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Abstract

Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory
complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-
term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for
21–31 days. Chronic nicotine produced a steady membrane depolarization of ,3 mV in the diaphragm muscle, which
resulted from a net change in electrogenic transport by the Na,K-ATPase a2 and a1 isoforms. Electrogenic transport by the
a2 isoform increased (+1.8 mV) while the activity of the a1 isoform decreased (24.4 mV). Protein expression of Na,K-ATPase
a1 or a2 isoforms and the nAChR did not change; however, the content of a2 subunit in the plasma membrane decreased
by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical
association between the nAChR, the Na,K-ATPase a1 or a2 subunits, and the regulatory subunit of the Na,K-ATPase,
phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment
activated PKCa/b2 and PKCd and was accompanied by parallel increases in PLM phosphorylation at Ser63 and Ser68.
Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is
able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both
stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through
activation of PKC and phosphorylation of PLM.
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Introduction

Acute exposure of skeletal muscles to low concentrations of

acetylcholine (ACh, 100 nM) stimulates Na,K-ATPase electro-

genic activity through a regulatory interaction between the muscle

nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase

[1,2]. The nAChR specifically co- immunoprecipitates with both

a1 and a2 isoforms of the Na,K-ATPase a-subunit and

phospholemman (PLM), a muscle-specific auxiliary subunit of

Na,K-ATPase which modulates enzyme activity [3,4]. This

suggests that these proteins assemble in a macromolecular

complex capable of functional interactions. Acute stimulation of

enzyme activity by ACh produces membrane hyperpolarization.

Because the hyperpolarization occurs in the voltage range where

Na+ channel slow inactivation is steeply voltage-dependent [5], it

increases membrane excitability by shifting Na+ channels from the

inactive to available conformation. Skeletal muscles are normally

exposed to nanomolar concentrations of ACh for some time

following nerve excitation, after the larger bolus of ACh has been

hydrolyzed by acetylcholinesterase. Therefore, when a quiescent

muscle is stimulated by nerve input, this ACh-induced hyperpo-

larization primes the muscle to respond to an increased level of

nerve activity.

The hyperpolarizing effect of acute exposure to ACh is specific

for the Na,K-ATPase a2 isoform and is most likely mediated by a

desensitized state of the nAChR [1,2]. Acute nanomolar

concentrations of nicotine, an exogenous non-hydrolyzable

nAChR agonist, also stimulate the Na,K-ATPase a2 isoform by

this mechanism [1,2,6]. This finding suggested that chronic in vivo

exposure to nicotine, which reaches hundreds of nM up to mM

levels during tobacco use [7,8], might produce long-term effects on

the Na,K-ATPase and membrane potentials in skeletal muscle.

This question has not been investigated previously. It is commonly

thought that muscle nAChRs are largely spared the effects of

nicotine use because the affinity of the muscle nAChR for nicotine

is significantly lower than that of brain nAChRs [9]. However,
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chronic agonist exposure promotes nAChR desensitization [10],

and the desensitized state of the nAChR is the favored

conformation which interacts with the Na,K-ATPase [1,2]. In

addition, the stable association of PLM with the Na,K-ATPase

isoforms suggested that this regulatory interaction may modulate

enzyme activity through a kinase-dependent phosphorylation of

PLM. In cardiac and smooth muscle cells, phosphorylation of

PLM at Ser63 and Ser68 by PKC stimulates Na,K-ATPase a2

activity by relieving an inhibitory interaction of PLM with the

enzyme [11]. The role of PLM in regulating Na,K-ATPase activity

in skeletal muscle is not known and the significance of its

association with the nAChR- Na,K-ATPase complex has not been

previously investigated.

This study examines the consequences of chronic nicotine

exposure on membrane potentials and the activity of the Na,K-

ATPase a1 and a2 isoforms in skeletal muscle, and examines

whether regulation of enzyme activity by the nAChR–Na,K-

ATPase complex involves phosphorylation of PLM by PKC. We

administered nicotine orally to rats for 21–31 days and analyzed its

effect on the resting membrane potential (RMP) of diaphragm

skeletal muscle; the electrogenic transport activity of the Na,K-

ATPase a1 and a2 isoforms; expression of the Na,K-ATPase a
isoforms, the nAChR and PLM; the stability of the nAChR-Na,K-

ATPase-PLM complex measured by co-immunoprecipitation;

activation of PKCa/b2 and PKCd, phosphorylation of PLM at

Ser63 and Ser68, and the plasma membrane content of Na,K-

ATPase. The majority of these assays was made using tissue from

the same muscles used to measure electrogenic activity in order to

directly relate changes in Na,K-ATPase activity to these measures.

