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Age-related cognitive decline is likely promoted by accumulated brain injury due to chronic
conditions of aging, including neurodegenerative and vascular disease. Since common neuronal
mechanisms may mediate the adaptation to diverse cerebral insults, we hypothesized that
susceptibility for age-related cognitive decline may be due in part to a shared genetic network. We
have therefore performed a genome-wide association study using a quantitative measure of global
cognitive decline slope, based on repeated measures of 17 cognitive tests in 749 subjects from the
Religious Orders Study. Top results were evaluated in three independent replication cohorts,
consisting of 2,279 additional subjects with repeated cognitive testing. As expected, we find that
the Alzheimer’s disease (AD) susceptibility locus, APOE, is strongly associated with rate of
cognitive decline (PDISC=5.6×10−9; PJOINT=3.7×10−27). We additionally discover a variant,
rs10808746, which shows consistent effects in the replication cohorts and modestly improved
evidence of association in the joint analysis (PDISC=6.7×10−5; PREP=9.4×10−3;
PJOINT=2.3×10−5). This variant influences the expression of two adjacent genes, PDE7A and
MTFR1, which are potential regulators of inflammation and oxidative injury, respectively. Using
aggregate measures of genetic risk, we find that known susceptibility loci for cardiovascular
disease, type II diabetes, and inflammatory diseases are not significantly associated with cognitive
decline in our cohort. Our results suggest that intermediate phenotypes, when coupled with larger
sample sizes, may be a useful tool to dissect susceptibility loci for age-related cognitive decline
and uncover shared molecular pathways with a role in neuronal injury.

INTRODUCTION
Decline in cognitive performance occurs with advancing age and is associated with a variety
of common, age-related chronic medical conditions. Alzheimer’s disease (AD) is the most
prevalent cause of dementia (Reitz et al., 2011a); however, many other common adult
illnesses, including type II diabetes (Croxson and Jagger, 1995; Grodstein et al., 2001;
Reijmer et al., 2010), cerebrovascular disease (Desmond et al., 2000; Pendlebury and
Rothwell, 2009) as well as other cardiovascular risk factors (Desmond et al., 1993; Warsch
and Wright, 2010), and inflammatory disorders (Lucin and Wyss-Coray, 2009) have been
implicated in age-related cognitive decline. Based on autopsy series from community-based
cohorts, most individuals with dementia have multiple contributory pathologies at the time
of death (Neuropathology Group, 2001; Sonnen et al., 2007; Troncoso et al., 2008). It is
likely that diverse forms of brain injury interact to accelerate cognitive decline. For example,
it has been suggested that vascular-related brain injury may promote the development of AD
pathology or, less directly, the clinical manifestation of AD-related cognitive decline
(Launer et al., 2008; Schneider and Bennett, 2010; Warsch and Wright, 2010). Results from
a variety of experimental paradigms for the study of neuronal injury and repair indicate that
overlapping cellular and molecular mechanisms likely mediate the response to a diversity of
central nervous system insults (Bishop et al., 2010; Cho et al., 2010; Lucin and Wyss-Coray,
2009; Martinez-Vicente and Cuervo, 2007; Ross and Poirier, 2004). Besides the local
reactions to brain lesions, the ability of neuronal networks to adapt to and compensate for an
accumulated burden of injury, sometimes referred to as cognitive reserve (Stern, 2009),
likely has a substantial impact on the trajectory of cognitive decline. Studies of elder twins
suggest substantial heritability in cognitive performance in late life (McClearn et al., 1997;
Swan et al., 1990), and we hypothesize that a core genetic network might therefore impact
susceptibility for rate of age-related cognitive decline.

Recently, genome-wide association studies have proven a successful strategy for discovering
susceptibility genes for complex human traits, including neurologic disorders, such as AD
(Bertram and Tanzi, 2009). Besides the apolipoprotein E locus (APOE), these studies have
identified common variants in ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1,
MS4A4/MS4A6E, and PICALM as associated with AD susceptibility (Harold et al., 2009;
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Hollingworth et al., 2011; Lambert et al., 2009; Naj et al., 2011; Seshadri et al., 2010).
While elucidating the functional impact of disease-associated genetic variants remains an
active area of investigation, there is evidence that these genes may have important roles
beyond AD pathogenesis in affecting other disorders potentially relevant to cognitive
decline. For example, in addition to the well-known effect of the APOE locus in promoting
AD risk, this locus has also been associated with dyslipidemia, cardiovascular disease, and
increased cerebral infarcts (Eichner et al., 2002; Kim et al., 2003; McCarron et al., 1999).
Similarly, polymorphisms in the CR1 gene, encoding a complement receptor, have
previously been associated with susceptibility for infectious disease, particularly malaria
(Cockburn et al., 2004; Rowe et al., 1997). We have shown that polymorphisms in both
APOE (Wilson et al., 2002a, 2002b) and CR1 (Chibnik et al., 2011) have a measurable
impact on age-related cognitive decline, including in subjects without dementia, and further,
that these associations are mediated in part by an effect on promoting amyloid plaque
pathology (Bennett et al., 2005a; Chibnik et al., 2011).

