
The death domain-containing protein Unc5CL is a
novel MyD88-independent activator of the
pro-inflammatory IRAK signaling cascade
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The family of death domain (DD)-containing proteins are involved in many cellular processes, including apoptosis, inflammation
and development. One of these molecules, the adapter protein MyD88, is a key factor in innate and adaptive immunity that
integrates signals from the Toll-like receptor/interleukin (IL)-1 receptor (TLR/IL-1R) superfamily by providing an activation
platform for IL-1R-associated kinases (IRAKs). Here we show that the DD-containing protein Unc5CL (also known as ZUD) is
involved in a novel MyD88-independent mode of IRAK signaling that culminates in the activation of the transcription factor
nuclear factor kappa B (NF-jB) and c-Jun N-terminal kinase. Unc5CL required IRAK1, IRAK4 and TNF receptor-associated factor
6 but not MyD88 for its ability to activate these pathways. Interestingly, the protein is constitutively autoproteolytically
processed, and is anchored by its N-terminus specifically to the apical face of mucosal epithelial cells. Transcriptional profiling
identified mainly chemokines, including IL-8, CXCL1 and CCL20 as Unc5CL target genes. Its prominent expression in mucosal
tissues, as well as its ability to induce a pro-inflammatory program in cells, suggests that Unc5CL is a factor in epithelial
inflammation and immunity as well as a candidate gene involved in mucosal diseases such as inflammatory bowel disease.
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The TLR/IL-1R superfamily of receptors has a fundamental
role in shaping the immune response by integrating signals
from pathogen-associated molecular patterns and the highly
inflammatory cytokines IL-1 and IL-18.1,2 All of these
receptors, with the prominent exception of TLR3, utilize the
Toll–IL-1R (TIR) and death domain (DD)-containing adapter
protein MyD88 to induce a signal transduction pathway that
culminates in the activation of the pro-inflammatory transcrip-
tion factor NF-kB and mitogen-activated protein kinases.3–7

Upon ligand-induced receptor dimerization, MyD88 is
recruited to the cytosolic TIR domain via homotypic TIR–TIR
interactions. This can either happen directly or via the adapter
protein TIRAP/Mal. MyD88 then nucleates the assembly of a
ternary protein complex via DD-dependent recruitment and
activation of the kinases IRAK1, IRAK2 and IRAK4.8,9

Together with the E3-ubiquitin ligase TRAF6 these factors
mediate further propagation of the signal.10

The importance of the TLR/IL-1R signaling axis in health
and disease is highlighted by the association with a multitude
of human malignancies. These include not only the suscepti-
bility of MyD88- and IRAK4-deficient patients to pyogenic

bacterial infections, but also its implication in inflammatory
disorders, autoimmunity and cancer.11–13

DD-containing proteins, including MyD88 and IRAKs, are
also involved in many cellular signaling processes, including
apoptosis, inflammation and development.14,15 A functionally
heterogeneous subgroup of these proteins is characterized
by the presence of a tripartite domain module, termed the
ZU5-UPA-DD supramodule, which in addition to a DD, contain
a ZU5 (domain present in ZO-1 and Unc5) and a UPA (domain
conserved in Unc5, PIDD and Ankyrin) domain.16 In mam-
mals, this family comprises PIDD (p53-induced protein with a
DD), Ankyrins1-3, the transmembrane receptors Unc5A-D
and the poorly characterized protein Unc5CL (Figure 1a).
Based on the resolution of the crystal structure of the
intracellular part of Unc5B, Wang et al.16 proposed a
conserved activation mechanism for these molecules, in
which the ZU5 domain sequesters both the UPA and DD,
keeping them in an auto-repressed state.

Unc5CL was proposed in a single study as a negative
regulator of NF-kB in response to a variety of stimuli, including
overexpression of TNF-R1, TRAF2, TRAF6, IKKb and p65 or
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stimulation with TNFa and IL-1b.17 In sharp contrast to these
previous observations, herein we identify Unc5CL as an
inducer of a pro-inflammatory signaling cascade involving
activation of NF-kB and JNK. Dissection of the pathway
reveals a striking similarity to signaling events triggered
downstream of TLR/IL-1R involving the kinases IRAK1,
IRAK4 and the E3-ubiquitin ligase TRAF6, but surprisingly
not the adapter protein MyD88 that is usually required for
IRAK/TRAF6-dependent signaling. The protein shows a
highly specific tissue distribution, predominantly detectable
in samples of the uterus and small intestine. Furthermore, via
an N-terminal transmembrane anchor, Unc5CL is associated
specifically with the apical membrane of mucosal epithelial
cells. Taken together, our results uncover evidence for a
hitherto-unidentified pro-inflammatory signaling pathway in
mucosal epithelial cells that provides a MyD88-independent
second axis of IRAK-dependent signaling in parallel
to the evolutionarily conserved TLR/IL-1R system. Its