Our results further demonstrate that the nAChR interacts with

the Na,K-ATPase to modulate enzyme activity and that both

Na,K-ATPase a1 and a2 isoforms can be regulated by this

interaction in an isoform-specific manner. The regulatory range

includes both stimulation and inhibition of enzyme activity. The

same nicotine treatment activates PKC and increases PLM

phosphorylation, suggesting that cholinergic modulation of

Na,K-ATPase activity may utilize this regulatory pathway.

Materials and Methods

Materials
Ouabain, nicotine ((2)nicotine hydrogen tartrate) and other

chemicals were from Sigma. Specific monoclonal antibodies

against the Na,K-ATPase a1- and a2-subunits were generously

provided by Dr. M. Caplan (Yale University, New Haven, CT)

and Dr. K. Sweadner (Boston, MA). The antibodies against total

PLM were acquired from the ProteinTech Group (Chicago, IL).

Antibodies against phosphorylated PLM Ser63, and Ser68 were

kindly donated by Dr. J. Cheung (Thomas Jefferson University,

Philadelphia, PA). Rabbit polyclonal antibodies against anti-

phospho PKCa/b, d and anti- PKC a, b, d were from Cell

Signaling Technology, Inc (Beverly, MA). The antibody against

the nAChRa1 subunit was from Abcam. Horseradish peroxidase-

conjugated goat anti-rabbit and anti-mouse IgG were from Bio-

Rad. Reagents for enhanced chemi luminescence (ECL) were from

Amersham Pharmacia Biotech. All other reagents were analytical

grade.

Animals
Chronic nicotine exposure, electrophysiological experiments

and biochemical assays were performed using adult male Wistar

rats (180–200 g). The rats were anesthetized (ether) and

euthanized by cervical dislocation, and the diaphragm muscle

with intact tendons was removed.

Ethics Statement
This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The protocol was approved by

the Ethics Committee of St. Petersburg State University and the

National Ministry of Health (Approval 19.06.2003/267) of the

Russian Federation. All surgery was performed under anesthesia

(ether), and all efforts were made to minimize suffering.

Chronic nicotine treatment
Nicotine was administered orally in the drinking water at a

concentration of 60 mg/l, using standard protocols [12–14] which

correspond to a dose of 2–4 mg/kg per day. This approach has

been shown to produce a plasma nicotine pattern similar to that

seen in smokers [13,15]. The drinking water was the sole source of

fluid and also contained 2% saccharin. Typically, two rats per day

(from control and nicotine groups) were used starting on day 21,

while the remaining rats continued to receive nicotine and were

used for up to 31 days. The oral protocol delivered nicotine in a

cyclical manner with transient increases, which more closely

reproduces the condition of human tobacco use. At the end of

treatment, two hemi-diaphragms were dissected from each rat.

Strips from the left hemi-diaphragm muscle were used immediately

for membrane potential measurements and the remaining tissue was

quickly frozen in liquid nitrogen for later biochemical assays.

Membrane potential recording
The experiments were performed on freshly isolated rat

diaphragm. A 10–15 mm wide diaphragm strip with nerve stump

was placed in a 2-ml Plexiglas chamber. The chamber was

continuously perfused with a physiological solution containing

(mM): NaCl, 137; KCl, 5; CaCl2, 2; MgCl2, 2; NaHCO3, 24;

NaH2PO4, 1; glucose, 11; pH 7.4. The solution was continuously

bubbled with 95% O2 and 5% CO2 gas mixture and maintained

at 28uC. The muscle was equilibrated for 1 hour prior to the start

of recording. RMPs were recorded from extra junctional

membrane regions using intracellular microelectrodes, as de-

scribed previously [1,2]. RMPs were recorded from 25–35

different fibers within each muscle, over a total recording time

of about 5–10 min. The entire protocol was repeated in muscles

from different animals.

Measurement of Na,K-ATPase electrogenic activity in
intact muscle

Na,K-ATPase transport activity was determined in intact

skeletal muscle fibers by measuring the ouabain-sensitive change

in membrane potential. This change is generated by electrogenic

Na,K-ATPase transport and is a sensitive, real-time assay of Na,K-

ATPase activity in intact muscle cells [16].

Muscle membrane preparation
Approximately 50 mg of rat diaphragm muscle was weighed,

minced, and homogenized with a Polytron at low speed (setting 4,

2610 sec) in a buffer containing: 20 mM Tris-HCl, 250 mM

sucrose, 1 mM EDTA, 1 mM okadaic acid, 1 mM phenylmethyl-

sulfonyl fluoride (PMSF), and 10 mg/ml each of aprotinin,

leupeptin, and pepstatin. The resulting homogenate was centri-

fuged for 10 min at 3,0006g. The supernatant was collected and

kept on ice. The pellet was re-suspended in homogenization buffer

and centrifuged again for 10 min at 3,0006g. The supernatants

were pooled, aliquoted, and stored at 270uC. A purified plasma

membrane fraction was prepared from rat diaphragm muscle

using a step sucrose gradient as described previously [17].