The Religious Orders Study (ROS) is following more than 1,100 older Catholic nuns, priests
and brothers who have completed up to 16 years of annual cognitive testing. Here, we have
leveraged available genotyping data for 749 subjects of European ancestry with longitudinal
cognitive data to conduct a genome scan for loci associated with the rate of age-related
cognitive decline. We report efforts to replicate the best results using data from two
complementary, community-based studies, the Rush Memory and Aging Project (MAP) and
Chicago Health and Aging Project (CHAP), as well as a predominantly clinic-derived
subject sample from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and offer
evidence in support of replication for one variant. Finally, we explore whether known
genetic susceptibility factors associated with other illnesses that are known to influence the
risk of dementia, such as AD, cardiovascular disease and type II diabetes, also affect age-
related cognitive decline.

METHODS
Subjects

Subjects are participants from four longitudinal studies, which are each described below.
The number of study subjects with genotyping data, included in the genetic analyses, are
described in the Genotyping Methods sub-section, and also summarized in Table 1.

The Religious Order Study (ROS), started in 1994, enrolled Catholic priests, nuns and
brothers, aged 53 or older from about 40 groups in 12 states. Since January 1994, 1,132
participants completed their baseline evaluation, of whom 1,001 are non-Hispanic white,
and the follow-up rate of survivors of exceeds 90%. Participants were free of known
dementia at enrollment and agreed to annual clinical evaluations (Bennett et al., 2006a).
More detailed description of the ROS can be found in prior publications (Bennett et al.,
2006a).

The Rush Memory and Aging Project (MAP), started in 1997, enrolls older men and women
from assisted living facilities in the Chicago area with no evidence on dementia at baseline.
Since October 1997, 1285 participants completed their baseline evaluation, of whom 1118
were non-Hispanic white. The follow-up rate of survivors of exceeds 90%. Similar to ROS,
participants agreed to annual clinical evaluations. More detailed descriptions can be found in
previous studies (Bennett et al., 2006a, 2005b).

The Chicago Health and Aging Project (CHAP) is a biracial (63% African American, 37%
non-Hispanic European American) longitudinal population study of all participating
residents 65-years-of-age-and-older of four adjacent neighborhoods of the south side of
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Chicago that examines risk factors for cognitive decline and Alzheimer’s Disease (AD).
Participation was 78.6% of all community residents at baseline and 80% to 85% retention of
survivors at follow-up. The study began in 1993 and enrolls successive age cohorts of
community residents as they attain the age of 65 years. To date, 10,712 subjects have
contributed data. The subjects included in these analyses are a stratified random sample of
European American subjects. More details may be found in prior publications (Bienias et al.,
2003; Evans et al., 2003).

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a 5-year public-private partnership for the study
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The Principal
Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and University
of California – San Francisco. ADNI is the result of efforts of many co- investigators from a
broad range of academic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The cohort includes 800 adults,
ages 55 to 90, to participate in the research – approximately 200 cognitively normal older
individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. Data used in the preparation of this
article were obtained from the ADNI database (adni.loni.ucla.edu). For up-to-date
information, see www.adni-info.org.

Clinical and cognitive evaluation
Supplementary Table 1 summarizes the specific longitudinal cognitive testing data that was
available within our discovery and replication cohorts. The ROS and MAP studies annually
administer 21 cognitive tests, of which 17 tests in common were incorporated into summary
measures of 5 domains of cognitive function--episodic memory (7 tests), visuospatial ability
(2 tests), perceptual speed (2 tests), semantic memory (3 tests) and working memory (3
tests)--as previously described (Bennett et al., 2002, 2005b; Wilson et al., 2002c, 2005). The
tests from each area of cognition were converted to z-scores, using the mean and SD from
the baseline evaluation of all participants, and averaged to yield summary measures of each
area of cognitive function as previously described (Bennett et al., 2002, 2005b; Wilson et al.,
2002c, 2005). The global cognition summary measure used in our primary analyses was
computed by averaging the 5 summary scores for each cognitive subdomain. Summary
measures have the advantage of minimizing floor and ceiling effects, and other sources of
random variability. A valid summary score required that at least half of the component
scores be present. The global cognition summary measures in the CHAP and ADNI cohorts
were constructed using identical procedures as ROS and MAP on the available longitudinal
testing data (Supplementary Table 1). In CHAP, cognitive testing included a subset of 3
instruments from ROS and MAP. In ADNI, 8 tests overlapped with ROS and MAP, and we
additionally incorporated available longitudinal data from 11 other tests.

