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Curation of biomedical literature is often supported by the automatic analysis of textual content that generally involves a

sequence of individual processing components. Text mining (TM) has been used to enhance the process of manual biocura-

tion, but has been focused on specific databases and tasks rather than an environment integrating TM tools into the

curation pipeline, catering for a variety of tasks, types of information and applications. Processing components usually

come from different sources and often lack interoperability. The well established Unstructured Information Management

Architecture is a framework that addresses interoperability by defining common data structures and interfaces. However,

most of the efforts are targeted towards software developers and are not suitable for curators, or are otherwise incon-

venient to use on a higher level of abstraction. To overcome these issues we introduce Argo, an interoperable, integrative,

interactive and collaborative system for text analysis with a convenient graphic user interface to ease the development of

processing workflows and boost productivity in labour-intensive manual curation. Robust, scalable text analytics follow a

modular approach, adopting component modules for distinct levels of text analysis. The user interface is available entirely

through a web browser that saves the user from going through often complicated and platform-dependent installation

procedures. Argo comes with a predefined set of processing components commonly used in text analysis, while giving the

users the ability to deposit their own components. The system accommodates various areas and levels of user expertise,

from TM and computational linguistics to ontology-based curation. One of the key functionalities of Argo is its ability to

seamlessly incorporate user-interactive components, such as manual annotation editors, into otherwise completely auto-

matic pipelines. As a use case, we demonstrate the functionality of an in-built manual annotation editor that is well suited

for in-text corpus annotation tasks.

Database URL: http://www.nactem.ac.uk/Argo
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Introduction

Text mining (TM) is used increasingly to support biomedical

knowledge discovery (1–3), hypothesis generation (4) and

to manage the mass of biological literature (5). Its primary

goal is to extract new information such as named entities,

relations hidden in text and to enable scientists to system-

atically and efficiently discover, collect, interpret and curate

knowledge required for research. Due to the increasing

number of articles published each day, the curation of bio-

medical literature requires the support of automatic tools

to retrieve relevant documents and to ease the arduous

task of curation (6). TM tools are generally composed of

multiple independent processing components bridged

together in a pipeline/workflow (7). For instance, before a

textual fact about two interacting proteins can be

deposited in a database, the processing of the source text

would usually involve sentence splitting, tokenization,

part-of-speech tagging, protein name recognition and

identification and protein relationship extraction. Unfor-

tunately, TM components (resources, tools) available for

biomedical TM usually come from different sources and

lack interoperability. To overcome the obstacle of

combining TM components effectively, the Unstructured
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Information Management Architecture (UIMA) (8) has been

widely adopted. UIMA defines data representations and

interfaces to support interoperability between such pro-

cessing components. UIMA is general enough to handle

various kinds of media such as text, audio, image or

video; however, in this work we are interested in utilizing

a UIMA-based workbench in text processing.

UIMA has drawn significant attention from developers in

the biomedical TM community, which has resulted in the

development of several resources compliant with the

framework, such as Carnegie Mellon University’s UIMA

Component Repository (http://uima.lti.cs.cmu.edu:8080/

UCR/Welcome.do), BioNLP UIMA Component Repository

(9), JULIE Lab’s UIMA Component Repository (JCoRe) (10)

and Open Health NLP (https://cabig-kc.nci.nih.gov/Vocab/

KC/index.php/OHNLP). However, UIMA component reposi-

tories usually provide only limited support for build-

ing task-oriented systems such as a curation system.

U-Compare (11,12) addresses this problem by providing a

common type system that provides a drag-and-drop gra-

phic user interface (GUI) as well as comparison, evaluation

and result visualization mechanisms. U-Compare has a

number of useful plug-ins for creating workflows (11) and

currently contains more than 50 biomedical TM tools whose

performance can be compared within the workbench itself.

Inspired by U-Compare, we have developed Argo—a

workbench with a GUI for creating automatic as well as

manual annotations derived from TM components. Unlike

previous solutions that were almost completely inaccessible

to a non-technical audience such as annotators, or database

curators, Argo is user- and task oriented, thus suitable for

curation teams.

