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ABSTRACT
A method is discussed for DNA or protein sequence
comparison using a finite field fast Fourier transform,
a digital signal processing technique; and statistical
methods are discussed for analyzing the output of this
algorithm. This method compares two sequences of
length N in computing time proportional to N log N
compared to N2 for methods currently used. This
method makes it feasible to compare very long
sequences. An example is given to show that the
method correctly identifies sites of known homology.

INTRODUCTION

Major research effort in recent years in the field of nucleic acid
and protein sequencing has resulted in massive databases of
nucleic acid and protein sequences. Users of these databases often
wish to determine the degree of similarity between pairs of these
biosequences. This article is concerned with the application of
digital signal processing (DSP) methods, especially fast
convolution algorithms and the fast Fourier transform, to the
problem of searching biosequence databases for similarity. For
an exposition of DSP algorithms see (1). DSP methods are
currently applied, for example, in the fields of sonar, radar,
seismology, tomography, and computerized photographic image
enhancement. We believe that DSP methods are also a rich source
of techniques for biosequence analysis. To illustrate the
possibilities, this paper puts forth a particular biosequence
application.
The most rapid current methods of sequence comparison are

very rapid, and there is probably not a generally perceived need
among molecular biologists for faster methods. However, this
situation is likely to change as the size of the databases increases.
It seems likely that either there will be need to screen sequences
which are orders of magnitude longer than those currently
studied, or there will be a need to do simultaneous screening of
a large number of sequences.
DSP methods do not deliver exactly the same kind of

information as standard methods. We believe that it is worthwhile
to explore what kind of information can be obtained and to
develop statistical methods to analyze this information. DSP
methods are not capable of simply accelerating the speed of
algorithms that are currently used for sequence analysis. There
are steps in the currently used algorithms which seem impossible
to replicate using DSP methods. For example, DSP methods seem

to be unable to distinguish between consecutive and non-
consecutive matches. On the other hand, certain information can
be obtained much more rapidly by DSP methods than by standard
methods. For example, the method described here produces a
list of the total number of exact matches in each alignment of
two sequences. This abundance of information requires statistical
analysis in order to determine which alignments are significant.
While we cannot compare DSP methods with standard methods
in accomplishing precisely the same tasks, we shall give an
example which verifies that the DSP method discussed below
identifies the 'correct' alignments of sequences.
Using DSP methods, we have developed an experimental

computer program for DNA sequence comparison. We do not
have a full-featured, completely documented program suitable
for public distribution which we can offer as an alternative for
current sequence comparison programs. The current capabilities
of the program are too special to serve as a tool for molecular
biologists. The program is intended to research the potential of
DSP methods. The program compares two DNA sequences, each
of length 1024 or less. A DSP method of sequence comparison
is inherently faster than current methods because an N log N
method inevitably gains a speed advantage over an N2 method
if N, i. e. the length of the sequences, is large enough; however,
N = 1024 may not be large enough to demonstrate an advantage
over current methods. Presently, our greatest concern is not speed
but correctness. We wish to show that it is possible to devise
a DSP program that satisfactorily identifies sites of similarity.
The application of the fast Fourier transform to biosequence

similarity searches has been previously discussed by Felsenstein
et al. in (2). We believe that they underestimate the potential
usefulness of this method. They state certain problems which we
discuss below.

a. The method cannot detect insertions or deletions. If insertions
or deletions are present, more than one alignment exhibits an
unusual number of matches. In this article, we introduce statistical
methods which answer this objection by developing statistical tests
to determine if a significant number of alignments exhibit an
unusually large number of matches.

b. The method cannot determine whether matches are
consecutive or not. On the other hand, methods which select on
the basis of contiguity miss significant alignments in which
matches are-separated by substitutions. DSP methods have not
been researched sufficiently to say that there is no way around
this problem.