The clinical diagnoses of dementia and AD were made following the recommendations of
the joint working group of the National Institute of Neurologic and Communicative
Disorders and Stroke and the AD and Related Disorders Association (McKhann et al.,
1984), as previously described in detail (Bennett et al., 2006b). Mild cognitive impairment
(MCI) referred to those individuals rated as cognitively impaired by the neuropsychologist
but not demented by the examining physician, as previously described (Bennett et al., 2002).
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Statistical modeling of cognitive decline
Mixed effects models were used to characterize individual paths of change in the cognitive
summary measures, including terms for age, sex, and years of education as fixed effects
(Laird and Ware, 1982; Wilson et al., 2000, 2002c). In this approach, each individual’s path
is assumed to follow the mean path of the group except for random effects that cause the
initial level of function (i.e. intercept) to be higher or lower and the rate of change (i.e.
slope) to be faster or slower. These random effects are assumed to follow a bivariate normal
distribution. The random and fixed effects were then used to estimate individual trajectories
of cognitive decline. Residual, individual cognitive decline slope terms were extracted from
the mixed models, after adjustment for the effects of age, sex, and education. Person-
specific, adjusted residual slopes were then used as a quantitative outcome phenotype for the
genetic association analyses. These estimates equate to the difference between an
individual’s slope and the predicted slope of an individual of the same age, sex and
education level. This method, including adjustment for age, sex and education was used for
all four cohorts.

Genotyping
DNA from ROS and MAP subjects was extracted from whole blood, lymphocytes or frozen
post-mortem brain tissue and genotyped on the Affymetrix Genechip 6.0 platform at either
the Broad Institute’s Center for Genotyping (n=1,204) or the Translational Genomics
Research Institute (n=674). These two sets of data underwent the same quality control (QC)
analysis in parallel, and genotypes were pooled. Only self-declared non-Hispanic
Caucasians were genotyped to minimize population heterogeneity. The PLINK toolkit
(http://pngu.mgh.harvard.edu/~purcell/plink/) (Purcell et al., 2007) was used to implement
our QC pipeline. We applied standard quality control measures for subjects (genotype
success rate >95%, genotype-derived gender concordant with reported gender, excess inter/
intra-heterozygosity) and for single nucleotide polymorphisms (SNPs) (HWE p > 0.001;
MAF > 0.01, genotype call rate > 0.95; misshap test > 1×10−9). Subsequently,
EIGENSTRAT (Price et al., 2006) was used to identify and remove population outliers
using default parameters. At the conclusion of the QC pipeline, data on 672,266 SNPs was
available for 1,709 total ROS and MAP subjects. 749 ROS subjects and 825 MAP subjects
with longitudinal cognitive data and high-quality genotyping data were available for the
discovery and replication analyses, respectively (Table 1).

For the replication analysis, the top 50 independent SNPs (P<10−4, minor allele frequency >
10%) based on the ROS discovery stage analysis were extracted from the quality-controlled
MAP genome-wide dataset (above). The generation and quality control procedures for the
ADNI genotyping dataset was previously described (Biffi et al., 2010). 717 ADNI subjects
with longitudinal cognitive testing data and genotypes were available for our analyses.
CHAP subject DNA was extracted from whole blood and genotyping of top SNPs from the
discovery stage genome-wide scan using matrix-assisted laser desorption-ionization time-of-
flight mass spectrometry on a MassARRAY platform (Sequenom). After excluding subjects
for failed genotyping exceeding the 10% threshold, 414 individuals remained for subsequent
analysis (genotyping rate in these subjects was >99%). All SNP allele frequencies satisfied
Hardy-Weinberg equilibrium (p > 0.001). For evaluation of AD susceptibility alleles and for
the development of the aggregate genetic risk scores, SNP genotypes in ROS and MAP were
imputed using MACH software (version 1.0.16a) (Scott et al., 2007) and HapMap release 22
CEU (build 36) (Frazer et al., 2007) as a reference.

