pok augmented this increase to 35-fold. To investi-
gate the functional signifi cance of the SRE elements and 
to determine if Kr-pok affects the molecular events be-
tween SREBP-1c and proximal SRE/E-box binding sites 
( � 65 to 45 bp) of the  FASN  gene, we prepared the pGL3-
mFASN-Luc reporter plasmid. Transient transfection and 
transcriptional analysis of the mutated plasmid revealed 
that neither Kr-pok nor SREBP-1c has any effect on tran-
scription. This fi nding suggests that the SRE elements are 
important in regulating the transcriptional activation of 
the  FASN  promoter by SREBP-1c and Kr-pok ( Fig. 3B ). 

 To map which regulatory element is important for tran-
scriptional activation by SREBP-1c and Kr-pok, we prepared 
three different promoter reporter gene fusion constructs 
that differed in the proximal regulatory element ( Fig. 3C ). 
The three FASN constructs were distinguished by the 
inclusion of SRE, Sp1 binding GC-box, and SRE/E-box 
elements. In HEK293A cells, SREBP-1c activated tran-
scription of only the promoter constructs with the proxi-
mal SRE/E-box. Although Kr-pok alone had little effect 
on transcription of any of the promoter constructs, Kr-pok 
signifi cantly increased SREBP-1c’s transcription of FASN1 
and FASN2 promoter constructs. Kr-pok was unable to 
activate transcription of the FASN3 promoter construct, 
which lacked the SRE/E-box ( Fig. 3C ). The data suggest 
that, although Kr-pok does not show any effect on tran-
scription by itself, it potently increases transcription of the 
 FASN  promoter, most likely by modulating the molecular 
interaction between SREBP-1c and the SRE/E-box. 

 We tested whether the protein interaction between Kr-
pok and SREBP-1c infl uences gene transcription of en-
dogenous FASN using RT-PCR analysis of the mRNA. 
SREBP-1c alone increased FASN mRNA transcription sig-
nifi cantly, and Kr-pok also increased FASN expression, 
likely with the help of endogenous SREBP-1. Cotransfec-
tion of Kr-pok and SREBP-1c synergistically activated  FASN  
gene transcription ( Fig. 3D ). Western blot analyses also 
showed that Kr-pok and SREBP-1c increased FASN pro-
tein expression ( Fig. 3E ). 

 RESULTS 

 Kr-pok activates transcription of the FASN gene 
 Kr-pok, recently characterized as a proto-oncoprotein 

expressed abundantly in most kidney cells, is similar to 
FBI-1 at the amino acid sequence level in two key func-
tional domains (Supplementary  Fig. I ) ( 28, 29 ). FBI-1 ex-
pression has been shown to increase during the 6- to 48-h 
time period of human preadipocyte differentiation, and it 
was suggested that FBI-1 may play an important role in adi-
pogenesis and rapid cancer cell growth ( 26, 27 ). In this 
investigation, we tested whether Kr-pok regulates  FASN  
gene expression. RT-PCR of mRNAs and Western blot 
analysis of total cell lysates prepared from MEF cells re-
vealed that the knockout of the  Kr-pok  gene decreased 
 FASN  gene expression (  Fig. 1A , B ).  Kr-pok induction of 
stable HEK293T-REx-Kr-pok cells by doxycyclin increased 
 FASN  gene expression ( Fig. 1C, D ). 

 We investigated whether Kr-pok can regulate transcrip-
tion of  FASN  gene in cancer cells. RT-qPCR and Western 
blot analysis of the cell lysates prepared from HCT116 
(colon cancer) and LNcaP (prostate cancer) cells infected 
with recombinant dl324-Kr-pok adenovirus revealed that 
Kr-pok increases transcription of the  FASN  gene and FASN 
expression in cancer cells ( Fig. 1E, F, H, I ). We also ana-
lyzed lipogenic activity at the enzyme level by monitoring 
the oxidation of NADPH to NADP +  caused by the conver-
sion of Malonyl-CoA and Acetyl-CoA to palmitate. Whereas 
ectopic Kr-pok increased FASN enzyme activity ( � C/mg 
protein/min.;  � C =  � A/E;  � A = change in absorbance; E = 
extinction coeffi cient of NADPH [E 340nm  = 6.22 mM  � 1  
cm  � 1 ]), the knock-down of Kr-pok expression clearly de-
creased FASN enzyme activity in the two cancer cell lysates 
tested ( Fig. 1G, J ). These data show that the transcription 
of the  FASN  gene, a major player in the synthesis of the 
phospholipids of the cell membrane, was potently acti-
vated by Kr-pok. 