Nicotine Alters Na, K-ATPase Activity in Muscle
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Western Blot
Western blots were performed as described [2]. In brief, aliquots

of muscle homogenate (20 mg) or plasma membrane fraction

(2.5 mg) were re-suspended in Laemmli sample buffer. The

proteins were separated by SDS/PAGE, transferred to polyviny-

lidenedifluoride (PVDF) membranes (Millipore, MA), blocked with

7.5% non-fat milk, washed with TBST (10 mM Tris HCl,

100 mM NaCl, 0.02% Tween 20) and incubated with the

appropriate primary antibodies overnight at 4uC. Membranes

were washed with TBST and incubated with the appropriate

secondary antibody. Proteins were visualized by enhanced chemi

luminescence (ECL) and quantified by densitometry. Ponceau S

staining was used to verify equal gel loading [18] and for

normalization.

Co-immunoprecipitation assays
Co-immunoprecipitation assays were carried out as described

previously [2]. Briefly, muscles were solubilized with lysis buffer

(137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 20 mM Tris,

pH 8.0, 1% Triton X-100, 10% (v/v) glycerol, 10 mM NaF,

0.5 mM Na3VO4, 5 mg/ml leupeptin, 0.2 mM phenylmethylsul-

fonyl fluoride, 5 mg/ml aprotinin, and 1 mM microcystin).

Immunoprecipitation was carried out using a primary antibody

to the nAChRa1 subunit (Abcam ab11149) followed by affinity

purification using protein G-agarose beads (Dynal). After incuba-

tion with protein G-agarose beads for 1 h at room temperature,

the immuno complex was washed in lysis buffer followed by PBS.

The protein samples were probed by Western Blot with primary

antibodies and horseradish peroxidase-conjugated secondary

antibody. The proteins were visualized by ECL and quantified

by densitometry.

[3H]ouabain binding in control and PMA treated intact
skeletal muscles

A rat soleus muscle was dissected and equilibrated for 30 min in

standard Krebs-Ringer, then incubated in K+-free Krebs–Ringer

buffer containing 100 nM PMA and 2 mM [3H]ouabain

(0.5 mCi ml21) for 0, 30, 60 and 120 min, followed by

4615 min washouts in ice-cold K+-free Krebs–Ringer buffer.

Following washout the muscles were frozen and divided. One half

of the sample was soaked in 0.3 M trichloroacetic acid (TCA) and

taken for counting activity. The content of [3H] binding sites was

expressed as picomoles per gram wet weight. The remainder was

analyzed by Western Blot for PKC activation and PLM

phosphorylation using isoform-specific antibodies.

Data analysis
Data are given as the mean 6 SEM. Statistical significance of

the difference between groups means (control vs. nicotine-treated)

was evaluated using a Student’s t-test (ORIGIN 6.1. software).

The distribution of RMPs was fitted to a Gaussian function to

obtain the mean RMP of each group. Normality of the distribution

was tested using the Kolmogorov-Smirnov test with Dallal-

Wilkinson-Lillifors correction (GraphPad Prism 5).

Results

Chronic nicotine exposure depolarizes the resting
membrane potential of rat diaphragm

Chronic oral nicotine exposure depolarized skeletal muscles by

+3.160.4 mV (p,0.01) compared to paired controls (Fig. 1).

RMPs of both control and nicotine-treated muscles showed a

Gaussian distribution, reflecting the typical range of RMPs present

in different fibers within a muscle. Chronic nicotine produced a

simple shift of the mean RMP without change in normal

distribution.

The depolarization produced by chronic nicotine
exposure results from decreased electrogenic transport
by the Na, K-ATPase

Our previous finding that acute nicotine exposure at nM

concentrations, acting through the nAChR, can modulate the

activity of the Na,K-ATPase a2 isoform [1,2,6] led us to

investigate whether the depolarization produced by chronic

nicotine is mediated by this same interaction. Skeletal muscles

express two isoforms of the Na,K-ATPase, a1 and a2 [19].

Figs. 2A & 2B show the method used to measure the basal

transport activity of each isoform in intact muscle from its

electrogenic contribution to the RMP. The method is based on the

more than 100-fold difference in affinities of the rodent a1 and a2

Na,K-ATPase isoforms for ouabain. The Na,K-ATPase is the only

known receptor for ouabain. Active transport by the Na,K-

ATPase generates a negative membrane potential, Vpump, due to

the net outward transfer of one positive charge per transport cycle

(3 Na+ out per 2 K+ in). Vpump adds directly to the Nernst

potential arising from the ion concentration differences (ENernst)

and brings the RMP to a more negative value than expected from

the ion gradients alone (RMP = ENernst+Vpump) [20]. This

ouabain-inhibitable, negative component of the RMP directly

reports the resting transport activity of the Na,K-ATPase in intact

muscle fibers. Vpump is large in skeletal muscles and hyperpolarizes

the membrane by 215 to 218 mV (compared to only a few mV

in nerve and other cell types). The ouabain concentration-

dependence of Vpump was best fit to a two-site binding model

(smooth curve and legend) with ouabain affinities of 17 mM and

90 nM (Fig. 2A, B) for the rat a1 and a2 isoforms, respectively.

