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Abstract
Dynamics of the actomyosin cytoskeleton regulate cellular processes such as secretion, cell
division, cell motility, and shape change. Actomyosin dynamics are themselves regulated by
proteins that control actin filament polymerization and depolymerization, and myosin motor
contractility. Previous theoretical work has focused on translational movement of actin filaments
but has not considered the role of filament rotation. Since filament rotational movements are likely
sources of forces that direct cell shape change and movement we explicitly model the dynamics of
actin filament rotation as myosin II motors traverse filament pairs, drawing them into alignment.
Using Monte Carlo simulations we find an optimal motor velocity for alignment of actin
filaments. In addition, when we introduce polymerization and depolymerization of actin filaments,
we find that alignment is reduced and the filament arrays exist in a stable, asynchronous state.
Further analysis with continuum models allow us to investigate factors contributing to the stability
of filament arrays and their ability to generate force. Interestingly, we find that two different
morphologies of F-actin arrays generate the same amount of force. We also identify a phase
transition to alignment occurs when either polymerization rates are reduced or motor velocities are
optimized. We have extended our analysis to include a maximum allowed stretch of the myosin
motors, and a non-uniform length for filaments leading to little change in the qualitative results.
Through the integration of simulations and continuum analysis, we are able to approach the
problem of understanding rotational alignment of actin filaments by myosin II motors in a truly
unique way.

Keywords
actomyosin dynamics; filamentous actin; myosin II; polarized polymer dynamics; phase transition;
Monte Carlo simulation; continuum mechanics

1. Introduction
Filamentous actin or F-Actin and its associated motor protein myosin II are fundamental
cytoskeletal proteins essential to the physiological function of cells, establishment and
maintenance of cell shape, and enabling cell motility. Actomyosin regulates cell shape and
cell motility by restricting contractility to specialized regions in the cell such as the apical
cell cortex [1], or the trailing edge of migrating cells [2, 3]. In these cases the role of
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actomyosin is experimentally tested by perturbing either the assembly of F-actin or the
cross-linking and contractility of myosin II. However, given the ubiquity of actomyosin
within non-muscle cells it has been difficult to resolve the specific role of actomyosin and
related regulatory proteins within multicellular tissues. Actin rotation is believed to play a
role in stress fiber formation, formation of the cytokinetic actin ring, initiation of filopodia,
and podosome extension[4, 5].

Recent advances in mathematical and biophysical models of cytoskeletal filaments and
motors have provided an important framework in which to analyze the dynamic properties
of the cytoskeleton. Theoretical studies of cytoskeletal dynamics of microtubules and their
associated motor protein kinesin [6, 7] have been used to elucidate the formation and
function of spindles during mitosis. In vitro studies of the rheology of purified protein have
found a multiple stage aggregation process by which myosin motors organize actin filaments
into contracted states [8]. Similar models of the actin cytoskeleton have been used to study
the role of actin polymerization in powering intracellular movement of Listeria
monocytogenes [9]. Although there are many theoretical models for actomyosin dynamics
[10, 11, 12, 13], these analyses have used “agent-based” computer simulations in which
discrete elements, individual filaments, and structural elements are modeled within a
complex geometry. Such models create a virtual assembly of “agents” with association rules
and biochemical rates describing all interactions mediated by simple physics of diffusion,
chemistry, and mechanics. To simplify the physically and biochemically complex
cytoskeleton a range of alternative theoretical approaches have been adopted to break the
complex biology of actomyosin into simpler systems whose behaviors can be explored
analytically rather than computationally [14, 15, 16]. However, few of these studies have
investigated the role of polymerization and motor contractility in aligning filaments. Given
that filament alignment may be involved in diverse processes that reorganize F-actin, we
developed theoretical models to directly explore these processes.

We hold the filaments pinned at their minus ends in order to prevent translational
movements of filaments and expose mechanisms which play a role in aligning filaments.
The polarity of the actin filament and its motor protein myosin II is a critical property and
distinguishes the cytoskeleton from more generic types of polymer gels. In order to
understand the complex behavior of actomyosin in complex morphologies we must consider
the polarity and assembly of actin filaments, actin filament bending, the dual role of myosin
motors as cross- linkers, and how motors shape and contribute to the mechanical properties
of solid-like multi-filament structures. Through our simulations and analysis we found that
filaments will always align and the time needed for alignment to occur depends on an
optimal velocity for the myosin motors. We also investigated what mechanisms would
inhibit alignment, and found that actin polymerization is a natural source of noise to
destabilize alignment. We found that a phase transition to strong alignment occurs when
either polymerization rates are reduced or the velocity for the myosin motor is changed
toward an optimum.

2. Model and Methods
2.1. Simple geometry of actin-myosin interaction

Within the cell cortex actin filaments are present with arbitrary orientations and myosin
motors attach to the filaments, move toward filament plus-ends exerting a force which acts
to align the filaments. If confined to a two dimensional plane each actin filament has three
degrees of freedom: the position of its center of mass in the plane, and its orientation with
respect to that center of mass. We first consider a simplified actomyosin array of one motor
and two filaments (Figure 1A). In the cell, myosin II is organized into anti parallel arrays of
bundled motors [17]. In our model we represent a single bundle as a mini thick filament and
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refer to such a bundle as a single “motor.” Filaments are only allowed to change their
orientation. Minus ends which remained pinned at a fixed location we call the “origin.”
Motors first attach at the pinned minus ends of a pair of filaments move toward the plus end,
exerting a spring-like force on the filament pair (Figure 1B). We can define the angle of
orientation for each filament (θ1 and θ2), and the distance from the minus-end to the attached
motor (s1 and s2). The position of the two motors can be written in a Cartesian frame of
reference as (s1 cos θ1, s1 sin θ1) and (s2 cos θ2, s2 sin θ2). As motors move to filament plus-
ends, we assume they move with a constant velocity, υ. As the two ends of the myosin
motor move apart toward the plus-ends of their respective filaments the myosin acts as a
dynamic spring exerting forces on each filament in the pair [18, 19, 20], resulting in
movement and rotation of both filaments.

From this biophysical description of motors, actin filaments, and their interactions we can
describe the life-cycle of a myosin motor. The motor begins its life-cycle unattached to any
filaments, waiting at the origin until it chooses to attach to a random pair of filaments. Once
the motor attaches to a pair of filaments, the motor walks toward the plus-ends of the
filament pair, generating force which pulls the filaments towards each other. The motor can
detach from the filament pair as a result of a random stochastic process, and if the motor
detaches, returns to the pool of unattached motors at the origin. On the other hand, if the
motor reaches the end of the filament pair, it will fall off and return to the origin.

We have also simulated actin filament polymerization and depolymerization by allowing
randomly selected filaments to disappear and be replaced by polymerization at the same
time at a new angle. Polymerization rates represented by a rate per filament which allows
the random, stochastic removal of a filament and placement of a new filament during our
Monte Carlo simulations. In the event that a motor is attached to a depolymerizing filament,
the motor will detach.