The key features of Argo and how it adds value to

U-Compare include:

� The user interface is accessible entirely through a web

browser. There is no software installation involved.

� The processing of user-defined workflows is performed

on one or multiple ‘remote’ machines. The user’s ma-

chine is not used for processing.

� The system accommodates users with various areas of

expertise. The components available to, e.g., curators

are on a higher level of abstraction than those available

to text miners who deal with the minutiae of linguistic

processing.

� Argo incorporates user-interactive processing compo-

nents designed specifically for a non-technical audience.

� Due to its distributed nature, the system supports user

collaboration. The users can share their workflows, data

and results with others.

� Application functionality updates are carried out with-

out the users’ involvement.

� Argo allows software developers to build their own cli-

ents and communicate with the provided web services.

Argo also naturally supports software developers by

taking away the burden of having to build peripheral, yet

crucial elements of a complete UIMA system, allowing the

developers to focus on building individual processing

components.

Section 3 describes the above-mentioned features in

detail, whereas Section presents generic and real-world

use cases.

Related work

TM has been used to enhance the process of manual bio-

curation before. In the comparative toxicogenomics data-

base (CTD), TM has been used to improve the process of

biocuration, but was mostly focused on information

retrieval (13). Kleio (14), a TM-based search platform,

which is based on semantic types, provides a wide range

of semantic search functions that allow users to customize

their queries using semantically based facets. Document re-

trieval based on semantic types radically reduces the search

space and reduces false positives. Other uses of TM in

biocuration include protein–protein interactions (15)

with an estimated 70% reduction in curation workload of

yeast–protein interactions using PreBIND/Textomy.

Karamanis et al. (6) reported that FlyBase records

were completed 20% faster when using PaperBrowser

TM tools and Van Auken et al. (16) deployed Textpresso

in the curation pipeline of proteins with Gene ontology,

reporting an efficiency increase of 8-fold over manual

curation.

Most of the reported TM tools for curation are used for

specific databases and tasks. For instance, ODIN (17), a

web-based tool for the curation of biomedical literature,

is equipped with a fixed set of biomedical named entity

recognizers and comes with a user interface, which is tai-

lored for tasks related to the recognized named entities.

Argo, on the other hand, is not related to any specific

task. To the contrary, it allows the users to define their

own tasks. Therefore, Argo is not only a collaborative and

modular system of information extraction that links the

manual and automated annotation of textual documents,

but it also allows the curators to build workflows (process-

ing pipelines), which define the task at hand.

The idea of providing a convenient interface for users to

build processing pipelines has been proposed previously.

Notable examples of such systems include Taverna (18),

Galaxy (19) and GATE (General Architecture for Text

Engineering) (20). As far as systems designed specifically

to handle text processing are concerned—apart from al-

ready discussed U-Compare—GATE is the most closely

related system. The key difference between GATE and

Argo (or any other UIMA-based system) is that GATE is pri-

marily intended to support programmers by providing an

integrated development environment (IDE), rather than

.............................................................................................................................................................................................................................................................................................

Page 2 of 7

Original article Database, Vol. 2012, Article ID bas010, doi:10.1093/database/bas010
.............................................................................................................................................................................................................................................................................................



being a workflow-supporting framework. Moreover,

GATE does not define any data type hierarchy capable of

assisting interoperability between processing components.

However, the most pronounced advantage of Argo over

other systems lies in its ability to seamlessly incorporate

user-interactive components into otherwise completely

automatic pipelines as well as its ability to accommodate

users with various areas of expertise. To the best of our

knowledge, Argo is the first such solution.

One of the user-interactive components, the annotation

editor, was designed based on experiences gained while

using XConc (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

home/wiki.cgi?page=XConc+Suite). XConc is an annotation

suite that was developed as a plug-in for Eclipse, an IDE

designed primarily for software developers. Among other

tasks, XConc was used for mapping text with manually

curated pathways (21). Although it allows for rich expres-

sive power, its dependency on Eclipse makes its usage chal-

lenging for a non-technical audience. Argo, in contrast,

uses a web browser, which is a more intuitive, general-

audience medium.