 The zinc-fi nger domain of Kr-pok interacts with the bZIP 
DNA binding domain of SREBP-1c 

 SREBPs are major transcription regulators that control 
the expression of enzymes involved in cholesterol and 
fatty acid synthesis, including FASN. Above, we showed 
that Kr-pok increased FASN expression. Accordingly, we 
tested whether SREBP-1 and Kr-pok could interact to in-
crease  FASN  gene transcription. Coimmunoprecipitation 
and Western blot analysis of the cell lysates prepared 
from  Kr-pok  +/+ ,  Kr-pok   � / �   MEF, and doxycyclin-induced 
HEK293T-REx-Kr-pok cells showed that SREBP-1 inter-
acts with Kr-pok and forms a protein complex (  Fig. 2A , 
B ).  GST fusion protein pull-down assays showed that the 
zinc-fi nger domain of Kr-pok directly interacts with the 
bZIP domain of SREBP-1 ( Fig. 2C, D ). Immunocytochem-
ical analysis of the HEK293A cells that were cotransfected 
with the FLAG-Kr-pok and Myc-SREBP-1c expression vec-
tors showed that the two proteins colocalize in the nu-
cleus ( Fig. 2E ). These data suggest that the interaction is 
direct and occurs through the DNA binding domains of 
each protein. 
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of SREBP-1c and Sp1. An oligonucleotide pull-down assay 
of DNA-protein binding events on the SRE/E-box showed 
that, although Kr-pok does not bind to the SRE/E-box, 
ectopic Kr-pok increases Sp1 binding but decreases 
SREBP-1 binding. Ectopic SREBP-1c decreases Sp1 bind-
ing but increases its own binding. When Kr-pok and 
SREBP-1c were coexpressed, binding of SREBP-1c and Sp1 
increased in comparison to the binding by endogenous 
SREBP-1c and Sp1, a condition in which FASN can be syn-
ergistically activated by the two factors ( Fig. 4B ). These 
data suggest that transcriptional regulation of the  FASN  
gene by Kr-pok and SREBP-1c involves the Sp1 transcrip-
tion factor acting at the SRE/E-box. 

 ChIP analysis of DNA-protein binding events on the 
endogenous  FASN  proximal promoter showed that Kr-
pok decreases SREBP-1 binding and increases Sp1 bind-
ing without direct DNA binding. When Kr-pok and 
SREBP-1c were coexpressed, binding of SREBP-1c and 
Sp1 increased relative to the binding of endogenous 
SREBP-1c and Sp1 (  Fig. 5A  ).  To investigate the mechanistic 

 The modulation of dna binding activity of SREBP-1c and 
Sp1 at the SRE/E-box of FASN proximal promoter by the 
zinc-fi nger DNA binding domain of Kr-pok 

 Kr-pok synergistically increased transcriptional activa-
tion of the  FASN  gene via SREBP-1, likely by modulating 
the molecular interaction of SREBP-1c at the SRE/E-box. 
We investigated whether Kr-pok infl uences the DNA bind-
ing activity of SREBP-1 using EMSA. EMSA showed that in 
vitro translated Kr-pok did not show DNA binding activity 
and that SREBP-1 binds to the SRE/E-box probe. Initially, 
we expected that Kr-pok may increase the DNA binding 
activity of SREBP-1 because Kr-pok and SREBP-1c synergis-
tically activated  FASN  gene transcription. Unexpectedly, 
Kr-pok decreased the DNA binding activity of SREBP-1 
(  Fig. 4A  ).  