pro-inflammatory activity, as well as its strikingly specific
tissue distribution in mucosal epithelia implicates Unc5CL as a
novel candidate molecule in mucosal inflammation, immunity
and disease.

Results

Domain organization of Unc5CL. Unc5CL was first
described as a novel ZU5 and DD-containing protein
mostly homologous to the intracellular fragments of
the Unc5-receptor family members.17 Interestingly, the
resolution of the X-ray crystal structure of the rat Unc5B
intracellular domain revealed a tripartite domain organization
comprising the previously described ZU5 and DD, as well as
a novel central UPA domain.16 To evaluate whether Unc5CL
also contains such a ZU5-UPA-DD supramodule we used
Jpred3 to predict the secondary structure of Unc5CL and
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compared it with experimentally determined features of rat
Unc5b intracellular domains (Supplementary Figure S1).18

Pairwise alignment using ClustalW revealed 34% sequence
similarity.19 In addition, most of the secondary structures
were conserved among the analyzed sequences. These
observations provide evidence that Unc5CL indeed contains
a ZU5-UPA-DD supramodule and we annotate the ZU5 from
aa 100 to 237, the UPA from aa 243 to 385 and the DD from
aa 402 to 491 (Figure 1a).

Further analysis using the transmembrane helix prediction
tool TMHMM identified a previously unreported N-terminal
transmembrane domain spanning aa 13–35 suggesting that
Unc5CL is not a cytosolic, but membrane anchored protein
(Figure 1a).20

We initially cloned the human Unc5CL cDNA from CaCo-2
cells (GenBank accession: JF681947) that corresponds to the
current NCBI reference sequence (NM_173561.2). Interest-
ingly, we observed that this sequence is different by one
nucleotide from a cDNA used in a previous study on Unc5CL
(GenBank: AY510109), corresponding to a nonsynonymous
SNP variant (dbSNP ID: rs742493).17 This previously used
variant contains a glycine at position 432 (432G) instead of a
canonical arginine (432R) localized in the predicted second
alpha helix of the DD (Figure 1a, Supplementary Figure S1).
We therefore decided to include both Unc5CL 432G and 432R
variants in our experiments.

PIDD is a ZU5-UPA-DD supramodule-containing protein
that requires autoproteolytic processing at two core HFS
tripeptide sites for its biogenesis and activation (Figure 1a).21

Cleavage at an HFS site is also involved in the biogenesis of
the nuclear envelope protein Nup98.22 Surprisingly, by
sequence comparison, we identified a bona fide HFS site in
Unc5CL (aa 227–229) but not in any other ZU5-UPA-DD-
containing proteins, suggesting that Unc5CL might also
undergo such autoproteolytic cleavage (Figures 1a and b
and Supplementary Figure S1).

Autoproteolytic processing of Unc5CL. When Unc5CL
was expressed in HEK293T cells and analyzed by western
blot we could detect a band corresponding to the full-length
protein at approximately 58 kDa and a lower migrating band
at approximately 32 kDa. These molecular weights correspond
to the predicted size of the fragments that would be gener-
ated by cleavage of Unc5CL at the HFS site (Figure 1c).
Indeed, expression of HFS point mutants impaired the
appearance of the cleavage fragment of Unc5CL. Only a
mutant carrying an HFT site still showed residual processing,
which is consistent with the proposed requirements for this
cleavage event (Figure 1d). To further corroborate the
presence of an autoproteolytic HFS site in Unc5CL, we
used a mutant where the serine of the HFS site is exchanged
by a cysteine (HFC). Previous studies on Nup98 and PIDD
have shown that this site can be cleaved involving formation
of a thioester intermediate via an N-S acyl shift.21,22

However, cleavage of the thioester intermediate requires
addition of the nucleophilic agent hydroxylamine. To test
whether Unc5CL HFC also forms a thioester intermediate,
we analyzed the sensitivity to hydroxylamine-induced
cleavage (Figure 1e). As expected, incubation of Unc5CL
HFC with hydroxylamine induced the generation of the

C-terminal cleavage fragment, which could be inhibited by
pre-incubation with 2% SDS leading to protein denaturation.
Taken together, these results provide evidence that, similar
to Nup98 and PIDD, Unc5CL is autoproteolytically cleaved at
an HFS site.