System overview

User interface

The user interface of Argo is accessible entirely through a

web browser. The browser communicates with the server

through a series of asynchronous calls (i.e. there is no navi-

gating between or reloading pages), which makes user

interaction with the system fast and non-distracting.

A screen capture of the interface in use is shown in

Figure 1. The main panel of the interface is a canvas onto

which the users drop graphical elements representing, in

most cases, processing components from the side panel.

The side panel is the central navigation element organized

into categories of objects that the users are allowed to

manipulate. These are:

Documents. Documents are resources containing

text and are the primary subject of processing.

Documents may also be the result of processing, e.g. a

workflow may end with a consumer that saves the ex-

tracted annotations into an XML file (which can be further

reused in other workflows or exported to a relational data-

base). Multiple documents may be grouped in folders that

in turn can be further nested and ultimately resemble the

familiar filesystem.

Components. The processing components form the most

intrinsic objects of the system from the user’s perspective.

Processing components are enclosed algorithms that, in

their most typical use, process the input data and produce

its annotation-augmented version as an output. Each pro-

cessing component defines the input and output types it is

capable of handling. Thus, a single processing component

expects an input CAS to contain annotations of particular

types. A component may define multiple input and output

types.

Workflows. Multiple processing components intercon-

nected in a specific, user-defined order form a workflow.

Workflows are created and manipulated by selecting the

processing components from the side panel and placing

them onto the diagramming canvas. Workflows are the pri-

mary subject of ‘executions’.

Figure 1. Screen capture of Argo’s web-based GUI.

.............................................................................................................................................................................................................................................................................................

Page 3 of 7

Database, Vol. 2012, Article ID bas010, doi:10.1093/database/bas010 Original article
.............................................................................................................................................................................................................................................................................................



Executions. This category lists the current and past exe-

cutions of workflows. It consists of information such as the

time of execution, duration and current progress. An exe-

cution does not terminate unless it is complete or the user

explicitly deletes it. The user can start running the execu-

tion, close the browser and then come back to it later to see

the current progress of execution. This is a useful feature

particularly with computationally expensive workflows or

large inputs.

Processing components and workflows

UIMA differentiates between two types of processing com-

ponents, namely ‘readers’ and ‘analysis engines’. Whereas

the former act as source components that read the input

data to be processed further in the pipeline, the latter

update CASes with new annotations and pass the updated

versions further. ‘Consumers’ constitute a notable subclass

of analysis engines. They are capable of serializing CASes to

storable formats, such as plain-text files, XML files, data-

bases, etc.

The system comes with a predefined set of processing

components and workflows for various tasks, from sen-

tence splitting and tokenization, to named-entity recogni-

tion, to database storage. Argo also allows the users to

deposit their own components as long as they comply

with the UIMA specification.

A special type of processing components is a user-

interactive component that requires input from the user.

If user-interactive components are present in a workflow,

the processing of the workflow pauses at which point the

user is expected to provide some sort of input, which in

most cases will be manual annotation. Argo provides an

example of a user-interactive component: a general-use an-

notation editor. The editor allows for adding new span-

of-text annotations, removing or modifying previously

identified annotations and adding metadata. The anno-

tated spans of text can embed or even overlap with other

spans. In both cases the editor marks and displays the an-

notations in a lucid and visually unambiguous manner.

Figure 2 shows a screen capture of the annotation editor

in action.

A read-only version of the annotation editor is used to

visualize annotations in Argo. This is a convenient way of

quickly verifying the annotations produced with the cur-

rent workflow before serializing the results to other—more

useful—formats.

Technology

The user interface brings together technologies such as

Google Web Toolkit (GWT) (http://code.google.com/webt-

oolkit), a development toolkit for building web-based

applications, and Scalable Vector Graphics (SVG) (http://

www.w3.org/TR/SVG/), an open standard for describing

Figure 2. Annotation editor in action: the user is about to add an annotation manually to automatically pre-annotated text.
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vector graphics, which is widely supported by web browsers

and is heavily utilized in the annotation editor.