2.2. Equations of motion for the myosin motor and filament pair
Based on these rules we derive and compute the equations of angular motion for the filament
pair as a myosin motor draws them into alignment. To extend the equations to the N
filaments and M motors case, we only need to consider that the forces sum linearly. We
derive the equations of motion for two filaments and one motor (Equation 1), where k is the
spring constant and m is the mass of the motor.

(1)

More generally, we can define the change in angle for filament i from N total filaments as
the sum of forces exerted by each motor m from the pool of motors (M(i)) which are all
attached to filament i (Equation 2).

(2)

Since we have to calculate the change in angle between the filament pair to which the motor,
m, is attached, we define the index for one filament to be i and the other filament’s index to
be p(m, i).
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From these equations of motion we can evaluate the mean of the distance the motor travels
along the filament, s, squared. This term can be related to the mean rate of alignment and the
average force exerted by the system (Equation 3).

(3)

We can also describe the morphology of the resulting actin array with an order parameter
(Z), a measure of alignment of the filaments in our system. Z is defined as follows:

(4)

In the statistics of circular or periodic distributions (1 − Z) is often called the circular
variance [21]. The order parameter can be determined explicitly in the case of two filaments
(Equation 5), where the difference in the angle between the filament pair, φ(t), is defined for
−π to π.

(5)

The order parameter as it relates to our Monte Carlo simulations describes the degree to
which a set of filaments is co-aligned. For instance, in the case where the order parameter is
one (Z = 1), all filaments are perfectly co-aligned with the same orientation angle.
Alternatively, when the order parameter is zero (Z = 0), the filaments will have orientation
angles uniformly distributed around the circle.

2.3. Biophysical properties of actin filaments and myosin motors
All of the parameters and their associated most commonly used value for the Monte Carlo
simulations are found in table form with the supplementary information (TableS1), along
with all of the variables (TableS2). The Monte Carlo simulations were carried out using
MATLAB and the algorithm, represented as a simple flow chart (FigureS1), has been
included in the supplementary information.

Actin filament polarity and length (L)—Actin microfilaments or F-actin vary from
minimal lengths of a few G-actin subunits to more than 10 µm with a distinct polarity of
plus- and minus- ends. For the majority of our simulations and continuum analyses we set
filament length to 1 µm. This may be considered either the fixed length of a stable filament
or the dynamic length of a tread-milling filament.

Myosin motor geometry and velocity (υ)—Each functional myosin II subunit is
assembled from two heavy chains, two essential light chains, and two regulatory light
chains. Myosin II mini thick filaments are assembled from multiple subunits into an
antiparallel array with the globular ATPase head domains at the opposite ends of the
filament and the rod-like domain of the subunits bound in antiparallel arrays in the center
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bare region of the mini-filament. The composition and length of mini thick filaments vary
from cell type to cell type of ~20 myosin II complexes and are approximately ~350 nm in
length [22]. Little is known experimentally about the force-producing capabilities of mini
thick filaments but they can stretch and act like springs [19, 20, 18, 23]. We assume that
ATP levels are high and myosin II motor ATPase activity is maximized.

Model time (t)—Model time is reported in seconds and the Monte Carlo simulations are
advanced with individual time-steps of 0.01 seconds.

Motor attachment rate (r0)—In the cell, the rate of motor attachment would reflect
several factors including the rate of diffusion of myosin mini-filaments, the volume each
mini-filament can search, and the relative density of F-actin binding sites. In our unique
geometry the situation is considerably simplified since all unbound motors are held within
binding range of F-actin at their minus-end. Thus, for a majority of our simulations we fix
the motor attachment rate at 0.7 per second.

Myosin detachment rate(r1)—Myosin motors are highly processive but do occasionally
dissociate from filaments before reaching the plus-end. Since these rates are poorly
characterized in vivo we choose detachment rates that range from 0.1 to 0.8 per second. This
rate may also vary based on the amount that the motor is stretched; e.g. load (Section 3.5).

Depolymerization rate (r2)—Actin filaments within cells are constantly being turned
over so we introduce a depolymerization rate per filament. This rate may be dependent on
the length of the filament and may be controlled within the cell. Polymerization rates are
allowed to vary from 0.01 to 0.2 per second. In vivo, the polymerization / depolymerization
rates may control actin abundance, however, within our simulations we enforce constant F-
actin density and promptly polymerize a new filament when one filament depolymerizes.

Viscosity (μ)—In the cell, filaments experience viscous drag forces as they rotate through
the cytoplasm. By contrast, myosin mini thick filaments, due to their smaller size, do not
experience such drag forces. In our model, we only consider the viscous drag of water and
explicitly simulate filament-filament interactions that would contribute to cytoplasmic
viscosity. If we increase the viscosity parameter, we would see that the time it would take to
align would increase since the increase in viscosity would make it more difficult for the
filaments to rotate through the space. The viscosity of water is defined as 1 × 10−3 Pa s.

Motor stiffness (k)—As the two ends of the myosin II motor mini-filaments move apart
on pairs of actin filaments the mini-filament exerts spring-like forces on the two filaments.
Thus, our simulations include a motor spring stiffness term k. Myosin mini-filament
stiffness has been measured from 1.7 to 5.0 pN/nm [24, 19, 20, 18].

(μ/k)—For our equations of motion and continuum analysis, we do not use separate values
of μ and k but instead use the ratio of stiffness to viscosity. Due to uncertainty in the exact
value of this term, ranging from 0.2 to 0.6 (s/m2) we set this ratio to 1.

3. Results
3.1. Two filaments, one motor

For simplicity, we first consider two filaments and one motor. The two filaments lie at
specific angles (θ1 and θ2) and may be bound together at a distance, s, from their origin by a
motor. We found it advantageous to consider the angle between the two filaments (φ := θ2 −
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θ1) rather than the orientation angle of each filament. We found a single equation of motion
could replace the two equations defined previously (see Section 2.2, Equation 1):

(6)

For the case of two filaments and one motor, we used this equation of motion to follow
events that occurred during a typical simulation (Figure 2A): (a) the motor attached to the
filament pair and started to pull filaments together as the motor traveled down the filament
at a fixed velocity, (b) the motor fell off the filaments before it reached the ends of the
filament pair, (c) the motor spent time waiting to attach to the filament pair, (d) the motor
reached the plus-end of the filament and fell off. For all simulations perfect alignment is
guaranteed since there were no other processes which could cause the difference in filament
angle (φ) to increase. Thus, the changing morphology of the system could be followed as the
order parameter (Equation 5) increased to a value of one and force-generated by the motor
decreased to zero (Figures 2B–F).

However, actomyosin in cells rarely assumes the form of static bundles and we turned to
investigate processes that could destabilize or prevent formation of aligned bundles. Since
actin filaments are constantly turning over in the cell we introduced the processes of
polymerization and depolymerization. These processes introduced a form of noise into our
simulations; by contrast, thermal noise could also prevent perfect alignment, but for
filaments in a viscous media this source of noise is negligible.