Membrane association and topology of Unc5CL. To
corroborate that Unc5CL is a membrane integral protein,
a TX-114 phase separation technique was applied.23 As
expected, stably overexpressed Unc5CL variants with intact
N-terminus (wt, DDD and S229A) were detected predo-
minantly in the membrane fraction (Supplementary Figures
S2a, b and d). Conversely, a mutant lacking the N-terminal
transmembrane segment (DTM) was found in the hydrophilic
fraction, indicating that this part of the protein mediates
membrane association (Supplementary Figures S2a, b
and d).

N-terminally anchored proteins can be inserted into
membranes in two orientations. In type-II anchor proteins,
the N-terminus remains in the cytosol and the C-terminus is
translocated into the ER lumen, whereas in type-III anchor
proteins the topology is reversed.24 In case of Unc5CL the
charge distribution around the TM domain hints to a type-III
topology (‘positive-inside rule’; Supplementary Figure S2a).25

This was confirmed by proteinase K protection assays
(Supplementary Figures S2a and c). These results confirm
that Unc5CL is anchored with its N-terminus in the cell
membrane with the C-terminus containing the DD exposed to
the cytosol.

Tissue distribution and subcellular localization.
Querying of the GNF1M mouse tissue atlas shows Unc5CL
expression in the uterus, small intestine and thymus
(Supplementary Figure S3).26 To confirm this on protein
level, a mouse tissue panel was probed using antibodies
against the DD of Unc5CL (Figure 2a). Consistent with the
microarray data, Unc5CL protein was confined to the uterus,
ovary and gastrointestinal tract, with prominent expression in
the small intestine. Furthermore, the C-terminal cleavage
fragment was readily detected in these tissues, indicating
that the protein is efficiently and constitutively processed
in vivo. The expression in the small intestine and colon could
be further confined to the epithelial cells. Unc5CL protein and
mRNA were enriched in epithelial cell preparations from
consecutive small intestinal segments, and could also be
detected in colonic epithelial cells, albeit to a lesser extent
(Figures 2b and c). From the many cell lines that were tested
for Unc5CL expression, only human colorectal CaCo-2 cells
showed a convincing signal on western blots (Figure 2d). In
line with the results observed in vivo, the C-terminal cleavage
fragment was the prominent form detected. Specificity of the
signal was confirmed by knockdown using Unc5CL-specific
shRNAs (Figure 2d). As in HEK293T cells, Unc5CL was
specifically found in the membrane fraction of CaCo-2 cells
(Figure 2e).

CaCo-2 cells form a polarized intestinal epithelium
(including tight junctions and apical microvilli) when grown to
post-confluence, and are a well-established model for
intestinal physiology.27 We therefore decided to use these
cells to determine the subcellular localization of Unc5CL.
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Interestingly, ectopic Unc5CL was detected predominantly in
microvilli-like structures on the apical face, whereas a mutant
lacking the transmembrane domain showed cytosolic
distribution (Figure 2f; Supplementary Figure S4a). In line
with this observation we found strong enrichment of Unc5CL
in microvilli-derived murine intestinal brush border membrane
vesicles (Supplementary Figures S4b and c). Immunohisto-
chemistry using Unc5CL-specific antibodies suggests a
similar apical epithelial localization in the uterine tissues
(Figure 2g; Supplementary Figure S5).

Unc5CL is an activator of NF-jB and JNK. Many
DD-containing proteins are involved in signal transduction
events leading to activation of NF-kB and JNK.14 As Unc5CL
was previously implicated in the regulation of NF-kB, it was
pertinent to re-evaluate these findings.17 In contrast to
previous observations, overexpression of the two human
variants, Unc5CL 432G and 432R, as well as murine Unc5CL

