
Impact of Endothelium Roughness on Blood Flow

Sangwoo Park1, Marcos Intaglietta2, and Daniel M. Tartakovsky1

1Department of Mechanical and Aerospace Engineering, University of California, San Diego,
9500 Gilman Dr., La Jolla, CA 92093
2Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla,
CA 92093

Abstract
Cell free layer (CFL), a plasma layer bounded by the red blood cell (RBC) core and the
endothelium, plays an important physiological role. Its width affects the effective blood viscosity
as well as the scavenging and production of nitric oxide (NO). Measurements of the CFL and its
spatio-temporal variability are highly uncertain, exhibiting random fluctuations. Yet traditional
models of blood flow and NO scavenging treat the CFL’s bounding surfaces as deterministic and
smooth. We investigate the effects of the endothelium roughness and uncertain (random) spatial
variability on blood flow and estimates of effective blood viscosity.
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1 Introduction
The distribution of nitric oxide (NO) in the microcirculation is determined, in large part, by
the balance between NO production and consumption in the blood and tissue compartments.
A key mechanism of this balance is the gradient of NO concentration at the interface
between blood and tissue, a complex sub-microscopic region generally free of red blood
cells (RBCs). It is termed the “cell free layer” (CFL). The CFL is bounded by the surface of
the endothelium and the surface of the moving RBC column, a configuration that can be
modeled as a two layer system. Analysis of this model can be approximated by assuming a
Newtonian fluid and a parabolic profile velocity within the CFL which mergers into plug
flow and non-Newtonian flow properties in the central RBC core (17, 18). Several studies
used this approach to estimate the velocity gradient in the CFL and to estimate shear stress
at the vessel wall. The level of shear stress determines the rate of NO production by the
endothelium (5). The width of the CFL modulates the rate of NO scavenging by RBCs, since
it determines the distance from the source of NO to its major sink on the blood side (2, 6, 18,
22).

Shear stress is determined by the effective viscosity, the velocity gradient, the nature of the
flow and the flow boundary geometry. NO bioavailability and oxygen transfer is determined
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by the shear stress, flow conditions, hematocrit (Hct) and the CFL width. The relation
between NO production and shear stress has been analyzed experimentally and theoretically
(13, 15). Theoretical studies reveal that the CFL width and shear stress are primary factors in
determining NO bioavailability in the vessel wall (19). These studies assume that the
interface between the RBC column and plasma is a smooth deterministic surface. However
this surface is formed by RBC that deform and aggregate forming an irregular boundary (8,
9), affecting flow and shear stress on the endothelium. Likewise, the endothelium surface
exhibits (random) spatial variability.

The endothelium is exposed to a flow field that transmits a distribution of shear stresses to
its surface. These forces have a heterogeneous spatial distribution evidenced by the
difference of response levels even in contiguous cells are often noted in neighboring cells.
This variability was proposed (3) to be in part the consequence of the cell surface geometry.
The latter was quantified in living endothelium by means of atomic force microscopy
measurements (1).

A deterministic characterization of this undulating surface (16), which treated its profile as a
sinusoid, relied on two parameters: the length in flow direction divided by the width
transverse to flow, and the height-to-length ratio. These parameters were used to determine
the maximum shear stress and shear stress gradient developed by flow by mean of an
analytic linearized solution to the governing equations. The analysis in (16) revealed that
shear stress gradients at the surface of the endothelium are very large, a consequence of the
small dimension over which changes occur.

The topographic variability of the endothelial surface is not well established, rendering their
deterministic descriptions problematic. It is known that the endothelial surface is affected by
both blood flow and the physiological condition. Various factors, such as endothelial
swelling and dehydration (14) and endothelial contractility (7), are modulators of the surface
topography that remain unexplored. The study (1) showed that flow also changes the surface
from a smooth and uniform sinusoid-like variation to the appearance of fibrous structures
embedded in the surface. Such a variety of features suggests that the surface be described by
means of stochastic variables and treated as a random boundary characterized by a
correlation length (of its variability) in the direction of flow, a mean perturbation height and
a standard deviation of this mean height.