Allowing filaments to undergo depolymerization and polymerization resulted in more
complex dynamics for the two filament case. We considered the events along a typical time
course (Figure 2F): (a) the motor attached to the filament pair and pulled filaments together
as the motor traveled down the filament at a fixed velocity, (b) the motor spontaneously fell
off the filaments, (c) the motor spent time waiting to attach, (d) the motor fell off once it
reached the end of the filaments, (e) a filament depolymerized while a new filament
polymerized at a new angle, discontinuously changing the value of the angle difference (φ).
The motor worked to reduce the angle difference between filaments only to have that angle
reset by a depolymerization and polymerization event. By including polymerization, perfect
alignment is no longer possible. We described the degree of imperfect alignment through the
time-evolution of the order parameter and the forces generated (Figures 2G–J). During the
course of a single representative simulation run, the order parameter could rise to one and
forces generated by a shared motor dropped to zero as filaments were completely aligned.
However, once a filament depolymerized, the order parameter decreased and the motor
again generated force.

Even though depolymerization destabilizes the actomyosin system, we found that the angle
difference between filaments in a population was still reduced over time. To understand this
effect, we considered a histogram for the angle difference between filaments (φ). The
distribution of angles for a long Monte Carlo simulation for two-filaments, one-motor
showed a large number of perfectly aligned filament pairs and that depended on motor
function (Figure 3A). As the rate of depolymerization increased, however, the angle
distribution in the population became flatter with more filament pairs having larger filament
angles.

When we varied the motor velocity instead of the rate of depolymerization, we also
observed a non- monotonic dependence of filament alignment on motor velocity (Figure
3B). In this case, both low and high motor velocities acted to flatten the distribution of angle
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differences. In order to understand the relationship between motor velocity and the
difference in filament angles, we considered the average force generated (〈s2〉) for a large
number of simulations as we varied motor velocity (Figure 3C). We found that average force
reaches a maximum value at a unique motor velocity and this velocity in turn depends on the
rates of motor attachment and detachment.

These effects could be understood if one took the perspective of a myosin motor. For any
given set of motor filament interactions, e.g. rates of attachment and detachment, the most
rapid alignment occurred when the motor spent the largest fraction of its life-cycle bound to
the filament pair. For example, if the rate at which an unbound motor attached was reduced
(that is, it took longer for the motor to attach), then the percent of the motor’s life-cycle
devoted to aligning the filament pair was also reduced (compare red and black curves in
Figure 3C). In order to increase the time devoted to aligning the filament pair the motor
needed to slow down so it would not reach the end of the filament and fall off. As a
correlate, if the rate of the motor spontaneously falling off was increased, then the velocity
required for optimal alignment increased (compare red and green curves in Figure 3C).
Thus, the ability of myosin motors to align filaments depended on both its velocity as well
as its rates of attachment and detachment.

Intriguingly, motor velocities that produced maximal average force generation (〈s2〉) also
produced the most aligned filament pairs (Figure 3D). The functional dependence of
morphology and force production on motor velocity suggested we might be able to
analytically derive these functions from a continuum representation of the dynamics of the
two filament, one motor system.

3.2. Recasting the stochastic model of two filaments and one motor as a continuum model
In order to understand the relationship between actin filament alignment and forces
generated by the motor we derived continuum equations which described the two filament,
one motor dynamical system. Motor activity within a two filament network could be thought
of as an example of a ‘two-state process’: either the motor was detached and waiting to
attach to a filament at the minus end (P0), or the motor was moving toward the plus ends of
the two filaments and pulling the pair into alignment (P1). We considered the time evolution
of populations of motors in each of these two states:

(7)

The population or density of motors not bound to any filaments (P0, Equation 7) changed
by: 1) motors falling off the plus-end of any filament (from the group of filaments with
attached motors, P1), 2) motors randomly detached as they moved toward the filament’s
plus-end, 3) motors bind to filament minus-ends, and 4) motors fell off filaments that
depolymerized. Since motors could detach at any distance, s, along a filament’s length
(defined from 0 to L), the second term in Equation 7 was integrated over all possible motor
positions. We noticed that the first three terms in Equation 7, the loss and gain of motors,
were independent of the filament pair’s orientation; only the last term depended explicitly on
the rate of depolymerization. It was important to note that while filaments without attached
motors could depolymerize, the last term of this equation only considered depolymerization
of filaments with bound motors. The time evolution of motors bound to filament pairs was
similar but we needed to include the density of motors at various positions along the length
of the filament pairs:
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(8)

The density of motors attached to filaments must include movement of motors: 1) as motors
moved toward the plus-ends of the filament pair, 2) as motors moved with the angular
movement of filaments, 3) as motors randomly detached from filaments, and 4) as motors
detached when filaments depolymerized.

We investigated solutions which led to stable assemblies of filament systems, i.e. the steady
state solution which yielded the stationary distribution of filaments over filament angles, φ,
and motor positions, s. We began by defining a distribution, Q, which denoted the stationary
solution and obtained expressions for force and the order parameter:

Furthermore, we were able to derive an equation for the steady state marginal distribution of

the distance along the filaments,  and thus compute 〈s2〉 (Equation 9; see
Appendix B).

(9)

With this exact solution we calculated analytically how force generation depended on motor
velocity, rates of motor attachment and detachment, and rates of filament polymerization
(Figures 3D and 4). We found that our continuum equations were able to exactly replicate
the Monte Carlo simulations for the two filament, one motor actomyosin system (Figure 4).
In addition, the continuum solution was able to validate our Monte Carlo simulations of the
two filament, one motor actomyosin system. For instance, we previously considered the
density of steady state angles from our Monte Carlo simulations (Figures 3A and 3B) and
the continuum equations showed us exactly how these densities depended on the parameters
of the model.

Further analysis of these equations and their steady state solutions (see Appendix B) allowed
us to investigate exact relationships between rates of motor-filament attachment and
detachment, motor velocities, polymerization rates, filament morphology, and force
generation. For instance, as the rate of attachment decreased, the motor spent more time off
the filaments and so the motor velocity must have been chosen so it maximized the amount
of time the motor spent attached to the filaments.

3.3. Multiple Motors, Multiple Filaments
In order to understand more complex actomyosin networks we investigated the behavior of
multiple-motors and multiple-filaments arranged with the same geometry as the simpler two
filament, one motor system discussed previously. Initially, we suspected that the
competition between multiple motors attached to the same filament might impede the
progress of filament alignment. To test this hypothesis we returned to Monte Carlo
simulations. These simulations started with multiple filaments randomly distributed around
360° and multiple motors all in an unbound state waiting to attach to the filament minus-
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ends. Each simulation was run for 400,000 steps with a time step of 0.01s. In order to
compare steady state rates of filament alignment in each simulation, we averaged the order
parameter over the last 300,000 steps. The reason for this, was that once the simulation
started, if given enough time, the filaments would get closer and closer to their natural
alignment, e.g. filament dynamics approached steady state.