 The transcriptional regulation of the  FASN  gene was 
previously characterized, and Sp1 and SREBP-1c were 
shown to synergistically activate transcription by acting on 
SRE, Sp1 binding GC-box, and SRE/E-box ( 32 ). We inves-
tigated whether Kr-pok infl uenced DNA binding activity 

  Fig.   1.  Kr-pok activates  FASN  gene expression. A, B: RT-PCR and Western blot analysis of  Kr-pok  +/+  and  Kr-pok   � / �   MEF cells. In comparison 
to FASN expression in  Kr-pok +/+   MEF cells, FASN expression decreased in  Kr-pok  � / �    MEF cells. C, D: RT-PCR and Western blot analysis of 
HEK293T-REx-FLAG-Kr-pok cells after induction by doxycycline. Upon induction of Kr-pok expression, FASN mRNA and protein in-
creased. E–J: Western blot, RT-qPCR, and FASN enzyme activity assays of HCT116 (E–G) and LNcaP (H–J). The cells were infected with 
recombinant dl324-shKr-pok, dl324, and dl324-Kr-pok adenovirus. The cell lysates were analyzed for FASN expression of protein and 
mRNA. Additionally, FASN enzyme activities were analyzed by spectrophotometry. GAPDH, control.   
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dexamethasone, and insulin). During differentiation, the 
expression of endogenous Kr-pok mRNA increased from 
induction day 0 until it reached a peak on day 2; it gradu-
ally declined until day 8. FASN mRNA began to rise on day 1 
of differentiation and continued to increase until day 8 of 
differentiation (  Fig. 6A , C ).  

 To investigate whether Kr-pok participated in adipocyte 
differentiation, 3T3-L1 preadipocytes were infected with 
each of the recombinant dl324, dl324-Kr-pok, and dl324-
shKr-pok adenoviruses 2 days before differentiation in-
duction. Then, adipocyte differentiation was induced by 
incubating the cells with fresh medium containing MDI at 
day 0 of differentiation induction. The 3T3-L1 preadipo-
cytes infected with dl324-Kr-pok adenovirus show intense 
staining with Oil Red O. Cells infected with dl324-shKr-
pok adenovirus show much weaker staining. These data 
suggested that Kr-pok increases adipocyte differentiation 
and/or fatty acid synthesis in the cells ( Fig. 6B ). Kr-pok 
increases transcription of the  FASN  gene in adenovirus-in-
fected 3T3-L1 preadipocytes and produces more lipid 
droplets. The dl324-shKr-pok adenovirus, which knocked 
down Kr-pok mRNA, decreases transcription of the  FASN  
gene in 3T3-L1 preadipocytes and signifi cantly decreases 
lipid accumulation ( Fig. 6B, C ). 

 We tested whether an increase in lipid synthesis or adi-
pocyte differentiation by Kr-pok is dependent on the 
presence of SREBP-1c. The 3T3-L1 preadipocytes were 
transfected with negative control siRNA (siN.C.) or siS-
rebp-1c RNA 3 days before differentiation induction. The 
cells were further infected with the recombinant dl324 or 
dl324-Kr-pok adenovirus 2 days before differentiation in-
duction. The 3T3-L1 cells infected with recombinant 
dl324-Kr-pok adenovirus show intense staining with Oil 

role of the SRE/E-box in the transcriptional activation 
of  FASN  by Kr-pok and SREBP-1, we performed ChIP 
assays using the pGL3-FASN2, pGL3-FASN-3, pGL3-
FASN WT (2.7 kb), and pGL3-mFASN MT (2.7 kb) re-
porter plasmids. When the SRE/E-box was present, such 
as in FASN2 and FASN WT plasmids, the SREBP-1c and 
Sp1 binding patterns were similar to that of the endog-
enous  FASN  promoter ( Fig. 5B, D ). However, with an 
SRE/E-box mutation or deletion, as with the FASN3 
and mFASN MT plasmids, the DNA binding of SREBP-1c 
and Sp1 was not altered by Kr-pok ( Fig. 5C, D ). Our 
data potentially explain why Kr-pok does not show any 
effect on the transcriptional regulation of FASN3 or 
mFASN MT reporter gene by SREBP-1 and Sp1 ( Fig. 3B, C ). 
The change in transcription factor binding initiated by 
Kr-pok may be important for the synergistic transcrip-
tional activation of the  FASN  gene. 