Figure 1. Distribution histogram of resting membrane poten-
tials in the diaphragm of control (solid bars) and nicotine-
treated rats (striped bars). Treated animals received nicotine orally
in the drinking water for 21–31 days prior to tissue removal. RMPs were
recorded from 622 fibers from 9 muscles (nicotine) and 676 fibers from
10 control muscles (vehicle). The solid and dashed curves are Gaussian
fits to the RMP distribution for each group. The distribution of RMPs in
each group was consistent with a normal distribution based on the
Kolmogorov-Smirnov normality test (Methods). The classes on the
histograms are grouped (using ORIGIN 6.1) with Bin size 4.1 mV for 12
bins, in the range from 250 mV to 297.5 mV. For ease of visualization,
the gap between bars was chosen = 0, overlap is 60%.
doi:10.1371/journal.pone.0033719.g001
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These affinities correspond closely to measurements in other

tissues and membrane preparations using ouabain binding assays

[21,22]. Based on this analysis, we used ouabain concentrations of

1 mM and 500 mM to separate the electrogenic contributions of a2

and a1 to the RMP. Ouabain at 1 mM inhibits more than 95% of

a2 activity while leaving a1 activity unchanged; 500 mM ouabain

completely inhibits both isoforms (Fig. 2B).

In control muscles, total electrogenic activity by both isoforms

contributes 218 mV to the RMP. Of this, the a1 isoform generates

213.961.4 mV and the a2 isoform generates 24.461.4 mV (black

and grey bars, respectively). Therefore, the a1 and a2 isoforms

contribute 75% and 25%, respectively, of the basal Na/K transport

required to maintain ion gradients and the RMP. Chronic nicotine

treatment alters these contributions in an a-isoform dependent

manner (Fig. 2C). In control muscle fibers (sham-treated animals,

filled circles), electrogenic transport by the Na,K-ATPase a1

generated 211.060.4 mV, and the a2 isoform generated

25.060.4 mV. Both values are close to those in reference

(untreated) animals (Fig. 2A). Chronic nicotine treatment (open

circles) significantly decreased the electrogenic potential contributed

by a1 activity to 26.660.5 mV (24.4 mV, p,0.001); and it

increased the electrogenic potential contributed by a2 activity to

26.860.5 mV (+1.8 mV, p,0.01). Overall, chronic nicotine

treatment decreased the resting transport activity of the a1 isozyme

by 60% and stimulated the resting transport activity of a2 by 36%

(Table 1). These combined actions produced a net decrease in total

Vpump of 22.6 mV (p,0.001) and net depolarization. Again, these

measurements were made in diaphragm skeletal muscles from the

same paired animals used for Fig. 1 (oral nicotine treatment, 21–31

days), which allowed us to directly relate the depolarization to a net

loss of electrogenic Na,K-ATPase activity.

Importantly, when all Na,K-ATPase electrogenic activity is

inhibited, the RMPs of both control and nicotine-treated muscles

stabilize at the same value of 262 mV. This result confirms that

chronic nicotine treatment specifically alters Na,K-ATPase activity

without changing the Nernst potential which, in the absence of

electrogenic transport, is determined solely by the membrane

permeability and ion gradients (Goldman-Hodgkin-Katz equation).