Interestingly, we found that filaments aligned in a manner analogous to the two filament,
one-motor case (Figures 5 and 6) and exhibited the same dependence on parameters that
were observed previously. For example, as we allowed the rate at which the motors
spontaneously fell off the filaments to increase, the velocity at maximal alignment also
increased which was accompanied by a decrease in the magnitude of alignment (Figure 5A).
Thus, the process of filament alignment is slowed as motors spend less time bound to the
filaments. Furthermore, we found that the velocity which produced maximal alignment was
independent of filament density(Figure 5B). When the ratio of filaments to motors had fewer
motors, however, the maximal degree of alignment decreased, even though the optimal
motor velocity remained the same.

When we considered the rate of depolymerization, we found that the order or alignment of
our system was extremely sensitive to the rate of depolymerization (Figure 5C) and that
depolymerization is the only stochastic process capable of impeding the progress of filament
alignment. Furthermore, the extremely steep decrease in alignment with a small increase in
the rate of depolymerization suggested that a phase transition from a completely disordered
(in this case a perfectly uniform distribution of filaments) to an ordered or aligned state may
occur.

From our parameter analysis, we concluded that the motor velocity and depolymerization
rate of filaments are key parameters that control alignment of actin filaments. In order to
draw a more descriptive conclusion as to how these two parameters effect the alignment of
our system, we next considered the density angles between two filaments (Figure 7). In the
case where filaments of the system were mostly aligned, the distribution has a tall, sharp
peak about the angle difference of zero and flattens after the motor velocity is shifted from
this optimal value (Figure 7A), or after the rate of depolymerization is increased (Figure
7B). To investigate the behavior of our actin network near this phase transition we turned
from the Monte Carlo simulations to a continuum representation for our multiple filament,
multiple motor system.

3.4. Mean field analysis of multiple filaments and multiple motors
We considered an array of a large number of filaments, N, where each filament was at a
discrete angle (θi) with a large number of motors, M. From this discrete model we calculated
forces experienced by a single filament:

(10)

The average force on a filament was found by linearly summing all the forces exerted by the
motors which were attached to that filament. An attached motor, r, connects filament i and j.
The term pijr was the probability that motor r was attached to filaments i and j. Since motors
may contact any 2 out of N filaments, and connections are chosen randomly this probability
factor was 1/(N(N − 1)).

In order to compute a mean field equation for the network of motors and filaments, we let
the number of motors and filaments grow to infinity, keeping the ratio of motors to filaments
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as a fixed number, c. When we did this, the sum in Equation 10 became an integral
(Equation 11).

(11)

Next, we returned to the two-state model for myosin motors within a much larger F-actin
array. Recall the definitions of P1 and P0 from the two filament, one motor case before
where P1 was the density of motors attached to filaments, and P0 was the density of
unbound motors. The time-evolution of motor density within these two states was:

(12)

(13)

In contrast to the density functions for the simple case of two filaments and one motor, we
considered the actual angle rather than the difference of angles. Since forces depend on the
density of motor-bound filaments we found a nonlinear term that represented the movement
of motors as filaments moved. Thus, unlike the two filament case, the density equations
were nonlinear due to the fact that f(θ) was itself a function of P1.

Since motors can only attach to filaments at the minus ends, we enforced a boundary
condition that related motors leaving the pool of unbound motors with the motors attached at
the minus-end of the filament pairs.

(14)

Readers familiar with the analysis of coupled oscillators will see a strong similarity between
Equation (E.1) and the Kuramoto equation [25] (see Appendix E). Because this was a
nonlinear equation, there was no simple closed form solution; however, we used these
equations to investigate the transition driven by high rates of depolymerization from a
completely disordered state to an aligned state (referred to as the “asynchronous state” in
coupled oscillators).

When we considered the density distribution of relative filament angles and increasing rates
of depolymerization, we concluded that there existed a solution which was uniform in the
filament angle, θ (Figure 7B; see Appendix C). These solutions were the marginal densities

of the distance traveled for attached motors, , and the density of

unattached motors,  (see Appendix C).

Returning with these solutions to our continuum equation for the force on a single filament
we found:
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The term f(θ) represented the angular flux of filaments moving under the influence of bound
motors. As the array of filaments approached steady state this term disappeared and we were
left with a steady state analogous to that found in our earlier analysis of two filaments and
one motor.

This equilibrium solution corresponded to a completely disordered state in which the
distribution of the filament angles was uniform. Since the equations for the two filament,
one motor case were linear they do not include the integration of angular filament flux, and
the completely disordered state was never a solution. The equation which described arrays
of multiple filaments and multiple motors was nonlinear, so there may be more than one
possible steady state. The most direct method to determine if there were other possible
stationary distributions of motors was to examine the stability of the disordered state as
parameters, such as the motor velocity, were varied.

We searched for a possible nonlinear phase transition by investigating the stability of
different periodic modes of the disordered state (see Appendix D). If the fully disordered
state was unstable with respect to perturbations to the distribution of filaments, then this
mode would grow and the distribution might remodel into a single peak. With this approach
we linearized the full equations about the trivial steady state and then solved the resulting
linear system.

We discovered that F-actin morphology alone was not a predictive indicator of force
production. Whereas a unique filament array morphology that did produce a unique level of
maximal force (see asterisk in Figure 8B). Force production at even slightly lower levels
produced by two distinct filament morphologies (see “arrow heads” in Figure 8B). One, a
tightly aligned and another, a disorganized filament arrays produced identical levels of
force. Thus, morphology alone was not a sufficient index for the assessment of force
production within arrays of actin filaments which were free to rotate.

3.5. Biological Complexities: How does the behavior of this simplified system change as
more realistic conditions are introduced?

Thus far, our simulations and analysis did not limit the length that myosin motors could
stretch between pairs of actin filaments. To test the importance of this assumption, we ran
simulations where motors detached once they exceeded a threshold length (Figure 9A). This
change lowered the motor velocity needed for optimal alignment of the filaments (Figure
9A’). Simulations where we introduced a threshold of myosin detachment behaved as if we
had simply increased the rate of detachment of the motor (e.g. increased r1). Alternatively,
when we increased the threshold we found that the filaments aligned more strongly and the
motor velocities needed for optimal alignment also increased.

Up to this point our simulations used filaments of uniform length (Figure 9B); to test the
importance of this assumption we ran simulations with filaments having different fixed
lengths. With increased filament length, we found that filaments aligned to a greater degree
and that the motor velocity needed to optimally align filaments also increased (Figure 9B’).
If we allowed filaments to have random lengths between 0.75 and 1.25, so their average
length would be 1.0. We found almost no change in the velocity needed to optimally align
filaments, however, the magnitude of alignment decreased slightly (Figure 9B’).
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4. Concluding remarks
Actomyosin networks shape a diverse array of cellular structures. Many of these, such as the
alignment of actin filaments into the cytokinetic furrow or into the base of dynamic
filopodia are likely to involve filament rotation. To understand the principles that shape
these networks we have constructed a set of theoretical models to study the evolution of F-
actin morphology and dissected the relative contributions of F-actin polymerization and
myosinmotor based alignment to changes in filament morphology and force production.
Monte Carlo simulations and continuum models identified regimes where actin filaments are
stably bundled and other regimes where actin filament depolymerization leads to an
asynchronous state where actomyosin forms a perpetually contractile array. The models
suggest biophysical mechanisms through which myosin activity and F-actin polymerization
reshape the cytoskeleton and drive cell shape change.