led to a significant induction of NF-kB in a luciferase assay
(Figure 3a). Interestingly, the 432G variant was less potent
than the 432R or the corresponding murine form, indicating
that this single amino-acid variation in the DD has an
influence on protein activity. MyD88, TNF-RI and TRAF6
were used as positive controls for NF-kB activation. By using
the same assay we determined domain requirements
for Unc5CL-dependent NF-kB activation (Figure 3b).
Firstly, an HFS to HFA mutant affecting the autoproteolytic
cleavage site did not affect NF-kB activation, indicating that
the cleavage event per se is not required. Deletion of the
transmembrane domain (DTM) or the ZU5 domain (DZU5)
showed an intermediate reduction in NF-kB activity, which is
more pronounced using the C-terminal cleavage fragment
only (C), where both of these domains are missing. Also
co-expression of the N- and C-terminal cleavage fragments
could not recapitulate the activity of the wild-type protein
(Supplementary Figure S6). The strongest reduction in
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NF-kB activity was observed with a mutant lacking the DD
(DDD), indicating that the NF-kB-inducing capacity of
Unc5CL requires this domain. To further characterize the
importance of the DD and ZU5 domains, we generated point
mutants in highly conserved regions that were predicted to
interfere with the function of these domains. In line with the
results described above, destabilization of the DD completely
abrogated NF-kB activating capacity, whereas ZU5 mutants
retained very low activity (Figure 3c). Of note, mutations
affecting the ZU5 domain also impair the ability for auto-
processing, indicating that the cleavage requires a correct
folding of this domain.

NF-kB activation, as evidenced by phosphorylation of IkBa,
was also observed in HEK293 T-Rex cells, in which Unc5CL
expression is induced by addition of doxycycline (Figure 3d).

Signaling cascades leading to NF-kB activation often also
activate the kinase JNK. When we tested Unc5CL for this
capacity in an overexpression assay, we indeed observed that
both Unc5CL 432G and 432R, but not the mutant lacking the
DD, provoked the phosphorylation of co-expressed JNK1,
confirming that Unc5CL is not only an activator of NF-kB but
also of the kinase JNK (Figure 3e).

Transcriptional profiling identifies chemokines as
Unc5CL targets. Several functions have been assigned
to NF-kB, including induction of antiapoptotic and pro-
inflammatory genes.28 The inducible HEK293 T-Rex cell
line for Unc5CL described above was used in microarray
experiments to determine genes that are transcriptionally
regulated by Unc5CL overexpression. Interestingly, the most
strongly induced genes, which were validated by real-time

PCR, were chemokines (CXCL1, CXCL2, CXCL3, IL-8
and CCL20) and several other NF-kB-dependent genes
(TNFAIP3/A20, PLA2G4C and TNFRSF9; Figure 4a).29 The
expression of another gene, MAP2K5, was unaffected by
Unc5CL. Secretion of CXCL1, IL-8 and CCL20 upon Unc5CL
overexpression was confirmed by ELISA (Figure 4b).

Unc5CL requires IRAK1, IRAK4 and TRAF6 but not
MyD88 for NF-jB activation. Several DD containing
proteins have been identified as essential components of
signaling pathways leading to NF-kB activation.14 RIP1 is
implicated in NF-kB activation in response to TNFa.30 IRAK1,
IRAK2 and IRAK4, together with the E3-ubiquitin ligase
TRAF6, are involved in signaling downstream of most TLRs
and IL-1R superfamily members.1–3 The adapter protein
MyD88 links IRAK kinases to the respective receptors.
To study the involvement of these proteins in Unc5CL-
induced NF-kB activation, an siRNA approach was used.
RIP1, IRAK1, IRAK4, MyD88 and TRAF6 were knocked
down by transfection of gene-specific siRNAs, and the ability
of Unc5CL to transactivate an NF-kB-specific luciferase
reporter gene was assessed (Figures 5a and b). Although
knockdown of RIP1 affected neither Unc5CL- nor TLR2-
induced NF-kB, knockdown of IRAK1, IRAK4 and TRAF6
strongly impaired these signaling pathways. Moreover,
knockdown of MyD88 only affected TLR2- but not Unc5CL-
induced NF-kB activation, indicating that Unc5CL is involved
in a novel IRAK-activating signaling cascade that uses
the same signaling molecules as the TLR/IL-1R family.
The same dependencies were observed for Unc5CL-
mediated IL-8 and CXCL1 secretion (Figures 5c and d).
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Interactions between MyD88 and IRAK kinases are
mediated in a DD-dependent manner.8,9 To test whether
Unc5CL can also interact with IRAKs, co-immunoprecipitation
experiments have been performed (Figure 5e). Wild-type or
kinase-dead IRAK4 (IRAK4 kd) were co-expressed with
Unc5CL 432G, Unc5CLDDD or Unc5CL 432R. After immu-
noprecipitation of Unc5CL proteins, co-immunoprecipitation
of overexpressed IRAK4 or endogenous IRAK1 was
assessed. As expected, wild-type but not Unc5CLDDD
interacted with both IRAK4 and IRAK4 kd, as well as with
endogenous IRAK1. Interestingly, Unc5CL variants 432G and
432R showed different affinities for IRAKs. Corresponding to
the higher activity of Unc5CL 432R in NF-kB luciferase
reporter assays, this variant showed higher capacity to
co-immunoprecipitate IRAK1 and IRAK4. Different degrees
of activity of Unc5CL 432G and 432R may therefore be
attributed to different affinities of the respective DD for IRAKs.