k.) 1990 Oxford University Press
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c. 7he method involves cumbersome calculations with complex
floating-point numbers. This difficulty is avoided by usingfinite
field fast Fourier transforms. This avoids the use of complex
numbers. Only integer arithmetic is involved, and a large
proportion of the multiplications in the algorithm can be reduced
to bit shifts which are much more rapidly executed on the
computer than true multiplications.
The problem of searching for similarities in strings of

characters is of general interest in the field of computer science.
The problem of searching for exact matches is considered in (3)
and (4). Methods of biosequence comparison seek a degree of
similarity rather than an exact match. See (5) for a review of
current methods for biosequence comparison. The most powerful
methods, the dynamic programming algorithms, model the
process of biological evolution by constructing an optimal series
of transformations that carry the one sequence through a chain
of intermediate sequences ending finally with the second sequence
(6). Each transformation contributes to a similarity score.
Dynamic programming methods are capable of uncovering subtle
relationships; however, these methods are too slow for large-
scale database searches.
Rapid methods for sequence comparison generally count the

number of matches for each alignment of the sequences. For
example, the dot-natrix method (7) produces a rectangular array
of dots; a dot appears in the ith column of the jth row if item
i in the first sequence matches item j in the second sequence.
Dots on a particular NW to SE diagonal line represent matches
in the corresponding alignment of the sequences.
Some rapid methods count matches with a suitable weighting

factor if a certain matching criterion is met. The matching
criterion, for example, may require that, for some fixed integer
k, k contiguous characters of the two sequences are identical (8).
A weighting factor may give a higher score to matches that are
considered less likely (9). Dynamic programming can be used
after an initial screening by means of more rapid methods (9).

In order to use DSP methods, the character sequences are
translated into suitable numerical sequences. We obtain similarity
information from the numerical sequences by convolution, an
arithmetic process. The convolutions are then computed by fast
DSP methods. This similarity information is then interpreted by
statistical methods.
For comparison of two sequences of length N, the best current

methods use algorithms that require, at least in the worst case,
computation time proportional to N2. We present here a method
with computation time proportional to N log N. This greatly
extends our ability to compare very long sequences.
The key to our method is the use of a variant of thefast Fourier

transform (FFT). See (1), especially chapter 6. In this application
the standard FFT has the disadvantage of replacing mere
character-by-character comparisons with rather complex floating-
point arithmetic. This problem is eliminated by doing the
arithmetic in a suitable finite field of integers instead of the field
of complex numbers. Improvement results because integer
arithmetic is faster than floating-point arithmetic and because in
a suitably chosen finite field most of the multiplications of the
FFT algorithm become bit shifts which are computed much faster
than true multiplications.
Although our methods also apply to protein sequences, for

simplicity we refer below only to DNA sequences.
Our method can be considered a variant of the dot-matrix

method described above. However, the output of our method
consists of the total number of matches for each character (A,

C, G, and T for DNA sequences) for each alignment of the two
sequences (without regard for contiguity). For each alignment,
the sum of the total number of matches is equal to the number
of dots in the corresponding diagonal of the dot-matrix. For large
sequences, this information can be obtained very much faster than
the dot-matrix.
Our technique differs from those commonly used in that it does

not distinguish between contiguous and noncontiguous matching
characters. The advantage is that our method is more sensitive
in detecting string transformations by substitution. The
disadvantage is that the method is not able to give greater
significance to matches when they are contiguous. Our technique
shares with all rapid methods a difficulty in detecting string
transformations by insertion or deletion. Nevertheless, when an
insertion or deletion occurs, similarity may be detected by
observing a large number of matches in two or more separate
alignments. The overriding advantage of the method is speed.
This method is intended as a screening method. Supplemental
dynamic programming methods can be used to confirm and
elaborate probable sites of similarity.

In the next section, we define the FFT and develop the basic
comparison algorithm.

In the last section, we discuss the statistical analysis of the
output of the comparison algorithm. In particular, we analyze
a test of similarity using extreme values.