The client–server communication is accomplished

through well-established web service protocols, SOAP

(http://www.w3.org/TR/soap12-part1) and REST (22). The in-

clusion of web-service protocols is a purposeful effort to

allow software developers who wish to build their own sys-

tems to connect directly to the Argo server (in fact, a

number of dedicated load-balanced servers). For instance,

a workflow created with the Argo interface, may be used

directly in the user’s client. Additionally, the distributed

nature of the system means that the custom-built clients

will be able to immediately take advantage of any changes

made by workflow designers, which abstracts away the

inner workings of the custom-built client from the work-

flow and its future modifications. This significantly acceler-

ates the collaborative development cycle.

Use cases

Workflows

The following generic use case is based on a simple task of

annotating the occurrences of species names in a stream of

documents coming from the output of a search engine.

One of the requirements is that the task should be carried

out in a semi-automatic fashion, where the automatic part

is responsible for tagging the species names to the best of

its capacity, whereas the manual part involves verifying and

possibly editing the automatically recognized instances.

The use case illustrates two scenarios of using the work-

bench by two types of users: one without a technical back-

ground and another with a certain level of proficiency in

natural language processing (NLP).

Figure 3 shows two workflows, one built by the user with

an NLP background, and another by the non-technical user.

The workflows include two components common for both:

the Kleio search that retrieves MEDLINE abstracts matching

a query specified as the component’s parameter, and the

Argo manual annotation editor. The user with an NLP back-

ground would most likely build the species names recog-

nizer (tagger) using atomic NLP components such as a

sentence annotator, a tokenizer and a dictionary-based

tagger, as shown on the left-hand side of Figure 3.

However, the non-technical user, who is not familiar with

NLP, would possibly want to use a self-contained species

tagger—one that contains all the necessary NLP processing

inside—as shown on the right-hand side of Figure 3.

Fortunately, Argo supports ‘aggregate components’, i.e.

components that contain other (atomic or aggregate) com-

ponents. Thus, the specialist can take care of the minutiae

of NLP processing and create an aggregate component (in

this case consisting of the sentence annotator, the

tokenizer and the tagger), which will later be available to

the non-technical user.

It is worth noting that, although the workflows depicted

in the figure are complete (in the sense that they are ready

to be executed), they lack an end component that would

write the processed data to a permanent format such as

database. In most curation tasks, this component needs to

be implemented and tailored to meet the requirements of

the underlying task- and/or organization-specific database

structure.

Annotation editor

The Argo annotation editor is currently being used in an

annotation task, whose goal is to extract interactions be-

tween enzymes and marine drugs in over 230 full-text art-

icles from biomedical journals. Two annotators work

individually and are supported by processing components,

which automatically find the named entities in text and

identify phrases with potential mentions of interactions.

The automatically recognized entities consist of enzymes

and marine drugs. The annotators’ task is to verify if the

automatically identified named entities are correct, and

manually annotate words or phrases signalling interactions

Figure 3. Examples of workflows performing the same task,
built in Argo by an NLP expert and a non-technical user.
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between the named entities, as well as specify the roles,

such as ‘agent’ and ‘target’, played by each of the named

entities participating in the interaction. Figure 1 is, in fact, a

screen capture of this task’s setup.

The annotators have a background in biology and prior

experience in using annotation tools, such as XConc. For

this task, they are asked to provide ‘complete’ annotation,

i.e. to create a ‘gold-standard corpus’. This corpus will later

be used to train automatic processing components, which,

in turn, will be utilized to find enzyme–drug interactions on

a broader scale.

Statistics derived from a subset of 30 fully annotated art-

icles show that on average there are about 128 automatic-

ally recognized entities (enzymes, drugs and phrases) per

document, of which the annotators removed (as being false

positive) on average about 4.6, modified (e.g. extended or

narrowed down the annotation’s boundaries) about 1.7

and added a further 6 per document. Table 1 shows a

more detailed view.

Together with the additional annotations with

labels that had not been automatically pre-annotated,

the number of annotation actions (additions, modifications

and removals) came to about 24 on average per document,

which constitutes <16% of the total number of extracted

annotations, i.e. the automatic processing was responsible

for the completion of �84% of the task.