We first derived the equations of motion for a simple system of two filaments and one
myosin II motor complex and defined a statistical property of circularly distributed actin
filaments, the order parameter, to assess the morphology of arbitrarily large filament-motor
arrays. Implementing simple stochastic processes that allow motors to bind or detach from
filament-pairs, walk toward filament plus-ends, and pull filaments together, we performed
Monte Carlo simulations in order to understand how these processes shape the morphology
of filament pairs.

We found that maximal alignment of the filament pair occurred at a unique motor velocity
and depended on both the rates of the stochastic processes and the length of the filaments.
Motors aligned filaments more rapidly when they spent the largest fraction of their duty-
cycle actively contracting the two filaments. At one extreme, if a motor traveled too slowly
it would fall off the filament pair before reaching the end; and, at the other extreme, a motor
that traveled too rapidly spent too much time waiting to bind to the pair of filaments.

These relationships suggested the existence of an underlying biophysical principle so we
simplified the motor-filament interaction slightly and re-cast the problem using continuum
equations for a “two-state process and investigated the evolution of the filament-motor
system as density functions. These equations were solved explicitly, reproduced the findings
from our Monte Carlo simulations and provided a direct link between parameters governing
motor-filament interactions, the resultant filament morphology, and contractile strength.
Remarkably, this analysis demonstrated that no matter how many motors or filaments there
are, the density of motor positions is always the same.

In order to generalize these two-filament one-motor systems to systems with multiple
filaments and motors we returned to Monte Carlo simulations. These systems reproduced the
same general behaviors seen in the simpler system, namely, that filaments rapidly align over
a wide range of model parameters and that the alignment peaks for conditions where motors
spend the largest fraction of their duty cycle contracting filament-pairs.

Rapid alignment of filaments underlie a range of cellular processes such as the formation of
the cytokinetic furrow in dividing cells and the convergence zone at the rear of lamellipodia
in migratory cells. During the initial steps of cytokinesis, myosin II motors bind disordered
actin filaments within the cortex and reorient those filaments aligning them within the
cytokinetic furrow [26, 27]. Retrograde flowing actin filaments within lamellipodia first
encounter myosin II at the rear of the lamellipodia. In this region, named the convergence-
zone, filaments are anisotropically contracted, reoriented perpendicular to the direction of
the flow, and are rapidly depolymerized [28, 29].
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However, other cellular processes driven by actomyosin dynamics progress without
alignment, for instance actomyosin assemblies at the rear of migrating cells, and a range of
processes that direct cell shape change during morphogenesis in embryos [30, 3, 31, 32, 33].
To investigate processes that might destabilize filament alignment we modified our models
to include filament polymerization/depolymerization. Both our two-filament, one-motor and
multiple filament, multiple motor models revealed that the rate of depolymerization can alter
the speed of alignment but could also produce morphologically stable arrays of permanently
contractile filaments.

These models revealed that motor activity and polymerization underlie the ability of F-actin
networks to undergo a phase-transition from organized aligned filaments into dynamically
disorganized, permanently contractile arrays. This transition could be controlled by both the
motor velocity and the frequency or rate of depolymerization. We propose that cells
manipulate the state of actomyosin by controlling this phase transition. Actomyosin
interactions can result in distinct patterns of force generation in addition to altering the
morphology of filament arrays. In the absence of F-actin polymerization, myosin II quickly
align filaments into tight bundles. However, such bundled filaments no longer generate
contractile forces. In contrast, once polymerization is introduced, arrays of filaments can
achieve some alignment, but instead of forming stable bundles, they form a dynamically
disorganized contractile array. Polymerization, or rather depolymerization, allows the actin
network to continuously generate contractile force. Thus, actin filament alignment combined
with polymerization and depolymerization allows the cytoskeleton to remain continuously
contractile even as its morphology is continuously changing.

To build our intuition about the performance of actomyosin we intentionally omitted
numerous details of both actin filament and myosin II function. As we explored the behavior
of the simple system we extended our models to include many of these omitted details and
test their relevance as a more “realistic” biology. For instance, after allowing varying or
random length filaments we found we could interpret the results in the context of our
simpler model. Our greatest simplification for the model was fixing the minus-ends of
filaments together in the center of an array. This simplification allowed us to investigate the
complex interactions between polymerization and myosin motor function without the
confounding effects of filament translocation or lateral movement. Clearly, more realistic
models will require complex geometries of free-associating actin filaments. However these
future efforts will to be able to build on both the Monte Carlo models and continuum-level
theory that we developed here.

Highlights

• Alignment of the actomyosin network is maximized by an optimal motor
velocity.

• Filament depolymerization destabilizes alignment and bundling of action
networks.

• A phase transition between aligned and disordered networks exists.

• Continuum analysis shows that two different morphologies generate the same
force.

• Coupling of alignment and depolymerization optimizes the forces generated by
myosin.
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Appendix

Appendix A. Deriving the equations of motion
We begin with the vector defining the position of the motor along filament j (xj = s(cos θj,
sin θj) for j = 1, 2), and derive the potential and kinetic energy for the system (Equation A.
1), where k is the spring constant and m is the mass of the motor.

(A.
1)

In order to obtain equations of motion from the potential and kinetic energy equations, we
consider the Lagrangian equations (Equation A.2).

(A.
2)

We assume that motors operate without a drag force, based on the known sizes of myosin.
However, we do consider a viscous damping term (μ) which opposes the movement of actin
filaments and is analogous to the friction the filaments might experience when moved
through water. Substituting into the potential and kinetic energies equations for filaments 1
and 2, we can explicitly derive our Lagrangian equations (Equation A.3).

(A.
3)

Since the masses of the motor and filaments are small, we ignore the momentum term and
solve for the equations of motion for the change in filament angle (Equation A.4; Equation 1
in the main text).

(A.
4)

Appendix B. Solving the coupled integro-partial differential equations
For the distribution Qj which denotes a stationary solution, we can write an equation for
force (〈s2〉) and the order parameter (Z):
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The histogram of the values of the angle difference, ϕ, is a plot of

, the marginal distribution of the angles. These stationary
solutions are represented by a pair of coupled integro-partial-differential equations and are
generally difficult to solve numerically or analytically. However, in this case we can get a
closed expression for the filament distributions and thus an exact expression for our torque-
like term, 〈s2〉 (Equation 10). We can then use this distribution to approximate the
dependence on the difference in angles, ϕ, and estimate the order parameter Z.