Ligand-induced activation of Unc5CL signaling using a
chimeric receptor. As the activator of Unc5CL remains
elusive, we created a fusion protein based on the DD-
containing TNF receptor family member EDAR to gain insight

into the mechanism of Unc5CL activation (Supplementary
Figure S7). EDAR is particularly well suited for this purpose,
as the endogenous protein is confined to the ectoderm during
development, and not found on HEK293T cells.31,32 The
DD of EDAR was exchanged for the DD of Unc5CL 432R, or
inactive point mutants E421K and F461A. In transient
overexpression, the chimeric receptor containing the DD of
Unc5CL 432R showed similar capacity as wild-type EDAR to
activate NF-kB (Figure 6a). In contrast, chimeras containing
the inactivating point mutations were not able to activate
NF-kB, indicating that the NF-kB-activating ability of this chimeric
receptor resides in the DD (Figure 6a). HEK293T cells stably
expressing the chimeric receptor showed basal activation
of NF-kB, which was enhanced by treatment with Fc-EDA
(a hexameric form of the EDAR ligand that causes receptor
clustering). This demonstrated proof-of-principle that
signaling via the Unc5CL DD can be induced (Figure 6b).
Basal activation was also reflected by constitutive
phosphorylation and degradation of IkBa. (Figure 6c).
Interestingly, we also observed reduced levels of IRAK1
protein in cells expressing the Unc5CL chimeric receptor
than in the mock-infected cells (Figure 6c). Furthermore,
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treatment of these cells with Fc-EDA induced the
appearance of higher molecular weight forms of IRAK1
(Figure 6c). These changes in IRAK1 most likely correlate
with its activation.33 To more homogeneously activate the
chimeric receptor, we identified a single-cell clone that
showed low basal NF-kB activation, but which could be
efficiently induced by the ligand Fc-EDA. In a time course
experiment, Fc-EDA induced rapid phosphorylation of IkBa
followed by its degradation (Figure 6d). In line with
the observation that Unc5CL is an activator of JNK, we
also observed efficient phosphorylation of this kinase. As
observed in the pool of chimeric-receptor expressing cells,
higher molecular weight forms of IRAK1 appeared
throughout the stimulation. To study activation-induced
recruitment of signaling molecules to the chimeric receptor
we combined Fc-EDA stimulation with subsequent
immunoprecipitation of the ligand (Figure 6e). As expected,
Fc-EDA efficiently co-precipitated its receptor EDAR-
Unc5CL. Moreover, modified forms of IRAK1 and TRAF6

were recruited to the complex in a time-dependent manner.
Analysis of the whole cell lysate again confirmed inducible
phosphorylation and degradation of IkBa, phosphorylation of
JNK and modification of IRAK1. Thus, ligand-induced
oligomerization of the Unc5CL DD in the context of a
receptor is sufficient to trigger signaling events that strongly
resemble the MyD88-dependent branch of the TLR/IL1R
family.

Discussion

In this study we found that Unc5CL is a novel inducer of a pro-
inflammatory signaling cascade leading to activation of NF-kB
and JNK. Dissection of the pathway identified the kinases
IRAK1 and IRAK4, as well as the E3-ubiquitin ligase TRAF6
as essential downstream components. Most interestingly,
MyD88, which is required for IRAK/TRAF6-dependent
signaling downstream of IL-1- and Toll-like receptors, was
dispensable for activity of Unc5CL. This finding indicates that
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Unc5CL provides a MyD88-independent second, parallel
branch of the evolutionary conserved IRAK signaling cas-
cade. While MyD88 is recruited to transmembrane receptors
by virtue of its TIR domain, Unc5CL is already a membrane-
anchored protein. Both proteins contain a DD that is required
for interaction with members of the IRAK family.