Genome-wide association analysis
The genome-wide association analysis in the ROS discovery cohort, as well as the targeted
association analysis of the top 50 SNPs in the MAP, CHAP, and ADNI replication cohorts,
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were performed using linear regression implemented in PLINK software (Purcell et al.,
2007). As described above, the outcome phenotype was the residual cognitive decline slope
extracted from the mixed effects models, after adjustment for age, gender and education.
The association analysis in the ROS discovery cohort was additionally adjusted for the first
three ancestry principal components calculated using EIGENSTRAT (Price et al., 2006). In
order to perform a joint replication and study-wide meta-analysis, the cohort-specific
PLINK association output was subsequently analyzed using METAL software (Willer et al.,
2010). The default METAL parameters were used, in which meta-analysis is based on p-
values and direction of effect, and weighted by sample size in each cohort. The Manhattan
plot (Figure 2B) was generated using Haploview software (Barrett et al., 2005), and the
association plot (Figure 3B) was generated using the SNAP web-tool (Johnson et al., 2008).

Aggregate Genetic Risk Scores
We developed four disease specific cumulative genetic risk scores (GRSs) based on
published genome wide significant (p<10−8) SNPs for the following disease categories:
Alzheimer’s Disease; Cardiovascular Disease (including Myocardial Infarction, LDL
Cholesterol, HDL Cholesterol, Triglycerides, Hypertension, and Stroke); Inflammatory
Disease (including Celiac Disease, Crohn’s Disease, Irritable Bowel Disease, Multiple
Sclerosis, Psoriasis, Rheumatoid Arthritis, Systemic Lupus Erythematosus, Type 1 Diabetes,
and Ulcerative Colitis); and Type 2 Diabetes. Genome wide significant SNPs for each
disease category were identified through a literature review, primarily using the Catalogue
of Published Genome-Wide Association Studies available online at
http://www.genome.gov/26525384. For the cardiovascular disease and inflammatory disease
categories, which have multiple component outcomes, SNPs that had reference alleles which
were both protective for one disease and a risk factor for a second disease were removed. To
limit the amount of correlation between SNPs, we further refined this list by identifying all
pairs of SNPs with a linkage disequilibrium r2≥0.5 and keeping only the SNP in those pairs
with the lowest p-value. Once we identified a final SNP set, the four GRSs were created by
summing up the number of category specific risk alleles for each individual. To assure that
our scores were comprehensive, we used imputed allelic dosages for SNPs that were not
genotyped within our population. We then examined the associations between the resulting
genetic risk scores and global cognitive decline using linear regression models adjusted for
age, sex, and education. The final list of SNPs and risk alleles included in each score, as well
as relevant references, can be found in Supplementary Table 7.

Gene expression QTL analysis
Gene expression levels were quantified using mRNA derived from peripheral blood
mononuclear cells (PBMCs) of 228 subjects of European ancestry with Relapsing Remitting
(RR) Multiple Sclerosis (MS) using an Affymetrix Human Genome U133 Plus 2.0. These
data were collected between July 2002 and October 2007, as part of the Comprehensive
Longitudinal Investigation of MS at the Brigham and Women’s Hospital. The data is
available on the Gene Expression Omnibus website (GSE16214) (De Jager et al., 2009).
DNA from each individual was genotyped on the Affymetrix GeneChip 6.0 platform as a
part of a case-control multiple sclerosis meta-analysis (De Jager et al., 2009). Using a
Spearman Rank Correlation, we tested for association using an additive model for allelic
dosage as an independent variable and residuals of expression as the dependent variable.
Significance w as established by comparing the association p-values to the empiric
distribution of p-values generated by permuting expression phenotypes 10,000 times
independently for each gene. Similar methods were used to evaluate expression within the
publically available lymphoblastic cell line expression dataset from 60 CEU individuals in
the HapMap project (Stranger et al., 2007).
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RESULTS
Characteristics of the discovery cohort

Following quality control, genome-wide genotype data (672,266 SNPs) were available on
749 non-Hispanic, white subjects from the ROS with longitudinal cognitive testing. Detailed
cohort characteristics are presented in Table 1. The mean age at enrollment was 75 years,
and subjects were followed for 9 years, on average (range 1-15 years of follow-up).
Cognitive decline trajectories were quantified based on annual performance of 17 distinct
neuropsychological tests sampling 5 cognitive domains (episodic memory, perceptual speed,
semantic memory, visuospatial ability, and working memory) (Supplementary Table 1). As
previously described (Wilson et al., 2002c), a subject’s performance on each test was
standardized and an average, aggregate measure of global cognitive performance was
computed. At recruitment, all subjects were without known dementia. At their last
evaluation, 59% of subjects retained normal cognition, 20% had mild cognitive impairment
and 20% had a diagnosis of dementia. We used linear mixed effects modeling, including all
available longitudinal cognitive testing, to obtain a residual cognitive decline slope for each
individual, adjusting for age at enrollment, gender, and years of education, (Figure 1). This
slope parameter describes the person-specific rate of global cognitive change as a
quantitative, continuous outcome and is the primary outcome measure that we used in our
association study.