THE COMPARISON ALGORITHM

Let

(2.1) v = tvj, j= 0,..., n-II
be an vector of complex or real numbers. The discrete Fourier
transform of v is defined to be the complex vector V of length
n given by

(2.2)
Vk = VOWO k + VIwi k + ... + vn_lw(n-)-k, 0 sk <n-I

where w is the primitive nth root of unity, exp(-2-ri/n). The
number n is called the block-length.
We define the inverse Fourier transforn of a vector U to be

the vector u given by

(2.3)
Uj = (UOwO0i + U1w1 j + ... + U"_1w(n-1)ij)/n, 0 sj <n--

The inverse Fourier transform is a true inverse in the sense
that for any vectors v and V related according to (2.1) and (2.2),
v is equal to the inverse transform of V.
Our application of the Fourier transform uses the following

fact, known as the convolution theorem. For any pair of real
or complex n-dimensional vectors f and g define their convolution
to be the vector e given by
(2.4)
ej= fU-0go + ffij-1g1 + --- + fi-n+1gn-1, 0 <j <n-I

where

-k k if k .-0k + n otherwise.

The convolution of f and g is denoted f * g.
Let F and G be vectors of length n. We define F - G to be

the vector E given by
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(2.5) Ek = FkGk, 0 <k n-1

The following assertion is called the convolution theorem. Let
F and G be the Fourier transforms of f and g respectively. Then
the Fourier transform of f * g is F * G. Equivalently, the inverse
Fourier transform of F * G is f * g.
For sufficiently large n, use of the convolution theorem is faster

than the direct method for computing the convolution of f and
g. Note that it is easier to compute F * G than f * g. In fact,
F * G requires n multiplications and one addition whereas f * g
requires n2 multiplications and n additions. Moreover, the fast
Fourier transform (FF1) and the inverse FFT require of the order
of n log n multiplications and additions. More precisely, there
are constants M and A not depending on n such that the number
of multiplications is less than Mn log n for all n, and the number
of additions is less than An log n for all n. The standard way
of expressing this fact is to say that the number of multiplications
and additions are each O(n log n). As a consequence of the
above, for sufficiently large n, it is faster to compute the FFT's
F and G, then F - G, and finally the inverse FFT of F * G,
than it is to compute f * g directly.

It is advantageous to replace the complex number field in the
definitions above with a finite field, the field of integers modulo
a prime number p. Let w be a number between 0 and p. The
order of w is defined to be the smallest integer n such that
wn 1 mod p. For vectors of size n of integers, we may
define a Fourier transform, and an inverse Fourier transform by
reinterpreting the formulas (2.1-2.3). All equalities are
interpreted as congruence modulo p. We use the w we have just
discussed instead of the complex nth root of unity. The
convolution theorem holds exactly as before. We obtain exactly
the same results computing convolutions using this version of
the convolution theorem provided all the numbers involved are
nonnegative integers less than p. We shall call this type of Fourier
transform a finite field Fourier transform (F3T). There are also
fast counterparts of these calledfinitefieldfast Fourier transforms
(F4T). We have written a computer program for a F4T using p
equal to the Fermat prime 216 - 1 = 65,537 and n equal to
210 = 1024. See (1) pp. 180-182. With apologies for
alliterative excess (Ferrmat finite field fast Fourier transform),
we will name this transform F5T. For F5T, most of the
multiplications reduce to bit shifts which are much faster than
true multiplications. Using an IBM-AT microcomputer our
program computes F5T's of four numerical sequences of length
1024 simultaneously in about two seconds.
We now give a method of translating sequences of characters

into numerical vectors. We will then show how convolutions of
these vectors bear on the problem of sequence comparison. For
definiteness we consider the case of nucleic acid sequences which
consist of strings of length L c n of the four characters A, C,
G, T. Note that it is permissible for the length L of the sequence
to be less than the block-length n. Let a be the vector given by

(2.6) a =1 if j c L and the jth character is an A
0 otherwise, j c n.

Note that if the length of the sequence L is greater than the block-
length n, then aj = 0 for j such that L < j < n.

Similarly, define the vectors c, g, and t with respect to the
incidence of the characters C, G, and T. Let A, C, G, and T
be the respective FFT's.