The inter-annotation agreement on the interaction men-

tions (the main objective of the task) was at the level of

55% in F1 score. However, relaxed matching shows that the

agreement was actually as high as 82%. The relaxed match-

ing takes into consideration overlapping annotations, and

not only exact matches. For instance, one of the annotators

would consistently add modality (e.g. ‘would affect’ instead

of simply ‘affect’) or manner (e.g. ‘significantly increase’

instead of ‘increase’). These inconsistencies between anno-

tators come from the annotators’ interpretation of the

task-specific annotation guidelines, and are not the result

of inability to operate the annotation editor.

Apart from being given the annotation guidelines with a

few examples with screen captures of the system, the

annotators did not receive any training on how to use the

annotation editor. Both annotators agreed that the editor is

intuitive, as well as easier and faster to use than the tools

they had previously used (e.g. XConc). They spent 12.6 min

on average per full-text article. Given that the average size

of the articles was about 4800 words, this results in about

380 words/min, which is slightly higher than the average

reading speed of an average reader. This may stem from

the fact that the annotators were not required to thor-

oughly understand the article and most likely elected to

skim sections that did not mention enzymes or drugs.

In comparison to XConc, the Argo annotation editor’s

biggest productivity enhancement is a sharp learning

curve. XConc requires familiarity with Eclipse (an IDE it is

embedded in), and thus its usage might be prohibitive to

the non-technical user. The Argo editor, on the other hand,

does not require any prior training and its usage shares

similarities with general-purpose tools, such as word

processors.

Ongoing and future work

Ongoing work includes improving the system access man-

agement that is a key feature in achieving true distributed

user collaboration. Users will be able to collaborate in groups

and share—individually or as a whole—anything from the

input documents, to processing components, to workflows,

to the partial or full results of workflow executions.

One of the most significant advantages of Argo over

other systems will come with the addition of an ‘annotation

task editor’. The editor will allow the user to define flexible

type systems with sophisticated relationships between the

types, ‘type constraints’, a novel approach to UIMA type sys-

tems. The user will be capable of expressing constraints such

as ‘type Binding must be associated with at least two Protein

types via the Theme roles’. The editor will provide a GUI with

the familiar drag-and-drop mechanism that will make the

definition of the annotation task more intuitive and unam-

biguous (which is often a problem with annotation guide-

lines written in plain language). Once an annotation task is

defined, it will serve as an annotation guideline for manual

annotation (after automatic and unambiguous translation

to the plain-language version), a validator of manual and

automatic processing components, as well as a configur-

ation component for automated recognition tools.

We also continue to introduce new components to the

ever-increasing library of processing components. In par-

ticular, we are planning on adding two Conditional

Random Field-based (23) generic annotation components:

one for building a statistical model representing already

annotated data, and another for annotating new data

based on the previously built model that will be passed to

the latter as a parameter. The two components will particu-

larly be of interest to users with no or limited technical

background who have a sample of manually annotated

data and wish to increase it by means of automatic

processing.

Table 1. Average number of annotations per document per
label for the enzyme–drug interactions task

Label Pre-annotated Added,

N (%)

Modified,

N (%)

Removed,

N (%)

Enzyme 114.3 4 (3.5) 0.7 (0.6) 2.7 (2.3)

Drug 10.5 1 (9.9) 0.5 (4.6) 0.5 (4.8)

Phrase 3.6 1 (27.8) 0.5 (13.4) 1.5 (40.7)

Total 128.4 6 (4.7) 1.7 (1.3) 4.6 (3.6)
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Conclusions

By using an interoperable framework wrapped in an intui-

tive user interface, Argo is able to leverage existing and es-

tablished TM tools using a modular approach. This enables

user- and task-oriented applications. The modular approach

allows the system to be adapted and its parts reused for new

domains, and for analysis and comparison pipelines using

different permutations of modules to be evaluated, produ-

cing incremental performance gains on established tasks.

As we are leveraging NaCTeM’s U-Compare platform and

TM workflow environment, we can integrate them seam-

lessly into the curation pipeline linking them with the

manual and automated annotation of textual documents.
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