Spatial variability of the CFL width is highly uncertain (8, 9). To quantify the impact of this
uncertainty on measured and observed flow characteristics (e.g., shear stress on endothelium
walls), we treat the CFL surface as a random field. A problem formulation, which describes
blood flow in a flow chamber with randomly varying aperture, is presented in Section 2. In
Section 3 we use a Karhunen-Loève expansion (e.g., 12) as a means of statistical
parameterization of this random boundary. A numerical algorithm for solving the Stokes
flow equations in the resulting random domain is described in Appendices A and B.
Biophysical implications of our analysis are discussed in detail in Section 4 and summarized
in Section 5.

2 Problem Formulation
Consider viscous (low Reynolds number) steady-state blood flow between two plates, one of
which is smooth (deterministic) and the other is rough (random). Let μ denote the kinematic
viscosity of blood. Then flow velocity u = (u1, u2)T and pressure distribution p at every point
x in the flow domain D are governed by the Stokes and continuity equations,

(1)
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The lower boundary, s(x1), of the flow domain D = {(x1, x2): 0 ≤ x1 ≤ Lx, s(x1) ≤ x2 ≤ Ly} is
uncertain. This uncertainty is conceptualized by allowing s to vary randomly in space, i.e.,
by treating it as a random field s(x1 ω) where ω ∊ Ω indicates a realization (“coordinate”) in
probability space Ω. A typical realization of the random flow domain D(ω) is shown in
Figure 3a below.

The flow is driven by an externally imposed pressure gradient, such that

(2a)

The normal components of the pressure gradient on the two walls is zero,

(2b)

We assume the bounding surfaces to be impermeable,

(3a)

and impose no-slip boundary conditions,

(3b)

Here n and s denote the unit normal and tangential vectors to the random surface s(x1,ω),
respectively.

3 Statistical Representation of Random Surfaces
Let us employ the Reynolds decomposition, s(x1, ω) = s ̄(x1) + s’(x1, ω), to represent the
random surface s(x1,ω) as the sum of its ensemble mean s ̄(x1) and zero-mean fluctuations s’
(x1,ω) about this mean. We assume that available data, such as that reported in (9), are
sufficient to estimate the relevant statistics of s(x1,ω), specifically its mean s ̄, standard
deviation σs, and a two-point correlation function ρs(x1, y1). Then the random field s(x1,ω)
can be represented via a Karhunen-Loève expansion,

(4)

Here Ym(ω) (m ≤ 1) are independent random variables, and λm and fm(x1) are eigenvalues
and eigenfunctions of the Fredholm equations,

(5)

For an exponential correlation function,

(6)

with the correlation length ls > 0, the eigenvalue problem in Eq. 5 admits an analytical
solution (e.g., 11),
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(7)

and

(8)

Here the constants ωm (m ≥ 1) are solutions of the transcendental equation

.

Practical implementation of Karhunen-Loève expansions requires one to truncate the infinite
summation in Eq. 4. The resulting truncation error depends on the correlation length ls. The
larger the correlation length, the fewer terms in Eq. 4 are necessary to represent the random
surface s1(x1, ω) with a given degree of accuracy. Figure 1 shows how the decreasing
correlation length ls affects the decay of the eigenvalues λm for the exponential correlation
function in Eq. 6.

Within the statistical framework adopted here, the endothelium roughness is characterized
by two parameters: the standard deviation σs and the correlation length ls. Typical
realizations of the uncertain (random) endothelium surface s(x1, ω) for several values of the
standard deviation σs and the correlation length ls are shown in Figure 2.

A numerical algorithm for solving the Stokes flow equations in the resulting random domain
is described in Appendix A. It follows a procedure introduced in (10, 21, 24) and consists of
two steps. First, the random flow domain is mapped onto a deterministic domain with
smooth boundaries (Section A.1), the transformed Stokes equations become stochastic.
Second, a generalized polynomial chaos expansion (23) is used in Section A.3 to solve these
equations.

4 Simulation Results and Discussion

The mean p̄(x) and variance  of pressure p(ξ, ω) were computed as

(9)

where  is a set of multidimensional orthogonal polynomials and  are
corresponding deterministic expansion coefficients, both of which are introduced in Section
A.3. The identical procedure was used to compute the means and variances of the velocity
components u1(ξ, ω) and u2(ξ, ω). These means and variances serve respectively to predict
the average behavior of, and to quantify predictive uncertainty for, blood pressure and
velocity (Section 4.1) and shear stress on the endothelium (Section 4.2). In Section 4.3 we
investigate the impact of endothelium roughness on the estimation of effective blood
viscosity.