Figure 2. Contributions to the resting membrane potential (mV) from electrogenic active transport by the a1 and a2 Na, K-ATPase
isozymes in the diaphragm muscle of control and chronic nicotine-exposed rats. A) RMP of muscle fibers versus ouabain concentration.
Each data point represents the mean 6 SEM of 130–170 measurements from 4–6 muscles. The solid line is a nonlinear regression fit to a two-site
binding model: RMP = RMP0+A1/(1+[I]/K1)+A2/(1+[I]/K2), where RMP0 is the RMP when both ouabain-binding sites are inhibited; K1 and K2 are the half
maximal ouabain concentrations for ouabain binding to a1 and a2 isoforms, respectively; A1 and A2 (mV) are their respective contributions to the
RMP and [I] is the inhibitor (ouabain) concentration. The left vertical bar indicates the electrogenic potentials contributed by the a1 (black) and a2
(grey) isoforms obtained from the fitted data. Horizontal dashed lines show the predicted RMP levels for three cases: when both a isoforms are
inactive (,261 mV, ENernst alone), when only a1 is active (,274 mV), and when both a1 and a2 are active (,278 mV). Muscles were incubated with
the indicated concentration of ouabain for one hour before the start of recording. B) Concentration-dependence and K values for inhibition of the a2
and a1 isozymes, computed from the data in panel A. C) Changes in RMP elicited by 1 mM and 500 mM ouabain in the diaphragm of control (filled
circles) and nicotine-treated (open circles) rats. Rats received nicotine orally for 21–31 days, as described in Methods. Measurements are from the
same muscles as in Fig. 1 (oral nicotine). Arrows indicate when ouabain was added and the horizontal bar indicates when ouabain was present in the
solution. RMPs were measured 15, 30 and 45 minutes and stabilized to a new level within 30 min of each solution change. Left vertical bars denote
the electrogenic potentials contributed by the a1 (black) and a2 (grey) isozymes. Measurements are from 10 (control) and 9 (nicotine-treated)
animals.
doi:10.1371/journal.pone.0033719.g002
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Chronic nicotine treatment does not alter the muscle
content of nAChR, Na,K-ATPase a1 or a2 subunits, but
decreases a2 content in the sarcolemma

It is possible that chronic nicotine exposure may decrease total

pump activity by altering the expression of Na,K-ATPase a1 or a2

subunits, or the nAChR. To address this question, we measured the

content of Na,K-ATPase a subunits and the nAChR before and

after chronic nicotine treatment (Fig. 3). Chronic nicotine treatment

did not change total Na,K-ATPase a1 or a2 or nAChRa1 content

measured in whole homogenates from skeletal muscle (Fig. 3). In a

purified sarcolemmal fraction, there was also no change in Na,K-

ATPase a1 expression. However, the plasma membrane content of

a2 decreased by 25% (p,0.05), suggesting that chronic nicotine may

alter the distribution of the a2 isozyme between an intracellular pool

and the sarcolemmal. This change is opposite in direction to its

increased electrogenic activity which, therefore, must arise from

higher specific activity of a2 enzyme in the sarcolemma. These

results indicate that the increased a2 and decreased a1 electrogenic

activity produced by chronic nicotine exposure are not explained by

altered expression of Na,K-ATPase a subunits or the nAChR.

Chronic nicotine treatment does not alter the molecular
interaction between the nAChR and the Na,K-ATPase
alpha subunits and PLM

The current finding that chronic exposure to nicotine can also

modify Na,K-ATPase activity and the RMP suggested that

Table 1. Mean RMPs in the diaphragm muscle of control and chronic nicotine-treated rats, and the electrogenic potentials
generated by a1 and a2 Na,K-ATPase basal transport.

Initial RMP
RMP in 1 mM
ouabain

RMP in 500 mM
ouabain

Electrogenic
potential
generated by a2

Electrogenic
potential
generated by a1

Total electrogenic
potential (Vpump)

mV mV mV mV mV mV

Control 278.160.2 (n = 676) 273.160.3 (n = 683) 262.160.3 (n = 691) 25.060.4 211.060.4 216.060.4

Chronic nicotine 275.060.3*** (n = 622) 268.260.4*** (n = 625) 261.660.3 (n = 618) 26.860.5** 26.660.5*** 213.460.4***

RMPs were computed from measurements in muscles perfused sequentially with no ouabain (control solution), 1 mM ouabain, or 500 mM ouabain, as shown in Fig. 2C.
**p,0.01 and
***p,0.001, compared to control. Treated rats received nicotine orally for 21–31 days prior to tissue removal. RMPs were measured 30–45 min after each solution
change. n = number of fibers. Mean RMPs were obtained from a fit of the RMPs in each group to a Gaussian function, after confirming that the RMPs distributed
normally (Kolmogorov-Smirnov test, Methods).
doi:10.1371/journal.pone.0033719.t001

Figure 3. Na,K-ATPase a1 and a2 and nAChR content in diaphragm muscles of control and nicotine-treated rats. A, B, C – whole
homogenate; D, E – plasma membrane fraction. Upper panels show representative immunoblots; lower panels show mean densities 6 SE from 9–10
blots prepared using different muscle samples. * p,0.05. Nicotine was administered orally for 21–31 days as described in Methods. Assays were made
using diaphragm tissue from the same muscles used for RMP and activity measurements (Fig. 1 & 2C, oral nicotine).
doi:10.1371/journal.pone.0033719.g003
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chronic nicotine may work through the same nAChR-Na,K-

ATPase complex which mediates the previously described acute

effects of nicotinic agonists on enzyme activity [2]. Therefore, we

examined whether the chronic nicotine treatment alters the

physical association between the nAChRa1 subunit, the Na,K-

ATPase a1 or a2 subunits and PLM. Our results (Fig. 4) confirm

that the nAChR and the Na,K-ATPase a1 or a2 subunits and

PLM co-immunoprecipitate in rat diaphragm and that their

association is retained through 21–31 days of sham or oral nicotine

treatment. Therefore, the effects of chronic nicotine exposure on

Na,K-ATPase a1 or a2 activity are not due to disruption of the

nAChR-Na,K-ATPase-PLM association, which remains stable

and capable of interactions.