An intriguing feature of Unc5CL is its highly specific tissue
distribution in mucosal epithelia, most abundantly in the uterus
and intestine. This site provides an interface between the
inside and outside of the body where epithelia have an
essential barrier function against invading pathogens.34

Interestingly, the protein is sorted to the apical face of these
cells. In light of the pro-inflammatory signal that is triggered
upon Unc5CL activation, and lack of an extracellular domain,
it is valid to speculate that, similar to MyD88, Unc5CL is used

as a membrane-bound adapter protein for a hitherto unknown
receptor that is activated by a luminal factor. However,
it cannot be excluded that Unc5CL is activated by an
intracellular membrane-proximal signal.

Our experiments using a chimeric EDAR-Unc5CL receptor
revealed that oligomerization of the Unc5CL DD is important
for signal initiation, presumably by providing an assembly
platform for IRAKs. We therefore postulate that oligomeriza-
tion, which is required for MyD88-dependent signaling, is also
a prerequisite for wild-type Unc5CL activity, and that this
is stimulated by the putative upstream factor.

Transcriptional profiling identified mainly pro-inflammatory
chemokines such as IL-8, CXCL1 and CCL20 as downstream
targets of Unc5CL. These factors are well known to
orchestrate the initial phase of an immune response by
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recruitment of immune cells including neutrophils, macro-
phages, dendritic cells and T cells to sites of potential
danger.35 It is therefore possible that Unc5CL is involved in
responses to epithelial danger.

Unc5CL is constitutively autoproteolytically processed at an
HFS site that is also found in PIDD and Nup98.21,22 While
cleavage of the Nup98 precursor into mature nucleoporins
Nup98 and Nup96 is required for its correct biogenesis and
sorting to the nucleoplasmic side of the nuclear pore complex,
inducible processing of PIDD is required for DNA damage-
induced responses.21,36,37 Cleavage of Unc5CL appears
constitutive and is not required for signaling, as evidenced
by using a non-cleavable version (HFA). This hints to a role of
Unc5CL autoprocessing in its biogenesis, localization or
availability rather than activation, which should be addressed
in future experiments.

Inflammatory bowel diseases (IBDs), including Crohn’s
disease and ulcerative colitis, are chronic inflammatory
disorders predominantly affecting the small and large intestine
They are thought to arise from a complex interplay of
environmental factors in a genetically predisposed host.38

Though many genetic linkage studies have revealed a number
of genetic risk loci, identified genes can only be attributed to ca
10–20% of human cases. Unc5CL was previously identified
as marker for IBD, together with several other genes that
are transcriptionally upregulated in the diseased tissues
(United States Patent no. 20100004213). Considering, in
addition, the pro-inflammatory activity and the strikingly
specific expression in mucosal epithelia, we propose Unc5CL
as a putative candidate molecule causally involved in mucosal
diseases such as IBD. This warrants investigation of Unc5CL
in future genetic association studies.

Materials and Methods
Mice, cell culture and reagents. Six- to twelve-week-old mice were housed
at the animal facility of the University of Lausanne. All animal procedures were
conducted in compliance with Swiss federal legislation for animal experimentation.
The human embryonic kidney HEK293T- and HEK293T-Rex cell lines (Invitrogen,
Basel, Switzerland), were grown in Dulbecco’s modified Eagle’s medium (DMEM,
Invitrogen) supplemented with 10% heat-inactivated fetal calf serum (FCS).
The human colorectal adenocarcinoma cell line CaCo-2 was maintained in DMEM
supplemented with 15% FCS and 1% MEM non-essential amino acids (Invitrogen).
All cells were maintained in the presence of 100 U/ml penicillin and 100mg/ml
streptomycin (Invitrogen). Doxycyline, hydroxylamine and FLAG-peptide were
obtained from Sigma (Buchs, Switzerland), Pam3CSK4 was from Invivogen
(Nunningen, Switzerland). Fc-EDA and Fc-TNF were reported previously.32,39