4.1 Blood pressure and velocity
Figure 4 exhibits the pressure statistics resultant from uncertain geometry of the
endothelium wall s(x1). The mean pressure p̄ in Figure 4a decreases linearly from left to
right between the two pressure values imposed on the inlet and outlet of the flow chamber.
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In other words, the mean pressure gradient is constant and unaffected by the endothelium
roughness. The uncertain geometry of the endothelium manifests itself in pressure
fluctuations about the mean, as quantified by the standard deviation σp in Figure 4b.
Predictive uncertainty increases with the distance from the inlet and outlet, where pressure is
certain, reaching its maximum in the middle of the flow chamber (ξ1 = Lx/2). It also
decreases with the distance from the uncertain endothelium surface (ξ2 = 0).

Figure 5 highlights these observations further by presenting several crosssections of the
standard deviation of pressure σp. In particular, it reveals that the dependence of σp on the
distance from the uncertain endothelium surface is relatively mild (Figure 5b). This
dependence becomes more pronounced as the degree of uncertainty about the endothelium
geometry (σs) increases.

The mean flow velocity ū and the standard deviation σu1 of the horizontal component of the
flow velocity u1 induced by randomly fluctuating pressure gradient ▽ξp are shown in Figure
6. The flow is horizontal in the mean (Figure 6a). The no-slip boundary conditions at the
walls imply that the horizontal component of flow velocity at the walls is known with
certainty (u1 = 0 at ξ2 = 0 and ξ2 = 1), so that σu1 = 0. Predictive uncertainty (σu1) increases
with the distance from the walls, reaching its maximum in the middle of the flow chamber,
ξ2 = 0.5.

Figure 7 reveals how the endothelium roughness (as quantified by σs and ls) affects the mean
flow velocity ū. The overall effect is to reduce the mean flow velocity relative to its
counterpart corresponding to the assumption of smooth endothelium (σs = 0). For a given σs,
the mean velocity decreases as ls becomes smaller, i.e., the endothelium surface becomes
more irregular.

4.2 Flow rate and wall shear stress
The decrease in mean velocity with increasing endothelium roughness (Figure 7) translates

into the corresponding decrease in the volumetric flow rate . It is well known
that, for a given pressure gradient, Q decreases as the wall roughness increases. Figure 8
quantifies this effect in terms of the observable statistics of endothelium roughness, σs and
ls. The flow rate decreases as the roughness amplitude (standard deviation) σs increases and/
or the correlation length ls decreases.

Another quantity of physiological significance is the shear stress on the endothelium wall
s(x1, ω),

(10)

Spatial variability of the mean, , and standard deviation, στ(ξ1), of the endothelium
shear stress τw is shown in Figure 9 for several degrees of endothelium roughness (σs and ls).
The mean shear stress  increases with both the magnitude of the endothelium fluctuations
(its standard deviation σs) and its correlation length ls. Predictive uncertainty (as quantified
by στ) increases with σs anddecreases with ls. Boundary effects (deviation from the fully-
developed flow regime, wherein the shear stress statistics are constant) extend further inside
the flow chamber as σs increases and/or ls decreases.
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4.3 Effective blood viscosity
A classical treatment of blood flow in arteries whose walls are modeled as smooth surfaces
relies on the Poiseuille law to relate the volumetric flow rate Q to the pressure gradient dp/
dx,

(11)

Accounting for (random) endothelium roughness requires one to replace the Poiseuille law
in Eq. 11 with its “effective” or “equivalent” counterpart,

(12)

wherein μe denotes the effective viscosity.

Figure 10 demonstrates that μe, the blood viscosity inferred from in vivo experiments via the
Poiseuille law depends not only on blood properties but also on the statistical parameters
characterizing the endothelium roughness (σs and ls). The effective viscosity μe increases as
σs increases and/or ls decreases.

5 Conclusions
We developed a computational framework to quantify the impact of uncertainty in the cell
free layer (CFL) width on measured and observed flow characteristics (e.g., shear stress on
endothelium walls). This is accomplished by treating the CFL surface as a random field with
zero mean, standard deviation σs and correlation length ls. This surface is represented via a
Karhunen-Loève expansion. The Stokes equations defined on the resultant random domain
are solved in two steps. First, the random flow domain is mapped onto a deterministic
domain with smooth boundaries, which renders the transformed Stokes equations stochastic.
Second, a generalized polynomial chaos expansion is used to solve these equations.