 Kr-pok expression is increased during adipocyte 
differentiation and facilitates the differentiation of 
3T3-L1 preadipocytes 

 Our data showed that Kr-pok and SREBP-1c interact 
with each other and that this molecular interaction is im-
portant for the transcriptional activation of the  FASN  gene. 
SREBP-1c is known to promote adipocyte differentiation 
and is involved in the insulin-mediated regulation of the 
 FASN  gene. We investigated whether Kr-pok participates 
in the differentiation of adipocytes. First, we examined the 
expression profi le of Kr-pok mRNA during adipocyte dif-
ferentiation. 3T3-L1 preadipocytes, which represent a well 
characterized in vitro model of adipocyte differentiation, 
were differentiated into mature adipocytes upon exposure 
to a mixture of hormones (MDI, methylisobutylxanthine, 

  Fig.   2.  The zinc-fi nger domain of Kr-pok interacts 
with the bZIP DNA binding domain of SREBP-1c. A, 
B: Coimmunoprecipitation and Western blot analysis 
of Kr-pok and SREBP-1c. Lysates prepared from  Kr-
pok  +/+ ,  Kr-pok   � / �   MEF, and doxycycline-induced 
HEK293T-REx-Kr-pok cells were immunoprecipi-
tated using the anti-Kr-pok antibody and analyzed by 
Western blotting with the anti-SREBP-1 antibody. C, 
D: In vitro GST fusion protein pull-down assays. Re-
combinant GST, GST-ZF Kr-pok, GST-POZ Kr-pok, or 
GST-bZIP SREBP-1 proteins were incubated with 
[ 35 S]methionine-labeled SREBP-1c or Kr-pok and 
were pulled down and resolved with 12% SDS-PAGE. 
The gel was then exposed to X-ray fi lm. Input: 10% 
of Kr-pok was added to the binding reactions. E: Im-
munocytochemistry and cellular colocalization of Kr-
pok and SREBP-1c. The HEK293A cells transfected 
with the expression vectors of FLAG-Kr-pok and Myc-
tagged SREBP-1c were analyzed by immunocy-
tochemical staining using mouse anti-FLAG antibody 
and rabbit anti-Myc antibody. FITC-conjugated anti-
mouse IgG or Rhodamine-conjugated anti-rabbit IgG 
antibody were used as secondary antibodies. GAPDH, 
control.   
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  Fig.   3.  Kr-pok further increases transcriptional activation of the  FASN  gene by SREBP-1c. A–C: Kr-pok en-
hances transcriptional activation of the artifi cial pGL2-6×[SRE]Luc or FASN promoter-Luc with SREBP-1c in 
HEK293A cells cotransfected with expression vectors of SREBP-1c (25 ng) and Kr-pok (25, 125, and 500 ng). 
Reporter activity was normalized with cotransfected  � -galactosidase activity or protein concentration for 
transfection effi ciency. The data presented are the average of three independent assays. Bars represent stan-
dard deviation. D, E: RT-PCR and Western blot analysis. HEK293A cells were cotransfected with the expres-
sion vector of FLAG-Kr-pok and/or Myc-SREBP-1c. The cell extracts were analyzed for FASN expression. Tss 
(+1), transcription start site; GAPDH, control.   
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component of the cell membrane of cancer cells. There-
fore, we investigated whether Kr-pok regulated FASN ex-
pression in  Kr-pok +/+  ,  Kr-pok   � / �   MEF, HEK293T-REx-Kr-pok, 
and two cancer cell lines. The knock-out of Kr-pok expres-
sion in MEF cells decreased FASN expression, and ectopic 
Kr-pok expression increased FASN expression in various 
cell lines ( Fig. 1 ). 

 Transcriptional regulation of the  FASN  gene depends 
largely on the protein-protein interactions of the transcrip-
tion factors that bind to the proximal promoter of the 
 FASN  gene ( 5–7 ). SREBP-1c plays a major role in lipogenic 
gene expression, including FASN. Kr-pok increases  FASN  
gene expression at the transcriptional level in HEK293A 
and some other cancer cells. We have demonstrated that 
SREBP-1c alone activates transcription and that Kr-pok 
synergistically enhances this transcription. In contrast, 
mutation or deletion of the SRE/E-box element of the 
 FASN  promoter abolishes the effects of Kr-pok and 
SREBP-1c on the transcriptional regulation of the  FASN  
gene. These data suggest that the SRE/E-box element is 
important for the synergistic transcriptional activation of 
the  FASN  promoter by Kr-pok and SREBP-1c ( Fig. 3 ). In 
addition, we were able to show that Kr-pok and SREBP-1c 
interact directly through their DNA binding domains and 
that this interaction is critical for the synergistic activation 
of  FASN  gene transcription ( Fig. 2 ). 