Chronic nicotine treatment activates PKC and promotes
PLM phosphorylation

PLM (FXYD1) is one of the most abundant phospho proteins in

skeletal and cardiac muscle. It is a member of the FXYD family of

small, single membrane-spanning proteins which act as tissue-

specific regulators of the Na,K-ATPase [23]. Phosphorylation of

PLM by PKA and PKC alters the enzyme’s substrate affinity or

turnover in a cell- and Na,K-ATPase isoform-specific manner

[3,24]. PLM associates with the Na,K-ATPase a1 and a2 isoforms

in skeletal and cardiac muscle [11,25,26]. In cardiac myocytes,

phosphorylation of PLM by PKC (at Ser63 or Ser68) increases the

transport activity of the a2 isoform (but not a1) by relieving an

inhibitory interaction of PLM with the enzyme [11]. In smooth

muscle, PKC mediated phosphorylation of PLM occurs only when

it is associated with the a2 isoform, and leads to increased enzyme

activity [27]. The role of PLM phosphorylation by PKC on Na,K-

ATPase activity in skeletal muscle and the significance of its

association with the nAChR-Na,K-ATPase complex is not known.

Therefore, we examined whether PKC activation and PLM

phosphorylation play a role in the stimulation of specific Na,K-

ATPase activity by nicotine. Our results show that the same

chronic oral nicotine treatment which alters Na,K-ATPase

electrogenic activity also activates PKCa/b2 (Fig. 5A) and PKCd
(Fig. 5B), without change in total PKCa/b2 or PKCd content. In

parallel, chronic nicotine increases PLM phosphorylation without

change in total PLM content (5C,D, E). Phosphorylation at Ser68

increased 2-fold (5E; p,0.01), while phosphorylation of Ser63

tended to increase (p = 0.08). This result demonstrates that

nicotine, a specific agonist of the nAChR, is able to activate

PKC and induce phosphorylation of PLM. It supports the idea

that PLM phosphorylation by PKC may play a role in the

modulation of Na,K-ATPase a2 activity by nicotine acting

through the nAChR.

To further investigate the mechanism by which nicotine acting

through the nAChR-Na,K-ATPase complex regulates Na,K-

ATPase activity, we examined the relationship between PKC

activation, PLM phosphorylation and [3H]ouabain (2 mM)

binding, which reflects a2 Na,K-ATPase content in the sarcolem-

ma (Fig. 6). Acute activation of PKC by PMA (100 nM) increases

PLM phosphorylation at Ser63 and Ser68 (Fig. 6A), similar to the

effect of chronic nicotine. PKC activation and PLM phosphory-

lation follow a parallel time course; both are stimulated within

30 minutes and the changes are sustained for up to 120 min. The

same treatment (100 nM PMA) applied to intact rat skeletal

muscle does not change the content of a2 Na,K-ATPase in the

plasma membrane (Fig. 6B). Over the same time period, ouabain

binding to the Na,K-ATPase reached equilibrium and there was

no difference in the maximum amount of ouabain bound between

control and PMA treated. [3H]ouabain binding to intact skeletal

muscle measures only Na,K-ATPase pumps in the plasma

membrane which have the extracellular ouabain binding site

accessible to ligand. This result suggests that acutely activated

PKC stimulates Na,K-ATPase specific activity by a mechanism

which includes PLM phosphorylation, without change in the total

content of Na,K-ATPase in the plasma membrane.

Discussion

Chronic nicotine exposure alters electrogenic Na,K-
ATPase activity in an isoform-specific manner

Previous studies have established that the skeletal muscle

nAChR and the Na,K-ATPase associate as a functional complex

to modulate Na,K-ATPase activity, and thereby the membrane

potential [1,2]. This complex includes, at a minimum, the nAChR

a1, the Na,K-ATPase a1 or a2 subunits, PLM, and caveolin-3 [2].

Acute, nanomolar concentrations of nicotinic agonists act through

the nAChR to stimulate Na,K-ATPase electrogenic transport,

causing membrane hyperpolarization. This acute action of

nicotinic agonists is selective for the Na,K-ATPase a2 isoform

[1,2,6]; it does not alter the transport activity of the Na,K-ATPase

a1 isoform. Because steady, nanomolar concentrations of ACh are

normally present in the postsynaptic neuromuscular junction

during nerve activity, this interaction is expected to enhance the

safety factor of neuromuscular transmission and muscle excitabil-

ity, especially during high-frequency electrical activity [5,28].