Consider the problem of comparing this sequence with a second

sequence of length M. The sequences are compared by totaling
the number ofmnatching paired characters under every possible
alignment.

First consider the case that L = M = n. When we compare
the first sequence with an offset of the second sequence, there
are characters at the beginning of the first sequence and at the
end of the second sequence which are not paired with any
character. For the alignment shown below n is 15 and the number
of matches is 4.

(2.7) ATCACAAGTACCTTA
TTGTTAACTAACGTA

This type of comparison is called linear comparison. There
is another type called cyclic comparison in which we consider
the first character of each sequence to be successor of the last
character. In other words, in cyclic comparison we consider each
of the sequences to be circular. Applying this tpe of comparison
to the above alignment (2.7) adds one more match making a total
of 5 instead of 4.

(2.8) ATCACAAGTACCTTA
ACGTATTGTTAACTA

In effect, we are lumping two different alignments in the original
formulation, namely the alignment (2.7) and

(2.9) ATCACAAGTACCTTA
TTGTTAACTAACGTA

If one or both of the sequences is shorter than the block-length,
then the sequences must be padded with blanks. Consider alter-
ing the above example so that n = 15, L = 9, and M = 7.
Blanks are indicated with '*'.

(2.7') ATCACAAGT* * * ***
TTGTTAA ********

For this example, cyclic comparison and linear comparison
produce exactly the same number of matches. This is true not
only for this particular alignment, but for any alignment of these
two sequences, because all of the newly introduced pairs in the
cyclic comparison have at least one member which is a blank.
(Pairing a blank with a blank does not count as a match.) In
general the cyclic comparison is the same as the linear comparison
provided that L + M < n + 1. Although cyclic comparison
is more suited to the convolution method and has a simpler
statistical analysis, linear comparison is more natural for the
biosequence application. The convolution method can be used
for linear comparisons provided that the above inequality is
satisfied.

Suppose L = M = n and that we wish to make a cyclic com-
parison of the sequence described by the vectors a, c, g, and
t, with a second sequence of the same length. Define a', c', g',
and t' to be the character vectors for A, C, G, and T, as above,
but for the second sequence of characters in reverse order.
Note that the jth components (0 c j c n-1) of the vectors

(2.10) A = a * a', C = c * c', G = g * g', T = t * t'

are equal the number of times an A (respectively C, G, T) in
the first sequence matches an A (respectively C, G, T) in the
alignment with the second sequence in which the first character
of the first sequence is paired with the (n - j - I)th character
of the second sequence. In other words, the convolution vectors
consist of the total number of single-character matches. We will



3004 Nucleic Acids Research, Vol. 18, No. 10

call the convolutions A, C, G, and T match vectors. The FFT
is used to compute the match vectors.
These methods can be easily adapted to the computation of

weighted averages instead of mere totals. Particularly for protein
comparisons, weights may be taken large or small according as
the matches are scarce or widespread, and, for non-identical pairs,
weights are assigned to evaluate the replacement likelihood. The
PAM250 matrix (10) provides weights for protein comparisons.

not statistically independent. Nevertheless, the means are given
by (3. 1a-d), and the variances are given by

(3.2a-d)
aa'(N-a)(N-a') 2-

N2(N-1)
2 = gg'(N -g)(N- g') 2T =

N2(N-1)

cc'(N -c)(N -c')

N2(N- 1)

tt'N(N-t1t')
N2(N-1)

STATISTICAL ANALYSIS

The match vectors discussed in the previous paragraph can be
computed quite rapidly using, for example, F5T. We now
discuss the problem of the statistical analysis of the match vectors.
In particular, we want to determine if a particular set of match
vectors represents a significant similarity between the two
sequences from which they were derived.

Statistical tests can be devised to detect similarity. We discuss
two types of tests, the first using measures of dispersion, the
second using extreme values. A measure of dispersion tests for
average similarity over all alignments. Extreme values identify
the most significant alignments. Current search techniques
generally adopt the second view of similarity.