Genome-wide association scan for age-related cognitive decline
We implemented our genome-wide association scan using the residual cognitive decline
slope for each individual as an outcome trait (Figure 2). The genomic inflation factor was
1.009, indicating no significant inflation of our test statistics. A selection of top results from
the scan, based on our replication analysis, are shown in Table 2, and complete results
(P<10−4) are provided in the Supplementary Material (Table S8 and S9). As expected from
prior studies (Feskens et al., 1994; Haan et al., 1999; Henderson et al., 1995; Hyman et al.,
1996; Jonker et al., 1998; McQueen et al., 2007; Wilson et al., 2002a, 2002b), the strongest
associations with the rate of cognitive decline were found for markers at the APOE locus.
No other locus association surpassed the genome-wide significance threshold (P<5×10−8).
However, numerous polymorphisms demonstrate suggestive evidence of association
(P<10−4) with rate of cognitive decline, including several that fall within or adjacent to
candidate genes previously implicated in cognition (CTNND2, rs2973488, P=1.8×10−7)
(Israely et al., 2004; Medina et al., 2000) or AD susceptibility (SORCS1, rs12219216,
P=8.0×10−5) (Reitz et al., 2011b). As we have previously reported (Chibnik et al., 2011), we
find nominal evidence of association at the CR1 locus (rs6656401, p=0.048), but do not
detect evidence of association for other known AD susceptibility variants with the rate of
cognitive decline in our discovery cohort (Table S2).

Replication of variants associated with rate of cognitive decline
To replicate the results of our genome scan, the top 50 independent SNPs (P<10−4, minor
allele frequency > 10%) from our discovery stage were evaluated in three additional cohorts
of older individuals with longitudinal measures of cognitive performance (Table 2 and Table
S8). MAP, CHAP, and ADNI are described in the Methods and the cohort characteristics are
summarized in Table 1. A summary of all cognitive testing data used from each study is
provided in Supplementary Table 1. As in ROS, available cognitive data for MAP, CHAP,
and ADNI subjects were incorporated into aggregate global cognition scores, and mixed
effect modeling of longitudinal data was used to compute residual, adjusted global cognitive
decline slopes for all subjects. The SNPs selected for replication were evaluated in each of
the three replication cohorts, and meta-analysis was implemented to compute summary
association statistics (PREP) across the replication cohorts, consisting of 2,279 subjects. We
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also determined a study-wide association meta-analysis statistic (PJOINT), consisting of
3,028 total subjects, including the results from the discovery cohort and those of the three
replication cohorts. The results of the replication and joint analyses are shown in Table 2.
We hypothesized that discovered variants that truly impact rate of cognitive decline would
show robust and consistent effects across these sample collections, despite modest
differences in cohort make-up, such as mean age, cognitive testing procedures, and years of
follow-up.

As expected, a SNP at the APOE locus, rs4420638, showed significant replication for
association with rate of cognitive decline across each independent sample evaluated and in
the pooled replication cohort (PMAP=9.4×10−9, PCHAP=5.1×10−6, PADNI=5.3×10−8,
PREP=9.1×10−20), and the overall association was strongly enhanced in the joint analysis
(PROS=5.6×10−9, PJOINT=3.7×10−27). Although no other variant met a threshold of genome-
wide significance at the conclusion of the replication study, a chromosome 8 SNP,
rs10808746, showed consistent direction of effect on the rate of cognitive decline in each
cohort (the major allele rs10808746G is associated with increased risk of cognitive decline)
and suggestive evidence of replication in the combined replication cohort (PREP=0.009).
Further supporting replication, in the study-wide joint analysis, rs10808746 shows modest
evidence of enhanced association once all available data are considered (PROS=6.7×10−5,
PJOINT=2.3×10−5).

Figure 3A shows the mean trajectory of cognitive decline within the discovery cohort for the
three genotype classes of rs10808746. These data are supportive of the major allele
rs10808746G being associated with more rapid cognitive decline. To better understand the
impact of this variant on cognition, we evaluated associations with cognitive decline based
on measures for each of the 5 domains of the ROS global cognitive score (Table S3). This
polymorphism was associated with the rate of cognitive decline in episodic memory
(P=3×10−4), perceptual speed (P=0.048), semantic memory (P=0.015), and working
memory (P=0.0046), but not visuospatial processing (P=0.13), suggesting that, while it
appears to have a predominant effect on decline in episodic memory, its role may not be
limited to a single, functionally distinct anatomic region or circuit.

