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Introduction

Selective decontamination of the digestive tract (SDD) is
both one of the most studied and one of the most debated
preventive measures for critically ill patients in intensive
care units (ICUs) (see box). After the first trials in
hematology patients in the 1970s [1, 2], the concept was
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Selective decontamination in European
intensive care patients

introduced in ICU populations in the 1980s [3], and fre-
quently studied in the following decade [4]. Various
different regimens were studied, including strictly oro-
pharyngeal decontamination [selective oropharyngeal
decontamination (SOD)] (see box). At the turn of the
century there were more than 50 randomized, though
mostly small and single-center, trials and several meta-
analyses. The summarized conclusions from these studies
were that SDD was associated with reductions of respi-
ratory tract infections in ICUs with low levels of
antibiotic resistance, but that improvement of patient
outcome (i.e., better ICU survival) could be demonstrated
in meta-analyses only [5, 6].

Since that time, numbers of new SDD studies declined
and this measure was not widely adopted in European
ICUs, mainly because the evidence for better patient
outcome was considered not convincing, and because of
the unknown—possibly detrimental—effects of prophy-
lactic antibiotic use on antibiotic resistance development.
The Netherlands became the exception to this rule, due to
two studies, both demonstrating survival benefits of
patients receiving SDD [7, 8]. In both studies, SDD was
used as a unit-wide intervention in ICUs with low prev-
alence of antibiotic-resistant bacteria, and in both studies
SDD was associated with lower, instead of higher, rates of
antibiotic resistance. However, the absolute 28-day mor-
tality reduction in the largest study was 3.5% (relative
reduction was 13%) and only determinable in a random-
effects logistic regression model with adjustment for
baseline differences between study groups [8]. Moreover,
in the latter study, SDD was equally effective in
improving patient outcome as SOD.

The beneficial results of SDD and SOD obtained in
Dutch ICUs raise the question of whether both measures
could be equally beneficial in other European countries.
Here, we address some methodological issues relevant to
future attempts to quantify the effects of SDD or SOD in
critically ill patients.
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Study design

The two studies in which SDD was associated with
improved patient outcome tested SDD as a unit-wide
intervention. In one study, SDD was administered to all
patients who provided informed consent in one ICU
during a 2-year study period (n = 466), and results were
compared with those of another ICU (in the same hospi-
tal) where none of the patients received SDD (n = 468)
[7]. Allocation of patients to either of the two wards was
randomized if both units had beds available, but this was
not further specified. In the other study, SDD was also
administered to all patients eligible during a 6-month
period in 13 ICUs (n = 2,045), and the results were
compared with those obtained in 6-month periods in
which all patients received either SOD (n = 1,904) or no
topical antibiotics (n = 1,990) [8]. The latter was—at that
time—considered standard of care. In this cluster-ran-
domized crossover study, each of the 13 ICUs used SDD,
SOD, and standard care during 6-month periods, with the
order of interventions randomized per center. Importantly,
in the latter study, there was no individualized randomi-
zation, which bears the risk, intrinsic to any cluster-
randomized study, of biased patient inclusion [9].
Therefore, baseline characteristics related to patient
prognosis must be included in the analysis.

There is an obvious reason to evaluate SDD and SOD
as a unit-wide measure. Both measures aim to reduce
bacterial carriage in individual patients, which may
influence the risk of acquisition of bacterial colonization
(followed by infection) of other patients. This patient
dependency might reduce the true effects of interventions
when patients with and without SDD (or SOD) are treated
in the same unit [10]. As a result, failure to demonstrate
beneficial outcome results in an individual patient ran-
domized study may not reflect true effects when using
these measures in all patients.

Outcome measures

A number of outcomes can be measured when studying
infection prevention strategies in the ICU, including
infection rates and antibiotic use, length of stay or of
mechanical ventilation, and mortality rates in the ICU or
at a fixed time-point (e.g., 28 days), or ventilator-free
days (surviving) at 28 days. Which of these is most
appropriate as the primary end-point in decontamination
studies? It is widely believed that SDD and SOD exert
their effects largely through prevention of respiratory tract
infections, such as ventilator-associated pneumonia
(VAP). As compared with SOD, the intestinal decon-
tamination part of SDD seems to reduce the occurrence of
ICU-acquired bacteremia with Gram-negative bacilli, but

it is unlikely that this effect can be determinable in sur-
vival differences [11]. Diagnosing VAP is difficult and
relies for an important part on microbiological culture
results from respiratory samples [12]. The topical antibi-
otics applied in the oropharynx, though, aim to eradicate
bacterial colonization of the upper respiratory tract, which
will inevitably influence culture results. Only samples
obtained from the distal parts of the lung that cannot be
reached by the topical antibiotics will provide reliable
diagnostic samples. Therefore, unambiguous, patient-
centered outcomes such as survival should be used as end-
points when evaluating these interventions. Moreover,
since recent studies have convincingly demonstrated that
the attributable mortality of VAP is much lower than
previously assumed, it is difficult to extrapolate a reduc-
tion in VAP incidence to improved patient survival [13—
15].

What should be the targeted mortality reduction? The
relative reduction in 28-day mortality in the Dutch mul-
ticenter study was 13% for SDD and 11% for SOD,
corresponding to absolute mortality reductions at day 28
of 3.5% and 2.7%, respectively [8]. Based on these esti-
mates, derived in units with low levels of antibiotic
resistance, at least 2,000 patients per intervention group
are needed to gain sufficient power. However, it would be
highly relevant to determine outcome effects of these
interventions on longer time scales, such as 90-day or
1-year survival, which may well enhance the number of
patients needed. Furthermore, it is difficult to anticipate
the magnitude of the effect on patient outcome in settings
with different bacterial ecology, i.e., with higher preva-
lence of antibiotic-resistant bacteria. If the preventive
effects on infection development are similar in such a
setting, but attributable mortality of infection is higher
because of more infections being caused by antibiotic-
resistant bacteria, the effects on patient survival could be
larger than those obtained in Dutch ICUs. In contrast, if
fewer infections are prevented because of antibiotic
resistance, it can be expected that effects on survival will
be smaller (or even absent).