Mean and Variance

For simplicity we first assume that the two sequences to be
compared are of the same length. The mean of a match vector
is determined completely by the number of characters in each
of the two sequences and the length. In fact, let a and a' be the
number of A's in the first and second sequences, respectively,
and let N be the common length of the sequences. Note that given
a character in the first sequence and a character in the second
sequence, there is exactly one alignment in which these two
characters are matched. There are N alignments, and the number
of AA pairs possible is aa'. Thus the mean number of AA pairs
per alignment is

(3.la) AA = aa'/N.

Similarly, the mean number of CC's, GG's, and TT's are,
respectively,
(3. lb-d) Ac = cc'/N, AG = gg'/N, ItT = tt'/N.

In order to compare sample variances of sequences with
differing proportions of A, C, G, and T, we use (3.1) and (3.2)
to standardize the match vectors variables A, C, G, and T.

(3.3a-d) A*i = (Ai
C* = (Cj
G*1= (Gi
T*i = (Ti

(O <i

- AA)IUA
- tic)/oc
- tG)/'G
- IT)/IT
cn-1)

A complication arises if, as in linear comparison, one or both
of the sequences are shorter than the block-length. In that case
formula (3.1) needs to be reinterpreted because, for any
alignment, matches can occur only in the region in which the
sequences overlap. The length N in formula (3.1) is the length
of the overlap. Similarly, a, a', c, c', etc., represent the numbers
of A's, C's, etc. for each of the sequences in the overlapping
region. This means that the variables N, a, a', etc., may have
different values for different alignments. This additional
information can be obtained using the convolution method.
Formulas (3.1), (3.2), and (3.3) have obvious reinterpretations
if the sequences are shorter than the block-length.
A significantly high variance of the standardized variables can

be taken as an indication of significant similarity. A chi-square
test could be used in the case of independent trials. If the non-
similarity hypothesis specified that each alignment were shuffled
independently, then we would have independence and we could
use chi-square. Unfortunately, this hypothesis is inconsistent with
the manner in which our data is actually generated. Nevertheless,
ignoring this difficulty, we have used chi-square on Genbank
sequence data and have found that the values of chi-square
correlate with known cases of sequence similarity, but it is
difficult to interpret the meaning of chi-square confidence levels.

Every sample has the same mean. This surprising property is
possible because the components of the match vector are not
statistically independent.
On the other hand, if a measure of dispersion, such as the

variance, is large, it means that some alignments have a relatively
large number of matches. This justifies taking a measure of
dispersion as a measure of similarity of the sequences.
There is more than one possible probability model for non-

similarity. Such a model could be based empirically on properties
observed for actual biosequences. Consequences of various
models of non-similarity are discussed in (1 1). Here we will base
our further development on a simple model which represents a
first order approximation. Our model of non-similarity is that
sequences with a given proportion of A's, C's, G's, and T's are
generated by shuffling randomly the order of the characters while
keeping fixed the total number of each character. Under this
hypothesis, the statistical distribution of the number of matches
for any particular alignment is hypergeometric. (See, for
example, (12) pp. 179 and 218) However, the number of matches
for different alignments of the same two sequences are obviously

Screening by Extreme Values
Researchers are currently more interested in pinpointing the few
most significant alignments rather than analyzing the average
significance of a batch of alignments. In this section we consider
a particular screening procedure for similarity which implements
this concern. If there are alignments for which the number of
matches exceeds a certain critical value, Z, then we flag those
alignments for further analysis, say using a Needleman-Wunsch
algorithm (6). In using the FFT we examine alignments in batches
of a certain size which we denote n. We say that a type I error
occurs if in screening a batch of n alignments we overlook
significant matches, and a type 2 error occurs if we flag one or
more alignments which are not significant. The probabilities of
the two types of errors depend on the choice of critical value,
the lengths of the sequences, etc. In this section we analyze the
dependence of type 1 and type 2 errors on the various parameters.
We begin with a discussion of type 2 errors. Our analysis

depends on extreme value theory. Let Z1, Z2, ... be a sequence
of independent and identically distributed random variables.
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Classical extreme value theory (13) determines the asymptotic
distribution of

Mn= max(Z,, Z2, .-- Zn)

as n tends to infinity. It has recently been shown (14) that the
principal results of this theory remain valid under certain
conditions of stationarity and mild dependence. These results have
implications for the biosequence comparison problem, at least
in the case in which one of the sequences being compared is much
longer than the other.