The present study demonstrates that nicotine at chronic doses,

acting through the same nAChR-Na,K-ATPase complex, is also

able to modulate Na,K-ATPase activity. Moreover, the effects of

Figure 4. The nAChRa1 subunit and the Na,K-ATPase a1 and a2
subunits and PLM co-immunoprecipitate in rat diaphragm
muscle after 21–31days of sham or oral nicotine treatment.
Skeletal muscle protein was prepared from control and nicotine treated
animals and immunoprecipitated (IP) with monoclonal antibodies
against the nAChRa1 subunit. Precipitates were probed by Western
blot (WB) using antibodies against the nAChRa1, Na,K-ATPase a1 and
a2, and PLM. A positive control (lane 1, input) confirmed the presence
of each species in the control sample before IP. Each panel is a
representative Western blot from 7–8 independent experiments.
Protein homogenates were prepared using diaphragm tissue from the
same muscles used for RMP and activity measurements (Fig. 1 & 2C, oral
nicotine).
doi:10.1371/journal.pone.0033719.g004
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Figure 5. Chronic nicotine treatment activates PKCa/b2 (A) and PKCd (B) and increases PLM phosphorylation at Ser63 (D) and Ser68

(E). Total PKCa/b2 (A), PKCd (B), or PLM (C) abundance was not affected by the nicotine treatment. Bar graphs show the mean density from 8–9
measurements. A representative Western Blot is shown above each graph. Blots were probed with specific antibodies to activated PKCa/b2 (PKCa/b2
Thr638/641) and total PKCa/b2, activated PKCd (PKCd Thr505) and total PKCd, total PLM or PLM phosphorylated at Ser63 (pPLM Ser63) or Ser68 (pPLM
Ser68). Protein homogenates were prepared from the same samples used for RMP and activity measurements, obtained from diaphragm muscles of
rats after 21–31 day treatment with oral nicotine or sham (control) (Fig. 1 & 2C). * p,0.05. Y-axis, arbitrary units (AU).
doi:10.1371/journal.pone.0033719.g005

Figure 6. Effects of PMA on PKC and PLM phosphorylation and [3H]ouabain binding to intact rat skeletal muscle. A) Activation of
PKCa/b2 and PKCd by PMA (phorbol-12-myristate-13-acetate, 100 nM) induces parallel increases in PLM phosphorylation at Ser63 and Ser68. A rat
soleus muscle was dissected and equilibrated for 30 min in standard Krebs-Ringer solution, then incubated in K+-free Krebs–Ringer buffer containing
100 nM PMA and 2 mM [3H]ouabain for 0, 30, 60 and 120 min, followed by 4615 min washout in ice-cold K+-free Krebs–Ringer buffer. Five
independent experiments were performed and a representative Western blot is shown. B) [3H]ouabain binding site content in intact rat soleus
muscle was determined directly in the same experiment and expressed per gram wet weight. Mean values 6S.E.M. are shown, * p,0.05, n = 5.
doi:10.1371/journal.pone.0033719.g006
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chronic nicotine are isoform-specific and include both stimulation

and inhibition of enzyme activity. Chronic nicotine stimulates the

Na,K-ATPase a2 isoform (+1.8 mV increase in electrogenic

potential), similar to the action of acute nicotine. However,

chronic nicotine inhibits the a1 isoform (24.4 mV decrease). The

combined action is a net decrease in total Na,K-ATPase activity

and membrane depolarization (,23 mV). The depolarization is

blocked by ouabain, indicating that it results from reduced

electrogenic transport by the Na,K-ATPase. This signature profile

— induction by a specific nAChR agonist and inhibition by a

highly specific Na,K-ATPase antagonist — indicates that the

depolarization is mediated by the functional interaction between

the nAChR and the Na,K-ATPase. Thus, while both acute and

chronic levels of nicotine, acting through the nAChR–Na,K-

ATPase complex, stimulate the a2 isoform, chronic nicotine levels

produce a net decrease in Na,K-ATPase activity. These new

findings demonstrate that the nAChR is capable of functional

interactions with both the a1 and a2 Na,K-ATPase isoforms, and

that the regulatory range includes both inhibition and stimulation

of enzyme transport. An interaction of the nAChR with both

Na,K-ATPase isoforms is consistent with our finding that the

nAChR co-immuno precipitates with both a1 and a2 subunits ([2]

and Fig. 4).