Analysis of rs10808746 effect on local gene expression
The rs10808746 SNP falls within an intron of Phosphodiesterase 7A (PDE7A) and is near
two flanking genes, mitochondrial fission regulator 1 (MTFR1) and armadillo repeat-
containing protein 1 (ARMC1), that fall within a linkage disequilibrium block identified by
the association peak (Figure 3B). In order to begin to characterize the effect of the
discovered variant, we attempted to evaluate its impact on local gene expression in available
datasets. In an analysis of gene expression data from peripheral blood mononuclear cells
(PBMCs) of 228 individuals with demyelinating disease (De Jager et al., 2009), representing
a set of subjects with an activated immune system, we found evidence for association
between the discovered variant and expression of both PDE7A (P=8.4×10−4) and MTFR1
(P=4.5×10−5), but not ARMC1 (P=0.21) (Figure 4 and Supplementary Table 4). The
significance of the rs10808746 association with PDE7A and MTFR1 expression in PBMCs
was robust to gene-based permutation testing. Published data from a different cell type,
HapMap lymphoblastic cell lines (Stranger et al., 2007), also revealed associations with the
expression of PDE7A (P=5×10−3) and MTFR1 (P=0.041), but not ARMC1 (P=0.17).
However, the direction of effect for the association between this SNP and gene expression
was not consistent between these two sets of data generated from different cell populations:
the risk allele was associated with decreased expression of both genes in the PBMCs from
MS patients, but a more modest increase in both PDE7A and MTFR1 expression in the
HapMap cell lines, which are B cells transformed by Epstein-Barr virus. Based on available
databases of gene expression data, such as BioGPS (http://biogps.gnf.org), both PDE7A and

De Jager et al. Page 8

Neurobiol Aging. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://biogps.gnf.org


MTFR1 are widely expressed in diverse tissue types, including the central nervous system
(Rhead et al., 2010; Su et al., 2002; Wu et al., 2009); however, a publically available brain
expression dataset (Myers et al., 2007) with genome-wide genotyping did not include probes
for either MTFR1 or PDE7A. We were therefore unable to readily confirm our findings in
this tissue context.

Aggregate genetic risk profiles for prediction of cognitive decline
In addition to a per SNP genome-wide analysis, we pursued a complementary approach
taking into account the aggregate effect of multiple validated susceptibility alleles for other
diseases. Specifically, we developed 4 separate genetic risk score models incorporating
known susceptibility variants for medical conditions known or hypothesized to promote
cognitive decline, including AD, cardiovascular disease, type II diabetes, and inflammatory
disease. In our ROS discovery cohort, a diagnosis of AD or of type II diabetes mellitus was
significantly associated with cognitive decline (Table S5), consistent with prior studies
(Arvanitakis et al., 2004). Table S7 summarizes the SNPs included in each aggregate genetic
risk score, along with the relevant references. For both the AD and cardiovascular risk
models, we excluded APOE from consideration, since this locus’ strong effect on cognitive
decline would overwhelm the contribution of loci with more modest effect sizes. As shown
in Table 3, none of the aggregate risk models returned evidence of association in our ROS
discovery cohort, and only the AD model demonstrated nominal association to cognitive
decline in a more powerful joint analysis that included both the ROS and MAP cohorts. Our
modest sample size limits our power in these analyses, but validating our strategy, we do see
the expected correlation of the aggregate estimate of genetic risk for type II diabetes with a
diagnosis of diabetes in our subjects (Table S6).