In order to make use of asymptotic results, we must idealize
the comparison problem. We suppose that one of the sequences
being compared is infinite in length and the other has length M.

In order to study type 2 errors, we test a model of non-
similarity in which the underlying biosequences are sequences
independent random variables. Let z; be the total number of
matches for the ith alignment, and let Zi = (zi-,I)/ur where ii
and ij1 are the mean and variance of z1; i. e. Z, is the
standardization of z;. The assumption of stationarity needed for
the extension (14) of extreme value theory requires that the joint
distributions of

(3.4)
and

zI'lz2 . ' Zik

Zi, +m, Zi2+m, ... ,* k+m

are the same for any choice of the positive integers k, i,, i2, ....
ik, m. This assumption is natural for the application under
consideration. We make the approximation that (3.4) has a k-
dimensional normal distribution for any choice of k, il, i2, ...
ik. Since the sequence has length M, it is not unreasonable to
assume further that the covariance cov(Z;, Zj) is equal to zero
for all i and j such that i < j + M. This covariance assumption
and the assumption of stationarity imply (13, p. 84) that for any
real x, the probability of the inequality

an(Mn-bn) sx

tends to exp(-e-x) as n - oo, where

(3.6) an = (2 log n)"/2,
bn = (2 log n)½2-½1/2(2 log n)½-/2(log log n + log 4wr).

The foregoing can be interpreted as giving the asymptotic
behavior of the probability of a type 2 error. In fact, if z is the
critical value, we simply put x = an(Z - bn) in (3.5).
To illustrate the analysis of type 1 errors, we make much more

restrictive assumptions. Assume that there is a 'significant'
alignment in which L of the M characters match. We assume
that the remaining M - L pairs may be considered independent
Bernoulli trials with probability p of a successful match. The
distribution of these matches is binomial with mean

A = p(M - L) and variance a2 = p(l - p)(M - L).
Suppose that the critical value for the number of matches is z,
and Z = (z - ,u)/u is the standardization of z. The type 1 error
is the eventuality that the screening will miss the significant
alignment of length L, i. e. that the number of matches among
the remaining M - L is less than z - L. Approximating the
binomial with the normal distribution we have that the probability
of the type 1 error is equal to Q(Z - L/a) where Q is the left
tail of the normal probability distribution:

Q(x) = (2 r)½I J-_O exp(- /2t2 )dt.

Table. 1. Type 1 and type 2 errors for sequence of length 256.

Critical Probabilities of type 1 error Type 2 error
Value Match length=L No. of alignments=n
z L=30 L=40 L=50 L=60 n= 1024 n=4096

81 0.1991 0.0205 0.0005 0.0000 1.0000 1.0000
82 0.2447 0.0297 0.0009 0.0000 0.9992 1.0000
83 0.2954 0.0420 0.0015 0.0000 0.9839 1.0000
84 0.3505 0.0580 0.0024 0.0000 0.9105 1.0000
85 0.4089 0.0786 0.0040 0.0000 0.7559 0.9991
86 0.4694 0.1044 0.0063 0.0001 0.5613 0.9796
87 0.5306 0.1357 0.0098 0.0001 0.3821 0.8848
88 0.5911 0.1729 0.0149 0.0003 0.2452 0.6987
89 0.6495 0.2160 0.0222 0.0005 0.1515 0.4861
90 0.7046 0.2648 0.0321 0.0009 0.0915 0.3089
91 0.7553 0.3187 0.0456 0.0015 0.0546 0.1854
92 0.8009 0.3767 0.0632 0.0025 0.0322 0.1076
93 0.8410 0.4376 0.0857 0.0042 0.0190 0.0612
94 0.8754 0.5000 0.1137 0.0067 0.0111 0.0345
95 0.9042 0.5624 0.1478 0.0105 0.0065 0.0193
96 0.9278 0.6233 0.1881 0.0160 0.0038 0.0107
97 0.9466 0.6813 0.2345 0.0239 0.0022 0.0060
98 0.9614 0.7352 0.2867 0.0348 0.0013 0.0033
99 0.9726 0.7840 0.3438 0.0495 0.0008 0.0018
100 0.9809 0.8271 0.4046 0.0688 0.0004 0.0010