Chronic nicotine-induced depolarization is not due to
altered expression of Na,K-ATPase a subunits, nAChR, or
their association with each other and PLM

Neither the increased activity of the a2 isoform nor the

decreased activity of a1 is explained by altered expression of

Na,K-ATPase a subunits or the nAChR. Moreover, chronic

nicotine does not alter the physical association between the

nAChR and the Na,K-ATPase a1 or a2 isoforms and PLM. Their

association is stable and remains capable of functional interactions

during chronic nicotine treatment. The decrease (25%) in Na,K-

ATPase a2 content in the sarcolemma without change in total

homogenate suggests that chronic nicotine exposure may alter its

targeting to the sarcolemma, without change in synthesis or

degradation. This result excludes the possibility that the increase in

Na,K-ATPase a2 activity is due to increased expression. It

suggests that the stimulation of Na,K-ATPase a2 activity by

chronic nicotine results from increased specific activity of

sarcolemmal enzyme.

This effect of chronic nicotine on sarcolemmal Na,K-ATPase

a2 content in skeletal muscle is different from that in brain tissues.

Na,K-ATPase a2 content decreases significantly in whole

homogenates of cerebral micro vessels and brain tissues of rats

exposed to chronic nicotine [29], and the decrease is associated

with a modest decrease in Na,K-ATPase activity. These

differences may reflect tissue-specific regulatory mechanisms.

The effects of chronic nicotine on intact muscle differ also from

the effects of carbamylcholine on cultured C2C12 cells. Chronic

exposure of cultured C2C12 myotubes to micromolar carbamyl-

choline for 3 days enhances electrogenic transport by the Na,K-

ATPase, causing membrane hyperpolarization [30,31]. The

hyperpolarization was attributed to increased abundance of the

a2 isoform, possibly interacting with nAChRs.

Role of PKC activation and PLM phosphorylation in
regulation of Na,K-ATPase activity by the nAChR

PLM is a muscle specific auxiliary subunit of the Na,K-ATPase

which modulates enzyme activity [3,4,24]. In cardiac and smooth

muscle, phosphorylation of PLM at Ser63 and Ser68 by PKC

stimulates Na,K-ATPase a2 activity by relieving an inhibitory

interaction of PLM with the enzyme [11]. The role of PLM in

regulating the Na,K-ATPase activity in skeletal muscle is less well

understood, and the significance of the association of nAChRs

with the Na,K-ATPase and PLM has not been previously

investigated. Our present results demonstrate that chronic nicotine

exposure activates PKC and promotes phosphorylation of PLM at

Ser63 and Ser68, without altering PLM content or its association

with the Na,K-ATPase. This finding identifies nicotine (and

presumably other nicotinic agonists) as an activator of PKC in

skeletal muscle.

It is possible that additional signaling partners may participate

in this regulation. The full complement of proteins in the complex

which includes the muscle nAChR and Na,K-ATPase is not

known. The proteome of other nAChR subtypes includes PKA,

PKC, other kinases and phosphatases, and G-proteins (nAChRa7;

‘levamisole-sensitive’ nAChR, L-AChR, [32]. If chronic nicotine

increases sympathetic activity, this could stimulate Na,K-ATPase

signaling pathways via PKA and cAMP, which also increases PLM

phosphorylation. In cardiac myocytes, activation of PKA stimu-

lates the activity of both a1 and a2 isoforms [11]. Alternatively,

systemic nicotine might modulate ACh release or CGRP release

from nerve terminals [33]. The possibility that chronic nicotine

may also alter other systemic or presynaptic pathways cannot be

excluded [34]. It will be important for future studies to identify all

of the signaling partners in this important regulatory complex, and

to define the specific interactions of PLM with the different Na,K-

ATPase isoforms.

Pharmacologic Implications
The steady depolarization produced by chronic nicotine is

expected to lower the safety factor for neuromuscular transmission

by reducing muscle excitability. While there is normally a large safety

factor for neuromuscular transmission (EPP amplitude about 15–

20 mV above the threshold for triggering an action potential), any

depolarization will lower this margin and inactivate Na+ channels,

which are present at the postsynaptic neuromuscular junction at 20-

fold higher density than on non-junctional sarcolemma. The

consequences of a more depolarized end plate will be greatest under

conditions in which neuromuscular transmission is already compro-

mised. This occurs, for example, during intense exercise when high-

frequency nerve activity depolarizes the resting potential, and in

neuromuscular disorders such as myasthenia gravis in which the

safety factor is already low [35].

In summary, chronic nicotine exposure alters Na,K-ATPase

activity in skeletal muscle by interacting with the nAChR-Na,K-

ATPase-PLM complex. This regulatory complex is capable of

functional interactions with both Na,K-ATPase a1 and a2

isoforms, to both stimulate and inhibit enzyme activity. The same

nicotine treatment activates PKCa/b2 and PKCd and promotes

phosphorylation of PLM at Ser63 and Ser68, supporting the idea

that the functional interaction between the nAChR and the Na,K-

ATPase may be mediated by this mechanism.
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