The marginal densities with respect to the motor distance down the filament pair, s, is found
by integrating Q0,1 with respect to ϕ:

(B.
1)

Let

denote the marginal densities. Then from Equation B.1, we see that

(B.
2)

(B.
3)

(B.
4)

Finally, we must have the normalization:

Remarkably, the marginal density for the motor position involves no unknown integrals with
respect to ϕ and so we can solve it exactly. Furthermore, we can easily compute 〈s2〉. To
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save on some notational headaches, we set L = 1 without loss in generality. We also note
that as far as the marginal motor position is concerned, r1 and r2 serve only to dislodge the
motors; this is evident by the observation that they always appear as a sum r1 + r2. For the
moment, we absorb the effects of r2 into an effective r1 to simplify the algebra. That is, if r1
= 0.1 and r2 = 0.05, as was the case in Figure 3 from the paper, then the effective r1 is 0.15,
the sum. Equation (B.2) and the boundary condition in Equation B.4 imply

Normalization allows us to solve for W0:

So that

(B.
5)

We can now integrate Equation B.5 against s2 to compute (Equation 10; Equation 13 from
the text):

(B.
6)

Equation B.6 allows us to see how the optimal velocity depends on the parameters. If we set
the derivative of Equation B.6 to zero, we get an expression to determine the maximum. It is
not possible to solve the resulting derivative for υ since the equation involves a mix of
exponentials and rational functions. However, we can solve the resulting equation for r0 and
thus we obtain an expression, r0 = ρ0(υ, r1) such that Equation B.6 is maximal. Figure B.1
shows plots of this expression for three different values of r1. The way to interpret this plot
is to, say, fix r0 = 1, r1 = 1 then observe that this corresponds to a value of υ ≃ 0.8 on the red
curve (which corresponds to r1 = 1). As r0 → 0, the three curves appear to intersect the υ-
axis at values which depend on r1. In the loglog plot (Figure B.1), all three curves asymptote
with the same slope, the translation depends only on r1. The intersection with the υ-axis can
be found by letting r0 tend to zero in the expression for ∂F/∂υ; we find that this expression
vanishes when

There is a unique positive root, r1/υ ≃ 1.45, so we see that for r0 small, the optimal velocity
is linearly proportional to r1. We can also understand this intuitively. As r0 tends to zero,
this means we spend a great deal of time with the motor unattached to the filaments. We
thus want to choose υ to maximize the amount of time spent on the filaments and in
particular, we want to choose υ so that we get as far out as possible toward the ends of the
filaments where the most work is done. Since the expected time to remain on the filament is
1/r1, then by choosing υ ≃ r1, we can get to the end of the filament before falling off while at
the same time, not going so fast that we reach the ends. The linear asymptotes in the loglog
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plot can also be easily found by letting υ → ∞ whence, we find that . This is
satisfying since it says that for large rates, the optimal velocity is the geometric mean of the
rate of falling off and the rate of attaching.

Appendix C. Calculating the marginal density of the angle differences
We now turn to the marginal density of the angle differences. To obtain an equation for this,

we integrate Equation B.1 with respect to s. Let S0(ϕ) = Q0(ϕ) and let .
Note that S0,1(ϕ) are the densities for the angle between the filaments when the motors are
off, on respectively and independent of the motor position. S1(ϕ) satisfies

Unfortunately, this expression does not just involve S1, but also requires knowledge of the
joint distribution, Q1(ϕ, s). We now make an approximation; we suppose that Q1(ϕ, s) =
S1(ϕ)W1(s). That is, we assume that the variables s and ϕ are independent.While it is true
that the value of s is independent of ϕ (which is why we could solve for the marginal
density, W1(s)), the angle difference, ϕ should depend on s as this governs the effective
strength of the spring. With this approximation, we get

(C.
1)

(C.
2)

(C.
3)

Equation C.3 is the approximate boundary condition. Let  and X2 ≔
〈s2〉. Then we can solve Equation C.2 to get

and use Equation C.3 to obtain a single equation for S1(ϕ):

(C.
4)

For notational simplicity, let r = (μr2)/(kX2). In order to solve Equation C.4, we observe that
it is symmetric about zero, and singular at −π, 0, and π. So we just have to solve it in the
interval (0, π), and then can reflect this solution about zero to obtain the solution for the
interval (−π, 0). Then, we must take appropriate limits. We remark that it is not necessary
that S1(ϕ) has a well-defined limit as ϕ → 0; we only require integrability. For simplicity we
let S1(π/2) = 1, which we can always scale later since Equation C.4 is linear and
homogeneous in S1. (The actual value will come about from normalization). Solving the
ODE, we obtain
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(C.
5)

We rewrite the expression for S1 as

We notice that  goes towards infinity like the function (π − ϕ)−(r+1) as ϕ goes to
π, which is not integrable on our interval of (0, π). So in order for S1(ϕ) to be integrable on
the interval of (0, π), F(π) must go to zero as ϕ goes to π. We choose a to make F(ϕ) → 0.
Then, applying L’Hopital’s rule it is easy to show that limϕ→π S1(ϕ) is finite. Next, we need
to address the case of ϕ going to zero. We can approximate the behavior of F(ϕ) as ϕ → 0 as
the function k1ϕ1−r + k2, and tan(ϕ/2)r/ sin ϕ as the function ϕr−1. Then S1(ϕ) ≈ k1 + k2ϕr−1,
which is singular for 0 < r < 1 near ϕ = 0, but is integrable. So if we integrate S1(ϕ) from
zero to π, we find, using integration by parts the following:

We use L’Hopital’s rule to show the first expression is zero. This integration shows that

 so that S̄1 = a as required for self-consistency. We can rewrite the expression
and use Equation C.2 to write:

(C.
6)

(C.
7)

Appendix D. Determining the stability of the trivial state
We write P1(θ, s, t) = (1/2π)W1(s) + p1(θ, s, t) and P0(θ, t) = (1/2π)W0 + p0(θ, s, t) and find
that to linear order:

(D.
1)

(D.
2)
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(D.
3)

Where , M is the number of motors and N is the number of filaments. In addition, we
must have the normalization of the perturbation

Equation D.1 is a convolution in θ and is homogeneous with respect to t and θ, so that we
can look for solutions of the form

where m is an integer and ψj are unknown. If, for some m, the real part of λ is positive, then
solutions will grow with respect to that mode, m, and the completely disordered state will be
unstable. We plug this form into Equations D.1–D.3 to get a sequence of linear eigenvalue
problems. We consider three distinct cases: m = 0, m = 1, and m ≥ 2. First, we will address
the first and last cases, and then turn to the more difficult m = 1 case. The cases for which m
≠ 1 are simplest because the integral term in Equation D.1 vanishes since the convolution
over θ involves only sin θ.

Appendix D.1
Case 1: m = 0

When m = 0, the eigenvalue problem is

The solution to the first equation along with the boundary condition implies

We exploit a special property of m = 0. The normalization implies that

Plugging the formula for ψ1(s) into the normalization yields
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Dividing by ψ0 and rearranging, we get

Multiply both sides by L/υ and call z = λL/υ to obtain

where a = (r1 + r2 + r0)L/υ and b = r0 (L/υ) exp(−(r1 + r2)L/υ). We rewrite one more time as

Bellman and Cooke [34] prove that all roots, z to this equation have negative real parts if
and only if −a < 1, −a < −b, and one more condition that requires that −b be less than a
positive number. Clearly all three conditions hold since a > b > 0. Thus, we conclude that
with respect to perturbations with m = 0, the trivial state is stable.