Power for discovery and replication of genetic variants associated with cognitive decline
The genetic architecture of cognitive decline is currently not known. Given our results and
the size of our discovery and replication sample sets, it is likely that cognitive decline, like
most other complex traits, is influenced by many variants of modest effect, in addition to the
APOE locus which has a strong effect on this trait. Using the PDE7A/MTFR1 and CR1 loci
as putative susceptibility loci with which to calibrate the design of future studies exploring
cognitive decline, we performed power calculations to assess the sample size that would be
necessary for a robust discovery study. For CR1, we observe an effect size (Beta) of
−0.0130 and a minor allele frequency (MAF) of 0.20 in the ROS cohort; thus, we would
need 7,241 subjects to observe a genome-wide significant effect on the rate of cognitive
decline (P<5×10−8) with 80% power, and 8,288 subjects for 90% power. For PDE7A/
MTFR1, the effect size in the ROS cohort (Beta=0.0210) is probably inflated given that this
is the discovery cohort for this variant. However, given this magnitude of an effect and a
MAF of 0.43, we would need 1,794 subjects to have 80% power to observe a genome-wide
significant effect (P<5×10−8), and 2,053 subjects for 90% power. However, in the MAP
cohort, the PDE7A/MTFR1 has an effect size of 0.008, yielding an alternative estimate of
12,175 subjects needed for 80% power and 13,937 subjects for 90% power. The latter
estimate is likely to more accurately reflect the true effect size of our variant since it comes
from a replication cohort. The requirement for a larger sample size is consistent with what
has been observed for other human traits (Park et al., 2010) and likely explains, at least in
part, why we have not yet discovered susceptibility variants for cognitive decline reaching
the genome-wide significance level. These estimates will guide the design of our future
efforts: it appears that sample sizes between 7,241 and 12,175 subjects will be needed to
have reasonable power to assemble convincing evidence of association between genetic
variation and the rate of cognitive decline.
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DISCUSSION
We report the results of a genome-wide scan in 749 elder subjects to identify loci associated
with the rate of cognitive decline, using a mixed effects model that incorporates repeated
cognitive measures. Consistent with numerous prior studies (Feskens et al., 1994; Haan et
al., 1999; Henderson et al., 1995; Hyman et al., 1996; Jonker et al., 1998; Wilson et al.,
2002a, 2002b), we found robust evidence for association between the APOE locus and the
rate of age-related cognitive decline. Besides APOE, in a replication analysis including
2,279 additional subjects, we identified one other locus (PDE7A/MTFR1) with consistent
direction of effect on cognitive decline in all cohorts and improved evidence of association
in a joint analysis. While additional replication efforts will be needed to validate the role of
this locus in cognitive decline, our replication and extension analyses strongly suggest that
this locus has an effect on the rate of cognitive decline in aging individuals.

To begin to understand the function of this variant, we explored its possible role in
influencing the expression of nearby genes using available gene expression datasets.
Although further work is needed to better understand the effect of this variant in different
cell types (particularly in the brain for which data were not available), two of the three genes
found in the block of LD surrounding the associated variant – PDE7A and MTFR1 – appear
to be influenced by rs10808746, which is found in an intron of PDE7A. MTFR1 has been
shown to induce mitochondrial fission in a variety of cell types (Tonachini et al., 2004), and
in Mtfr1null mice, testicular cells show increased oxidative injury and reduced expression of
free radical scavengers, such as Glutathione Peroxidase 3 (Monticone et al., 2007). Thus,
MTFR1 is a reasonable candidate gene for further validation in the context of cognitive
decline since it could be involved in modulating the response of CNS cells to oxidative
stress, implicated in many different models of neuronal injury including AD, Amyotrophic
Lateral Sclerosis, and Parkinson’s disease (Cho et al., 2010). PDE7A is another strong
candidate: it is expressed in both neuronal and non-neuronal CNS cells and regulates
intracellular signaling by affecting the concentration of cyclic dinucleotides (Miró et al.,
2001; Pérez-Torres et al., 2003). Data on its possible function in CNS cells is limited, but
one report suggests that inhibiting this molecule may contribute to enhancing cell death in
response to an apoptotic signal in lymphocytes (Dong et al., 2010). There is also mixed
evidence that it may have a role in mediating the expression of pro-inflammatory cytokines
during T cell activation (Kadoshima-Yamaoka et al., 2009; Yang et al., 2003). Thus, PDE7A
is also a reasonable candidate for mediating the effect of the rs10808746 variant, and it is
further possible that the variant influences the expression and function of both genes,
possibly by affecting shared pathways involved in neuronal degeneration.