 To study the importance of protein-protein interactions 
between Kr-pok, SREBP-1, and Sp1 in the transcriptional 
regulation of  FASN  at the  FASN  proximal promoter, we 
performed EMSA, oligonucleotide pull-down, and ChIP 
assays. The SRE/E-box element of the  FASN  gene is a 
SREBP-1c binding element, but it can be bound by Sp1 as 
well ( 27, 32 ). Accordingly, we investigated the transcrip-
tion factor binding dynamics of Kr-pok, SREBP-1c, and 

Red O. The 3T3-L1 cells transfected with siSrebp-1c RNA 
show no staining with Oil Red O, which suggested that adi-
pocyte differentiation was blocked. Alternatively, when the 
3T3-L1 cells were transfected with siSrebp-1c RNA and in-
fected with recombinant dl324-Kr-pok adenovirus, the 
cells did not differentiate into adipocytes. These results 
suggested that SREBP-1c is critical in adipocyte differenti-
ation and that coexpression of Kr-pok and SREBP-1c in-
creases fatty acid synthesis and/or adipocyte differentiation 
( Fig. 6D ). Additionally, RT-qPCR analysis of the cells 
showed that Kr-pok does not increase transcription of the 
 FASN  gene in the absence of Srebp-1c and that Srebp-1c 
does not affect Kr-pok expression ( Fig. 6E ). 

 DISCUSSION 

 Proto-oncogene FBI-1, a member of the POZ zinc fi nger 
protein family, has been suggested to play roles in the dif-
ferentiation of adipocytes, fatty acid synthesis in cancer 
cells, and oncogenesis ( 25–27 ). Kr-pok is a member of the 
POK family of proteins and is most closely related to FBI-1 
in secondary protein structure of key functional domains 
and perhaps also in some cellular functions. Recently, we 
have shown that Kr-pok promoted cell proliferation by re-
pressing transcription of a negative regulator of cell cycle 
progression,  CDKN1A , by competitively binding with MIZ-1 
and/or by interacting with p53 ( 28, 29 ). We suspected that 
Kr-pok might increase the expression of some lipogenic 
genes because it increased cell proliferation, a cellular 
process that requires rapid lipid synthesis. 

 It has become apparent that FASN-driven lipogenesis is 
important in cancer cell proliferation ( 1–4, 8, 9 ). FASN is 
critical for cancer cell proliferation because it is the only 
enzyme involved in the synthesis of palmitate, a critical 

  Fig.   4.  Kr-pok decreases binding of the SREBP-1 to the SRE/E-box. A: The  32 P-labeled SRE/E-box binding 
element probe of the  FASN  gene was incubated with His-SREBP-1 (200 ng) and/or in vitro translated Kr-pok 
(75–675 ng) and separated by 4% nondenaturing PAGE. The gel was exposed to X-ray fi lm. B: Oligonucle-
otide pull-down assays of Kr-pok, SREBP-1c, and Sp1 binding to the SRE/E-box elements of the  FASN  gene 
promoter. HEK293A cell extracts were incubated with biotinylated double-stranded oligonucleotides. The 
mixtures were further incubated with Streptavidin-agarose beads and precipitated by centrifugation. The 
precipitate was analyzed by Western blot assays using antibodies against Kr-pok, SREBP-1, and Sp1. SRE/E-
box, downstream SREBP-1 binding element; Tss, transcription start point (+1); GAPDH, control.   
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these molecular events, the SRE/E-box of the proximal 
promoter of  FASN  appears to be the center of transcrip-
tional activation because a FASN MT ( � 2.7 kb) construct 
with a mutation at the SRE/E-box resulted in no transcrip-
tional activation by Kr-pok and SREBP-1c (hypothetical 
model in   Fig. 7  ).  

 Finally, we found that  Kr-pok  gene transcription was in-
duced by treatment of 3T3-L1 cells with hormone mixtures 
that are known to induce adipocyte differentiation. The 
induction of  Kr-pok  gene transcription precedes the induc-
tion of  FASN  gene transcription. Kr-pok overexpression or 
knock-down experiments, using recombinant adenovirus 
dl324-Kr-pok or dl324-shKr-pok, showed that Kr-pok acti-
vates  FASN  gene expression ( Fig. 6 ). Additionally, these 
assays raised the possibility that Kr-pok might play a role in 
adipocyte differentiation. It appears that although Kr-pok 