Antibodies. Monoclonal mouse anti-FLAG (M2) and anti-VSV (P5D4), as well
as rabbit polyclonal anti-FLAG and anti-VSV were from Sigma; anti-Unc5CL
(AT116) and anti-cytochrome C (7H6.2C12) were from Apotech (Epalinges,
Switzerland); anti-Bap31 (CC-1) from Alexis (Lausen, Switzerland). Anti-phospho-
IkB (# 9241) and anti-JNK (9252) from Cell Signaling (Allschwil, Switzerland); anti-
phospho-JNK (44–682G) from Biosource (Basel, Switzerland); anti-IkB (sc-371),
anti-MyD88 (sc-74532) and anti-IRAK1 (sc-7883) from Santa-Cruz (Nunningen,
Switzerland); anti-RIP138 and anti-caspase-3 (46) from Transduction Laboratories
(Allschwil, Switzerland); anti-IRAK4 from ProSci (Lausen, Switzerland) (3125);
anti-TRAF6 from MBL (Nunningen, Switzerland) (597).

Expression plasmids and siRNA. Human Unc5CL 432R was amplified
from a cDNA clone (GenBank: JF681947) by PCR and cloned in derivatives of
pCR3 (Invitrogen), in frame with C-terminal FLAG and VSV tags. Unc5CL variant
432G was generated by site-directed mutagenesis with two sequential rounds of
PCR (double PCR). Unc5CL point and deletion mutants were generated by PCR

or double PCR. pCR3 plasmids expressing N-terminally VSV-tagged human IRAK4
or IRAK4 kd and pCAGGS-E-MyD88 were reported previously.40 Retroviral pMSCV
plasmids, expressing Unc5CL and mutants, were generated by subcloning from
pCR3, lentiviral pRDI_292 plasmids (a kind gift from R Iggo, University of
St Andrews, Scotland) were generated by PCR. The packaging plasmids for
pMSCV, pCG (encoding VSV G envelope glycoprotein) and pHit60 (encoding gag
and pol retroviral genes) were kind gifts of CA Benedict (San Diego, CA, USA).
Packaging plasmids for lentiviral gene transfer, pMD2.G and pCMVDR8.91, were
generously provided by Dr. Didier Trono. pcDNA5/FRT/TO plasmids (Invitrogen) for
establishment of inducible HEK293 T-Rex cells were generated by subcloning from
pCR3. The EDAR-Unc5CL fusion (EDAR aa 1–343, Unc5CL aa 402–518) was
generated by double PCR and cloned in pCR3 or pMSCV. Derivatives
corresponding to point mutations E421K and F461A were generated by double
PCR. Lentiviral pLKO.1 plasmids expressing Unc5CL-specific shRNAs were
obtained from Sigma. siRNAs were obtained from Ambion (Rotkreuz, Switzerland).

Transfection, immunoprecipitation and western blot. Transfections
were performed using the calcium-phosphate precipitation technique. Cells were
usually lysed in Nonidet P (NP)-40 lysis buffer (0.1% NP-40, 50 mM Tris pH 8.0,
150 mM NaCl, 5 mM EDTA, 1 mM NaVO4, complete protease inhibitor cocktail; Roche,
Basel, Switzerland) for 15 min, 41C. Murine tissue lysates were equally generated
in RIPA buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 1% sodium
deoxycholate, 0.1% SDS, 1 mM EDTA and protease inhibitor mix) using a rotor-stator-
type tissue homogeniser ART Miccra D-8 (Müllheim, Germany) (4 pulses of 10 s, 41C).

Lysates were cleared by centrifugation in a microcentrifuge (13 000 r.p.m.,
10 min, 41C) and resolved by SDS-PAGE. Proteins were transferred onto
nitrocellulose membranes (Amersham, Glattbrugg, Switzerland) and probed using
the indicated antibodies.

siRNAs at final concentrations of 10 nM were also transfected into HEK293T
cells using the calcium-phosphate precipitation technique.

For immunoprecipitation, 24 h after transfection cells were harvested and lysed
as described above. Lysates were incubated for 1 h at 41C with 20ml sepharose6B
(Sigma) on a rotating wheel for a pre-clearing step. After centrifugation (5000 r.p.m.,
1 min, 41C) 1/10 supernatant (SN) was frozen (loaded as a cell extract control the
following day) and 9/10 SN was immunoprecipitated O/N at 41C on a rotating wheel,
with 15ml of a 1 : 2 mixture of FLAG M2-agarose beads (Sigma) and sepharose6B
beads or 15ml protein G beads. After extensive washing of the beads with lysis
buffer the cell extracts and immunoprecipitates were loaded on a SDS-PAGE and
the proteins were revealed by western blotting.