Our analysis leads to the following major conclusions.

• The mean pressure gradient is constant and unaffected by the endothelium
roughness. Uncertainty in (randomness of) the endothelium surface manifests itself
in pressure fluctuations about the mean, as quantified by the standard deviation σp.

• The overall effect of endothelium roughness is to reduce the mean blood flow
velocity relative to its counterpart corresponding to the assumption of smooth
endothelium (σs = 0). For a given σs, the mean velocity decreases as ls becomes
smaller, i.e., the endothelium surface becomes more irregular.

• The decrease in mean velocity with increasing endothelium roughness translates
into the corresponding decrease in the volumetric flow rate. The volumetric flow
rate decreases as the roughness amplitude (standard deviation) σs increases and/or
the correlation length ls decreases.

• The mean shear stress increases with both the magnitude of the endothelium
fluctuations (its standard deviation σs) and its correlation length ls. Boundary
effects (deviation from the fully-developed flow regime, wherein the shear stress
statistics are constant) extend further inside the flow chamber as σs increases and/or
ls decreases.
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• The blood viscosity, inferred from in vivo experiments via the Poiseuille law,
depends not only on blood properties but also on the statistical parameters
characterizing the endothelium roughness (σs and ls). The effective blood viscosity
increases as σs increases and/or ls decreases.
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Appendix

A Solving Stokes Equations on Random Domain
A two-step approach to solving differential equations on random (uncertain) domains is
described and implemented below.

A.1 Stochastic mapping onto a deterministic domain
Let us introduce a new coordinate system (ξ1, ξ2), in which the original stochastic flow
domain D takes the form of a deterministic rectangle E = {(ξ1, ξ2) : 0 ≤ ξ1 ≤ Lx, 0 ≤ ξ2 ≤
Ly}. A mapping D → E is accomplished by a transformation of coordinates ξi = ξi(x1, x2 (i =
1, 2). For the relatively simple flow domain under consideration, such a mapping can be
defined analytically, for example, as ξ1 = x1 and ξ2 = (Ly − x2)/[Ly − s(x1, ω)]. For more
complex geometries, a stochastic mapping ξi = ξi(x1, x2) (i = 1, 2) and its inverse xi = xi(ξ1,
ξ2) (i = 1, 2) are constructed (e.g., 10, 24) by solving Laplace’s equations,

(13)

subject to the boundary conditions

(14a)

(14b)

Uncertainty (randomness) in domain geometry, s(x1, ω), manifests itself in the mapping
problem through the boundary condition in Eq. 14. To facilitate numerical solution of the
mapping problem given by Eqs. 13-14, one has to truncate the infinite series in the
Karhunen-Loève expansion [4] after K terms. For a given accuracy, the smaller the
correlation length ls, the higher the value of K (see, e.g., 23, 24).

Solutions of Eqs. 13-14 can now be approximated by a series

(15)

Substituting Eq. 15 into Eq. 13 and taking a Galerkin projection yields 2(K + 1) Laplace’s
equations for the coefficients ,
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(16)

For k = 0, Eqs. 16 are subject to boundary conditions

(17a)

(17b)

For k ≥ 1, these boundary conditions are replaced with their homogeneous counterparts,

(17c)

(17d)

except for the boundary conditions

(17e)

We use a Chebyshev spectral method to solve Eqs. 16-17. A typical outcome of such
calculations is shown in Figure 3 for one realization of the random surface s(x1, ω).