Sp1 on the proximal promoter of the  FASN  gene by oligo-
nucleotide pull-down and in vivo ChIP assays. Ectopic 
SREBP-1c decreases Sp1 binding on the proximal pro-
moter of the  FASN  gene that contains the SRE/E-box ele-
ment ( Figs. 4B, 5A ), and SREBP-1c activates transcription 
of the  FASN  gene ( Fig. 3 ). Although ectopic Kr-pok in-
creases Sp1 binding on the proximal promoter, Kr-pok 
does not signifi cantly affect transcription of the  FASN  gene 
in the reporter gene constructs ( Figs. 3, 5A ). Kr-pok also 
slightly decreases SREBP-1c binding. When the expression 
of Kr-pok and SREBP-1c is high, as is the case in some can-
cer tissues, SREBP-1c and Sp1 binding is maintained at a 
level that allows the synergistic activation of  FASN  gene 
transcription ( Figs. 3, 5 ). This situation resulted in a 2- to 
3-fold increase in  FASN  gene transcription compared with 
that observed when only SREBP-1c was overexpressed. For 

  Fig.   5.  The ChIP assay reveals the modulatory effect of Kr-pok on the DNA binding of SREBP-1c and Sp1 to the proximal promoter of 
 FASN . A: ChIP assays of the DNA binding activity of FLAG-Kr-pok, SREBP-1c, and Sp1 on the endogenous FASN gene in HEK293A cells 
transfected with the expression vector of FLAG-Kr-pok or/and SREBP-1c. B, C: ChIP assays of the DNA binding activity of FLAG-Kr-pok, 
SREBP-1c, and Sp1 on the FASN2 or FASN3 promoter construct that was transfected into the HEK293A cells. D: ChIP assays of the DNA 
binding activity of FLAG-Kr-pok, SREBP-1c, and Sp1 on the pGL3-FASN-Luc WT or MT ( � 2.7 kb) plasmid transfected into HEK293A cells. 
Sheared chromatin was immunoprecipitated using the antibodies indicated. PCR amplifi cation primers were designed to bind to the plas-
mid vector sequences and not to the endogenous  FASN  promoter for FASN2, FASN3, Wt, and Mt. E: Histograms of ChIP assay binding band 
intensities of Kr-pok, SREBP-1c, and Sp1 were divided by input band intensities. Histogram showing the average of all independent ChIP 
assays shown in (D).   
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that the molecular events that occur among the proximal 
SRE/E-box, Kr-pok, SREBP-1c, and Sp1 are important for 
transcriptional regulation of  FASN  gene expression. FASN, 
a key multifunctional enzyme of de novo fatty acid synthe-
sis, is highly expressed in most human carcinomas. FASN 

plays important roles in fatty acid synthesis and/or adipo-
cyte differentiation, SREBP-1c is critically required in the 
processes ( Fig. 6D, E ). 

 In summary, our study revealed novel roles for the pro-
to-oncoprotein Kr-pok in  FASN  gene expression. We found 

  Fig.   6.  Kr-pok mRNA expression increases during early adipocyte differentiation and increases FASN mRNA expression and fatty acid 
synthesis. A: RT-PCR analysis of Kr-pok and FASN mRNA expression during 3T3-L1 preadipocyte differentiation. The cells were treated 
with a differentiation-inducing MDI mixture and harvested at the indicated times. B, C: 3T3-L1 preadipocytes were infected with recombi-
nant adenovirus dl324-Kr-pok or dl324-shKr-pok at  � 2 days of differentiation induction and allowed to differentiate for 8 days. The cells 
were stained with Oil Red O at the indicated times (B). The cells were harvested at the indicated times and analyzed for the expression of 
Kr-pok and FASN mRNA by RT-qPCR (C). D, E: Roles of Kr-pok and Srebp-1c in 3T3-L1 preadipocytes differentiation and fatty acid synthe-
sis. The preadipocytes were transfected with siSrebp-1c RNA at  � 3 days and infected with recombinant adenovirus dl324-Kr-pok at  � 2 days 
of differentiation induction. The cells were allowed to differentiate for 4 days and stained with Oil Red O (D). The cells were harvested at 
4 days after differentiation induction and analyzed for the expression of Kr-pok, Srebp-1, and FASN mRNA by RT-qPCR (E). GAPDH, 
control.   
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molecular mechanisms may provide a novel target for the 
development of future anti-cancer drugs.  
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