Based on our power calculations, it is clear that substantially larger sample sizes including
10,000-15,000 subjects will be needed for a definitive investigation of the genetic
architecture of the rate of cognitive decline. This estimate is in line with power calculations
for other complex traits (Park et al., 2010). The distribution of results from the ROS cohort
suggest that it is unlikely that loci with a strong effect on cognitive decline exist outside of
APOE. The existence of loci with more modest effects on cognitive decline is consistent
with the suggestive evidence presented in support of CR1, a known AD susceptibility locus,
and possibly PDE7A/MTFR1. We attempted to enhance our ability to test detect the role of
genetic variation in cognitive decline by assessing aggregate measures of genetic risk for
conditions that are well-known (AD, cerebrovascular disease, and type II diabetes) or
hypothesized (inflammatory diseases) to influence this trait. Our aggregate measure of AD
risk is nominally associated with cognitive decline, suggesting that this may be a fruitful
strategy to deploy in future studies that leverage larger sample sizes and additional
susceptibility alleles that will emerge in the near future.
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Our study was based on the hypothesis that common genetic pathways mediate the response
and adaptation to diverse forms of brain pathology, and that variation in such loci might
therefore impact age-related cognitive decline. This hypothesis is supported by observations
from a variety of experimental paradigms of neuronal injury that several core cellular
pathways, including protein misfolding/aggregation (Ross and Poirier, 2004), autophagy
(Martinez-Vicente and Cuervo, 2007), mitochondrial dynamics (Cho et al., 2010), and
inflammation (Lucin and Wyss-Coray, 2009), play important roles in multiple
neurodegenerative diseases. In prospective, community-based autopsy series of dementia,
most brains are found to have multiple pathologies (Neuropathology Group, 2001;
Schneider et al., 2007; Sonnen et al., 2007), which likely interact to produce the clinical
manifestations of age-related cognitive decline (Wilson et al., 2010). Our strategy of using
cognitive trajectories as an outcome trait for a genome-wide scan holds great promise for the
identification of core genetic mechanisms mediating cognitive reserve and adaptation to
injury. However, our current study provides evidence that the genetic architecture of this
trait may be similar to that of other complex human traits, involving common variants of
modest effects. We provide estimates of the substantially larger sample size required to
achieve effective statistical power for robust gene discovery efforts, highlighting the need to
combine additional cohorts with those reported here.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Variability in the rate of age-related cognitive decline. Linear cognitive trajectories are
shown for 100 random subjects from the ROS cohort, based on mixed effect modeling of
repeated measures of the global cognition summary score, incorporating 17 distinct
cognitive tests. Trajectories are adjusted for the effects baseline age, gender, and education.
The residual cognitive decline slope was used as an outcome for the genome-wide
association analysis. The distribution of the cognitive decline trait for the entire ROS
discovery cohort is shown in Supplementary Figure 1.
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Figure 2.
A genome-wide association scan for age-related cognitive decline. Using the residual
cognitive decline slope as an outcome trait, associations were evaluated for 672,266 SNPs in
the discovery cohort consisting of 749 ROS subjects. (A) Quantile-quantile plot. (B)
Manhattan plot. Thresholds for suggestive (P<10−4, blue) and genome-wide (P<5×10−8,
red) significance are indicated.
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Figure 3.
Association of rs10808746 at the PDE7A/MTFR1 locus with rate of cognitive decline. (A)
Mean linear trajectories of cognitive decline within the ROS discovery cohort for each of the
rs10808746 genotype classes, demonstrating evidence that the rs10808746G allele is
associated with increased rate of cognitive decline. (B) Plot showing rs10808746 association
peak over the PDE7A, MTFR1, and ARMC1 genes.
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Figure 4.
Association of rs10808746 with MTFR1 and PDE7A gene expression. The relation of
rs10808746 genotype was evaluated with locus transcript levels in an available gene
expression dataset from 228 subjects with demyelinating disease. The rs10808746G allele is
associated with decreased expression of MTFR1 (P=4.5×10−5) and PDE7A (P=8.4×10−4),
but not ARMC1 (P=0.21).
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Table 1

Demographic and clinical characteristics of study cohorts.

ROS MAP CHAP3 ADNI

N 749 825 737 717

Age at Enrollment 75.3 (±7.2) 80.8 (±6.6) 72.0 (±5.5) 75.3 (±6.9)

Education (years) 18.2 (±3.4) 14.8 (±2.9) 14.6 (±3.2) 15.6 (±3.0)

Male 254 (34.0%) 222 (26.9%) 291 (39.5%) 422 (58.9%)

Cognitive Decline Slope −0.007 (±0.1) 0.012 (±0.1) 0.001 (±0.04) −0.001 (±0.04)

Cognitively Normal1 444 (59.4%) 460 (55.8%) 265 (68.7%) 211 (29.4%)

Mild Cognitive Impairment1 151 (20.2%) 200 (24.2%) 71 (18.4%) 205 (28.6%)

Dementia1,2 152 (20.4%) 165 (20.0%) 46 (11.9%) 301 (42.0%)

1
Cognitive status at time of last evaluation.

2
19.7% of ROS, 19% MAP, and 11% CHAP met NINCDS criteria for possible or probable AD.

3
Diagnoses of dementia and mild cognitive impairment only available for a subset (n=386) of CHAP.
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