A.2 Transformed Stokes equations
The procedure outlined above enables one to compute, among other things, a transformation
Jacobian,

(18)

For an arbitrary twice-differentiable function f(x) defined on D,

(19a)

and

(19b)

where i and j are the normal vectors of the (ξ1, ξ2) coordinate system. The contravariant
components F1 and F2 of the transformed vector F(ξ) are given by

(19c)

with

Park et al. Page 8

J Theor Biol. Author manuscript; available in PMC 2013 May 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(19d)

Using Eqs. 19 to rewrite the Stokes Eqs. 1 in the (ξ1, ξ2) coordinate system, we obtain

(20a)

and

(20b)

The Stokes and continuity Eqs. 1 imply that . When written in the (ξ1, ξ2) coordinate
system, this equation takes the form

(21)

The transformed flow Eqs. 19-21 are stochastic, i.e., have random co-efficients. The theory
of stochastic differential equations defined on deterministic domains is relatively mature.
Their solutions can be obtained with a variety of well-established techniques, including
perturbation-based moment equations (20), stochastic finite elements (4), and stochastic
collocation methods (11, and the references therein). In the subsequent numerical
simulations we employ a stochastic finite element method, which is also known as the
generalized polynomial chaos expansion (24).

A.3 Solution of stochastic flow equations

Let  denote a set of multidimensional orthogonal polynomials of the random
vector Y(ω) (Y1, …, YK)T of the K independent random variables Y1(ω), …, YK(ω)
introduced in Eqs. 4 and 15. The polynomials are chosen to have the ensemble means 
and  (k ≥ 1) and satisfy the orthogonality condition

(22)

where δij is the Kronecker delta and W(Y) is a weight function corresponding to a given
polynomial type.

The size of the polynomial set, M, is determined by the “stochastic dimension” K and the
order P of polynomials Ψk, according to

(23)

Polynomial chaos expansions (PCEs) represent a system state, e.g., pressure p(ξ, ω), a
random field whose ensemble statistics are to be determined, as a series
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(24)

Similar expansions are employed for the other two state variables, u1(ξ, ω) ≡ u(ξ, ω) and
u2(ξ, ω) ≡ v(ξ, ω). Following the Galerkin projection procedure outlined in the Appendix,
we obtain a set of deterministic equations for the coefficients  and

,

(25)

(26)

(27)

(28)

Here , , and , , , , ,  are coefficients in the similar
expansions of B, C, D, E, F, and G, respectively.

Algebraic Eqs. 25-28 were solved by using a spectral collocation method.

B Stochastic Galerkin Method
A good introduction to stochastic finite elements can be found in (4). Here we provide a
brief description. Let L(ξ, ω; u) denote a stochastic differential operator acting on u(ξ, ω).
Consider a stochastic partial differential equation (PDE)

(29)

where f is a (random) source function. Substituting the polynomial chaos expansion of u, Eq.
24, into Eq. 29 yields

(30)

Multiplying both sides of Eq. 30 with ψi and taking the mean, while accounting for the
orthogonality condition in Eq. 22, yields a Galerkin projection onto the i-th basis polynomial
ψi,
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(31)

Here the inner product 〈a, b〉 between two functions a(Y) and b(Y) is defined in terms of the
ensemble average  in Eq. 22. Equation 31 gives rise to a system of M + 1 deterministic
PDEs for  (k = 0, …, M).
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Figure 1.
Decay of eigenvalues λn with n for several correlation lengths ls.
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Figure 2.
Typical realizations of the uncertain (random) endothelium surface s(x1, ω) for several
values of standard deviation σs and correlation length ls.
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Figure 3.
(a) A typical realization of the random flow domain D(ω) and (b) its mapping onto a
deterministic domain.
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Figure 4.
(a) Average pressure p̄ and (b) deviations from the mean (standard deviation) σp.
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Figure 5.
Standard deviation of pressure, σp, along several horizontal cross-sections ξ2 = c (a) and
vertical cross-section ξ1 = Lx/2 (b).
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Figure 6.
(a) Average flow velocity ū and (b) deviations from the mean of the horizontal component
of the flow velocity (its standard deviation) σu1.
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Figure 7.
Mean velocity profiles ū(Lx/2, ξ2) for several degrees of endothelium roughness (σs and ls).
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Figure 8.
The volumetric flow rate, normalized with its counterpart in the flow chamber with smooth
walls, as a function of the statistical parameters σs and ls characterizing endothelium
roughness.
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Figure 9.
Spatial variability of the mean shear stress  and its standard deviation στ(ξ1, ξ2)
along the endothelium wall ξ2 = 0 for several degrees of endothelium roughness (σs and ls).
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Figure 10.
Effective blood viscosity μe, normalized with its counterpart corresponding to the smooth
wall approximation, as a function of the endothelium roughness parameters σs and ls.
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