Appendix D.2
Case 2: m > 1

When m > 1, then the eigenvalue equation is

As in the m = 0 case, we have

Unfortunately, we can no longer make use of the normalization condition since 
for m ≠ 0. We now plug this into the second equation to obtain

There are no positive values of λ that satisfy this equation since the righthand side will be
negative. We can rewrite the equation as

(D.
4)
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For L/υ large enough, there can be no roots with positive real parts since the right-hand side
goes to −r0 and thus, we must have

which has only roots with negative real parts. Thus, as L/υ gets smaller, the only way to get
positive real parts is that a root must have a zero real part. Since we have eliminated any
possible real zero roots, we must then have an imaginary root, iω. In this case we substitute
λ = iω into Equation D.4 and obtain

As ω varies, the right-hand side traces out a circle centered on the real axis and entirely in
the left-half plane. The left-hand side traces out a curve that is in the right-half plane. Thus,
there can never be an intersection so that there can never be an imaginary root. Thus there is
no way to get roots with a positive real part as L/υ varies and we conclude that all roots to
Equation D.4 must have negative real parts.

Appendix D.3
Case 3: m = 1

We finally turn to the most interesting case. So far, we have seen that perturbations in modes
of the form exp(imθ) where m ≠ 1 decay exponentially. For m = 1, the linear equation is

One could solve these linear equations explicitly to find an equation for the eigenvalues, λ.
However, the resulting equation is very complicated and offers little analytic insight. Thus,
rather take the difficult approach, we make the following observations. First, if K = 0, then
the eigenvalue equations are the same as for the m ≥ 2 case and we know that there are no
eigenvalues with positive real parts. Thus, we can ask if increasing K can cause some of
these “stable” eigenvalues to cross the imaginary axis. There are two ways that this can
happen: (i) a negative real eigenvalue becomes a positive real eigenvalue; or (ii) a pair of
complex conjugate eigenvalues crosses at an imaginary eigenvalue. Our numerical
simulations show that the alignment seems to always produce a stationary peak rather than a
peak that rotates at a constant velocity. This empirical fact suggests that the loss of stability
of the uniform state occurs through a real eigenvalue crossing zero as in the second case,
time periodic (rotating) solutions would be expected. Thus, we will ask if there is a value of
K such that there is a zero eigenvalue. Hence we must solve
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There is one differential equation and two algebraic conditions, so we cannot expect there to
be a nonzero solution for any K. However, picking the correct K will tell us the critical
value, K above which there will be alignment and below which there will be a uniform
distribution of filament angles. For notational simplicity, we write ψ1(s) = ψ0ϕ(s), σ ≔ (r1 +
r2)/υ, and W1(s) = A exp(−σs). Let

Then ϕ(s) satisfies

which with the boundary condition yields

Let

Then the unknown constant, D satisfies

or

We finally use the equation for ψ0 to obtain:
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Dividing this by ϕ0, we obtain an equation of the form:

A final bit of rearranging and use of the definition of D yields

(D.
5)

The lefthand side is strictly positive. The righthand side is a function of K which vanishes
when K = 0 and tends to infinity as K tends to 2υ/(Aμ3). Thus, for any parameters, we can
find a unique value of K, call it Kcrit solving Equation D.5:

(D.
6)

where the lefthand side of Equation D.5 is abbreviated as z. Since all of these functions and
constants are known, we can plot Kcrit as a function of any parameter, in particular, υ.

Figure D.1 shows the value of Kcrit as the velocity of the motors varies. If K > Kcrit, then
there is a real positive eigenvalue and the uniformly distributed orientation is unstable. That
is, we expect to see the beginnings of alignment along a single direction. First, note that in
all cases the curve has a single minimum value at a particular velocity. Kcrit goes to infinity
as υ goes to both 0 and infinity. We can interpret the curves as follows. Suppose for
example, that K = 0.6, r0 = 0.7, r1 = 0.1, r2 = 0.1. Then for a band of velocities between 0.05
and 0.35, K > Kcrit so that we expect to see alignment only when the velocity is in this
narrow band.

The position of the minimum of Kcrit is most dependent on r1 + r2 (compare black, green,
and blue curves). The parameter r0 tends to pull down the right part of the curve; large r0
makes Kcrit independent of υ for large velocities. This is because, when r0 is large, you
spend almost all your time on the filaments so the velocity doesn’t matter so much, there is
no “penalty” for going fast.

We can use MAPLE to compute an asymptotic approximation for Kcrit at the extremes of υ
→ 0 and υ → ∞. We find that as υ → 0,

and as υ → ∞,

The latter is independent of r1, which makes sense for when υ is very large, the probability
of ever falling off the filament is virtually zero and the key parameters are the waiting time
r0 and the depolymerization, r2. We note that for small r2, both of the asymptotic
expressions are proportional to r2; the more orientation “noise”, the larger is the spring
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strength needed to overcome it. The asymptotic expansions can be added together to get a
qualitatively good approximation of the true curve:

This simple function has a minimum at

which is a reasonable approximation of the minimum of Kcrit. What the minimum tells us is
the velocity for which the weakest motors (lowest value of K) could cause some alignment.
We emphasize that the analysis here is a linearized analysis, so that it does not necessarily
tell us about what happens far from the onset of the alignment instability. Thus, we cannot
necessarily infer the optimal velocity from this calculation; we can only determine the range
of velocities for which alignment is possible.

Appendix E. Kuramoto Model Similarities

(E.
1)

(E.
2)

Equations E.1 and E.2 (Equations 16 and 17 from the paper) bear a close resemblance to the
well-studied Kuramoto model for synchronization of a pool of globally coupled oscillators.

In the Kuramoto model, θi represents the phase of the ith oscillator, K the coupling strength,
ωi, the uncoupled frequencies of the oscillators and σξi the external noise. In the limit as N
goes to infinity, we write an equation for the density, ρ(θ, ω, t) of the oscillators:

Here g(ω) is the density for the distribution of oscillator frequencies. There are two sources
of disorder in the Kuramoto model, extrinsic noise, σ, and the heterogeneity of the
frequencies. In our model, the noise comes from the de/polymerization of the filaments and
since the new filaments occur at any angle, the noise does not appear locally as phase
diffusion as in the Kuramoto model. Both our equations and the Kuramoto equations have a
similar nonlinearity and both equations admit a completely disordered state as a solution. In
our analysis and the Kuramoto analysis, the key to the onset of order (synchronization in the
Kuramoto model) is that this disorder state becomes unstable as some parameter increases.
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Thus, while the two equations come from completely different motivating systems, they
bear a close resemblance simply because they both describe dynamics of systems which lie
on the circle.
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Figure 1. Description of geometry, method, parameters, and variables
(A) Cartoon depicting the biological interaction between actin filaments (red) and myosin II
motors (green). (B) Simplified depiction of interaction between two actin filaments and one
motor. (C) Idealized geometry for the motor-filament configuration used in our models. We
refer interested readers to the supplementary material for simulation details.
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Figure 2. Monte Carlo Simulations for two filaments and one motor
(A) Visual of one Monte Carlo simulation time course for motor movement (red) and the
resulting change in angle of the filament pair (black) without polymerization: (a) motor
attaches to the filament pair, (b) motor falls off before it reaches the end of the filaments, (c)
motor waits to attach, (d) motor falls off when it reaches the end of the filaments. (B) Plots
of order parameter (blue), and force generated (black) for one Monte Carlo simulation. (C)
Color evolution plot of the order parameter for 100 Monte Carlo simulations. Given enough
time, the two filaments become aligned by the motor. (D) Color evolution plot for the force
generated by the motor for the 100 Monte Carlo simulations in C. (E) Average order
parameter (blue) and average force generated (black) for the 100 Monte Carlo simulations
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shown in C and D. (F) One Monte Carlo simulation time course for motor movement (red)
and the change in angle of the filament pair (black) with polymerization: (a) motor attaches
to the filament pair, (b) motor falls off before it reaches the end of the filaments, (c) motor
waits to attach, (d) motor falls off when it reaches the end of the filaments, (e) one filament
depolymerizes and a new filament instantaneously polymerizes at a new angle. (G) Plots of
order parameter (blue), and force generated (black) for one Monte Carlo simulation with
polymerization. (H) Color evolution plot of the order parameter for 100 Monte Carlo
simulations. In contrast to C, the addition of polymerization impedes long term alignment of
the two filaments. (I) Color evolution plot for the force generated for the 100 Monte Carlo
simulations in H. (J) Average order parameter (blue) and average force generated (black) for
the 100 Monte Carlo simulations shown in H and I.
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Figure 3. Comparing effects of parameters on order with Monte Carlo simulations for two
filaments, one motor
(A) Distribution of the angle between the two filaments, ϕ, as the polymerization rate, r2,
increased. (B) Distribution of the angle between filaments as motor velocity increased. (C)
Average force as a function of velocity for different rates of attachment, r0, and detachment,
r1. (D) Order parameter (black) and average force (red) for the Monte Carlo simulations as
motor velocity varied. r0=0.4/s, r1=0.1/s, r2=0.05/s.
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Figure 4. Monte Carlo simulations and continuum solution
(A) Plot of the continuum solution’s calculation of <s2> (black) compared to the Monte
Carlo simulation calculation of <s2> (red) for r0=0.4/s, r1+r2=0.15/s. (B) Plot of the
continuum solution’s calculation of <s2> (black) compared to the Monte Carlo simulation
calculation of <s2> (red) for r0=1.4/s, r1+r2=0.6/s.
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Figure 5. Same behavior for multiple filament, multiple motor case, as previously for two
filaments, one motor
(A) Plot showing the dependence of the order parameter on the rate of detachment (r0) for
40 filaments and 20 motors. As expected, an increase in detachment resulted in a decrease in
order. r0=0.7/s, r2=0.05/s. (B) Plot examining the relationship between the relative densities
of motors to filaments. When the ratio of filaments to motors was the same, the same
amount of order is expected; however, the optimal motor velocity required to achieve
maximum alignment was independent of filament and motor density. r0=0.7/s, r1=0.1/s,
r2=0.05/s. (C) Plot showing the sensitivity of the order parameter of the system to the rate of
depolymerization (r2). Blue shows a larger discretization than green, with red being the most
fine discretization of sampling order.
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Figure 6. Monte Carlo Simulations: multiple filaments, multiple motors
(A) Order parameter (blue) and force generated (black) for one Monte Carlo simulation with
multiple filaments and multiple motors without polymerization. Note the same
characteristics as seen in Figure 2B. (B) Color evolution plot of order parameter for 100
Monte Carlo simulations without polymerization. (C) Color evolution plot for force
generated by the 100 Monte Carlo simulations shown in B. (D) The average order parameter
(blue) and average force generated (black) by the 100 Monte Carlo simulations in B and C.
(E) Order parameter (blue) and force generated (black) for one Monte Carlo simulation with
polymerization. (F) Color evolution plot of order parameter for 100 Monte Carlo simulations
with polymerization. (G) Color evolution plot for force generated by the 100 Monte Carlo
simulations shown in F. (H) The average order parameter (blue) and average force generated
(black) by the 100 Monte Carlo simulations in F and G.
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Figure 7. Effects of motor velocity and rate of polymerization (r2) on multiple filament and
multiple motor alignment
(A) The distribution of the difference in angle between all filaments compared to filament
#1. As motor velocity decreased from high (blue) to low (green), there was an intermediary
velocity which caused the sharpest peak in the distribution, and thus the most alignment
(red). (B) The distribution of the difference in angle between all filaments compared to
filament #1. As polymerization rate increased from low (red) to high (blue), note the quick
flattening of the distribution peak which suggested a phase transition dependent on the rate
of polymerization.
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Figure 8. Examining the relationship between polymerization, motor velocity, order, and force
with the continuum model
(A) Contour plot for the continuum equation’s solutions show the domains of high and low
order as a result of the polymerization rate (r2) and the motor velocity (v). (B) Solutions
predicted from the continuum model for force and order as the rate of polymerization
increases. We observed that there exists a region where two differently ordered
morphologies generate the same force.
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Figure 9. Introducing complexities to the model yields the same results
(A, A') The model allowed motors to stretch as far as necessary in order to stay attached to
the filament pair; however, in vivo, it is more likely that the motor is limited in its stretch.
We restricted the distance the motors can stretch which reduced the order of the system. (B,
B') We assumed filaments had fixed lengths of one for our Monte Carlo simulations. We
introduced complexity by varying the fixed length, which resulted in a decrease in order for
a shortened filament length. To increase complexity even further, we considered filaments
with random lengths that had an average length of one and found both the fixed length of
one and random lengths with average length one, had the same order.
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Figure B.1. Examining the relationship between attachment and detachment rates on optimal
motor velocity for maximizing force
The curves depict the maximal values of force (Equation 28) for two filaments and one
motor with varying rates of detachment and attachment, and the resulting optimal motor
velocity. The green curve depicts a small rate of detachment (r1=0.2/s), the red curve a
medium rate of detachment (r1=0/s), and the blue curve a high rate of detachment (r1=5/s).
For the curves we do not consider the rate of polymerization, but we are able to deduce the
relationship between all the variables that affect force.
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Figure D.1. Determining how Kcrit is a function of motor velocity
Kcrit, shown in Equation 41 depends on all the variables of the model: motor velocity, and
rates of attachment, detachment, and polymerization. The curves specifically show how Kcrit
depends on motor velocity, but also how it depends on the three variable rates. The blue
curve shows a low rate of attachment (r0=0.7), a low rate of detachment (r1=0.1), and a high
rate of polymerization (r2=0.1). The rest of the curves are as follows: green (r0=0.7 (low),
r1=0.4 (high), r2=0.025 (low)), black (r0=0.7 (low), r1=0.1 (low), r2=0.025 (low)), and red
(r0=2.8 (high), r1=0.1 (low), r2=0.025(low)). Notice that the minimum value of Kcrit
depends most on the sum of the rate of detachment and polymerization. The asymptotic
approximation yields the range of motor velocities for which maximal alignment is
expected.
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