Antibiotic resistance

The global emergence of antibiotic resistance, especially
among Enterobacteriaceae, necessitates enhanced infec-
tion control strategies, also in ICUs. In theory, SDD and
SOD could have a synergistic effect with basic infection
control measures such as hand hygiene and barrier pre-
cautions. Reductions of bacterial loads at places
frequently contacted by nursing staff (i.e., the respiratory
tract region), would reduce the likelihood of cross-trans-
mission. However, the evidence on the effects of SDD on
antibiotic resistance is highly conflicting. In settings with
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low levels of antibiotic resistance, such as Dutch ICUs,
SDD and SOD were associated with lower rates of anti-
biotic-resistant Gram-negative bacteria [7, 16], and
ongoing follow-up studies seem to confirm these findings
(M. Bonten, unpublished data).

Less certain are the effects of topical antibiotics in
settings with higher levels of resistance. There is—
already “old”—evidence that SDD can help to control
outbreaks with multiresistant Klebsiella strains [17], and
persistently low levels of resistance have been reported
from several centers using SDD for prolonged periods of
time. In contrast, in some studies, use of SDD was asso-
ciated with increasing rates of carriage and infections
caused by antibiotic-resistant (mostly Gram-positive)
pathogens [18-21].

Colistin is one of the antibiotics used in SDD and
SOD. The recent rise of infections caused by carbapenem-
resistant Gram-negative bacteria makes this agent a last-
resort antibiotic. It is therefore imperative to determine
the effects of topical use of colistin on resistance devel-
opment in Gram-negative bacteria. Furthermore, it is
unknown whether patients recolonize with resistant bac-
teria when SDD is discontinued. Another aspect related to
antibiotic resistance is the total amount of intravenous
antibiotic use. According to the “classical” SDD proto-
col, all patients should receive intravenous antibiotics
during the first 4 days. However, systemic antibiotics are
also prescribed to virtually all eligible ICU patients,
whether or not they are receiving SOD or no topical
prophylaxis at all [8]. In the Dutch multicenter study, the
total use of intravenous antibiotics (including the SDD
component) was around 10% lower during SDD and SOD
[8]. It is unknown to what extent such a reduction in
systemic antibiotic use may influence resistance
development.

Other considerations

A formal cost-benefit analysis of SDD does not exist. In
the Dutch multicenter study it was estimated that the daily
antibiotic costs of SDD and SOD were US $12 and
US $1, respectively [8]. However, especially the price of
amphotericin B has markedly risen in recent years.
Today, the commercial price of SDD and SOD would be
around €200 and €40 per day, respectively. Since the
necessity of amphotericin B as a component of SDD has
never been determined, it might be worthwhile to inves-
tigate SDD with other topical antimycotic agents (e.g.,
nystatin) [22-25].

Based on the Dutch multicenter study, one could
conclude that SOD and SDD are equally effective in
improving patient outcome. If confirmed, this implies that
the improved outcome essentially results from the effects
of the strategy on oropharyngeal bacterial carriage.

Chlorhexidine oropharyngeal care has also been associ-
ated with a 50% reduction in VAP [26], quite similar to
the reported effects of SOD [27], but the two interven-
tions have never been compared directly. A recent meta-
analysis suggests a dose—response relationship with opti-
mal preventive effects of chlorhexidine oropharyngeal
care when using a concentration of 2% [28]. If chlorh-
exidine is indeed equally effective as SDD and SOD, it
would overcome all the potential problems with using
topical antibiotics for prophylaxis in critically ill patients.

Future studies

Currently, there is only one large randomized clinical trial
registered which evaluates the effects of SDD or SOD,
again in Dutch ICUs (Table 1). Based on the favorable
results obtained in Dutch ICUs, the logical next step
seems to investigate SDD and SOD in settings with dif-
ferent bacterial ecology. However, when preparing such
studies, some important lessons can be learned from the
former studies. The beneficial effects of the interventions
tested in individual studies have only been apparent when
applied as unit-wide interventions. It is, therefore, advis-
able to apply this approach in any further study. Because
of the difficulties in objectively diagnosing VAP and the
fact that SDD and SOD cannot be applied in a double-
blind manner, it is advisable to use an unambiguous pri-
mary outcome, such as patient survival. Considering the
small absolute reduction in 28-day mortality derived in
Dutch ICUs, study groups should include at least 2,000
subjects. Detailed monitoring of antibiotic resistance is
imperative, especially for colistin resistance; finally,
studies comparing these interventions with 2% chlorh-
exidine oropharyngeal care are warranted.

SDD and SOD regimen

SDD consists of a mouth paste and of a suspension con-
taining a mixture of nonabsorbable antibiotics applied
four times daily until ICU discharge in the oropharynx
and via a nasogastric tube in the gastrointestinal tract. In
addition a systemic antibiotic is administered, usually a
third-generation cephalosporin, during the first 4 days of
ICU admission. The most widely studied regimen consists
of tobramycin, colistin, and amphotericin B as topical
antibiotics, and of cefotaxime as systemic prophylaxis.
SOD only consists of the oropharyngeal application of the
SDD mouth paste. Patients with expected length of ICU
stay [ 48 h are eligible to receive SDD or SOD.
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