In vitro cleavage assays. HEK293T cells in 10 cm dishes were transfected
with C-terminally FLAG-tagged expression vectors for Unc5CL that contain point
mutations in the autoproteolytic HFS site (HFA, HFC). 24 h later cells were lysed
and Unc5CL was immunoprecipitated as described above. FLAG-tagged proteins
were washed and eluted by incubation for 100 at RT with 120 ml 3� FLAG peptide
(Sigma, 100mg/ml in lysis buffer). In all 20ml of every eluate was kept for later
analysis (0 h time point), the rest was divided in three parts. One part was left
untreated, the other two were incubated with 200 mM hydroxylamine (NH2OH) with
or without 2% SDS. 20ml samples were taken at the indicated time points, mixed
with SDS-sample buffer and analyzed by western blot.

Luciferase reporter assays. Cells in 24-well dishes were co-transfected in
triplicate with 40 ng NF-kB firefly luciferase reporter gene constructs, in combination
with 40 ng phRLTK (encodes a constitutively expressed Renilla luciferase), the
indicated constructs, and an empty vector to normalize for the total quantity of
240 ng/well transfected DNA. 24 h after transfection, cells were either stimulated
for the indicated periods or lysed in passive lysis buffer (Promega, Dübendorf,
Switzerland), and dual luciferase activity was measured in a Packard Top-Count
NXT (PerkinElmer, Schwerzenbach, Switzerland) using the Dual-Luciferase Reporter
Assay System (Promega), according to the manufacturer’s instructions.

Triton X-114 phase separation. Triton X-114 (TX114) phase separation
experiments were performed as described in Bordier.23 Briefly, 5� 106 HEK293T
cells stably expressing the indicated mutants were resuspended in 500ml PBS and
100ml 6% pre-condensed TX114, mixed by pipetting/inversion and incubated
for 15 min on ice. The samples were centrifuged for 1 min at 13 000 r.p.m., the
supernatants were transferred to new tubes, the pellets, which correspond to the
insoluble fractions, were resuspended in 200ml SDS-sample buffer by sonication.
The supernatants were incubated for 5 min at 371C to induce phase separation and
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centrifuged for 1 min at 13 000 r.p.m. at room temperature. The upper aqueous
phases were transferred to new tubes. To wash, the lower, detergent phase was
mixed with 500ml PBS, the upper phase with 100ml 6% TX114 and incubated for
5 min on ice and for 5 min at 371C. Samples were centrifuged again and the initial
phases were kept for further processing. Proteins were precipitated by adding
500ml methanol and 125ml chloroform to the aqueous phases and 450ml PBS,
500ml methanol and 125ml chloroform to the detergent phases, followed by
vortexing. Samples were centrifuged for 4 min at 13 000 r.p.m., 750ml of the upper
phases was removed and 400ml methanol was added and mixed by pipetting.
Samples were centrifuged again for 1 min at 13 000 r.p.m., supernatants were
removed and the pellets were dried under the chemical hood. Precipitated proteins
from the aqueous phase were resuspended in 200ml, those from the detergent
phase in 50ml SDS-sample buffer. Proteins were solubilized by sonication and
analyzed by western blot.

ELISA. Twenty four hours after transfection of HEK293T cells in 24-well plates,
cell supernatants were analyzed for human CXCL1, CCL20 (R&D Systems,
Abingdon, UK) and IL-8 expression (Immunotools, Friesoythe, Germany) by enzyme-
linked immunosorbent assay (ELISA), according to the manufacturer’s instructions.

Preparation of intestinal epithelial cells. The small intestine and colon
were wholly dissected from euthanized C57BL/6 mice (6–12 weeks of age), cut in ca
3-cm sections, freed from residual feces and mucus after longitudinal section and
transferred in ice-cold Hanks’ balanced salt solution (HBSS) without Ca2þ and Mg2þ

(Invitrogen). After rinsing several times in HBSS at RT, residues were shaken gently in
15 ml of HBSS containing 2 mM EDTA (pH 8.0) for 30 min at 371C. The solid material
was transferred to a new 50 ml tube containing 20 ml PBS and the supernatant was
discarded. The remaining mucosa was vortexed vigorously and the supernatant
containing complete crypts and some single cells were collected into a fresh 50 ml
tube. Single cells and crypts were centrifuged at 400 g for 5 min at 41C.
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