These results are illustrated in Table 1 which lists type 1 and
type 2 errors for p = ¼/4, M = 256, and for various choices
of L and n. For the type 2 error model we assume /A = pM
and a2 = p(l - p)M for all z;, and we use the asymptotic
formulas (3.5) and (3.6) to estimate the probabilities. For
example, using a critical value of 91 we incur type 1 and type
2 errors of about 5% in searching for matching subsequences
of length 50 of a sequence of length 256 using batches of size
1024.

MAX ERROR
BASES OF H MATCHES OFFSET PROBABILITY

1. 1- 1024 94 91 0.0111
2. 1001- 2024 92 777 0.0322
3. 2001- 3024 141 374 1.2x10-13
4. 3001- 4024 98 209 0.0013
5. 4001- 5024 88 960 0.2452
6. 5001- 6024 88 793 0.2452
7. 6001- 7024 131 136 2.6x10-
8. 7001- 8024 131 112 2.6x10-1
9. 8001- 9024 90 709 0.0915

10. 9001 -10024 93 300 0.0190
11. 10001-11024 188 325 1.3 x 10-24
12. 11001-12024 95 71 0.0065

Table 2. Comparison of M (MUSHBA.ROD 596-851) with H
(HUMHBA4.PRI). BASES OF H lists successive subsequences of H. MAX
MATCHES is the maximum number of exact matches over all alignments of
M with the indicated subsequence of H. OFFSET is the number of bases of offset
that defines the alignment with the maximum number of matches. ERROR PRO-
BABILITY is the probability of a type 2 error, i. e. the probability of the listed
number of matches assuming Bernoulli trials with p = 'A. The boldface entries
are alignments which exhibit the expected homology between mouse and human
alpha globin exon 2. See text.

As an example of this type of comparison, we compare two
GenBank sequences. The sequence MUSHBA.ROD (1441 bp)
according to GenBank documentation is 'Mouse alpha globin
gene, complete cds' and HUMHBA4.PRI (12847 bp) is 'Human
alpha globin psi-alpha-i, alpha-2 and alpha-I genes, complete
cdns.' The subsequence MUSHBA.ROD 622-826 consists of

(3.5)
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alpha globin, exon 2. Enlarging this subsequence slightly, we
compare MUSHBA.ROD 596-851, which we denote M, with
all of HUMHBA4.PRI, which we denote H. As our computer
implementation handles sequences of length at most 1024, we
compare M successively with H 1-1024, H 1001-2024,
H 11001-12024. GenBank documentation lists, in part, the
following subsequences of H:

a. 6915- 7119 hba2 alpha globin, exon2
b. 10726-10930 hbal alpha globin, exon2
c. 2697- 2881 pseudo-hbal alpha globin, exon2.

Evidence of the expected homology to M of these subsequences
is shown very clearly in this experiment. We summarize the
results in the Table 2. For each of the 12 subsequences of H
we list the alignment with the greatest number of matches. The
alignments are identified by their offsets. The H subsequences
3, 7, 8, and 11 contain all or part of the above variants c, a,
a, and b, respectively, of human alpha globin exon 2. Note that
the above statistical test shows extremely small probabilities of
type 2 errors associated with these subsequences. In other words
it is almost certain that these subsequences contain significant
matches with exon 2 of mouse alpha globin. Note that variant
a of exon 2 overlaps subsequences 7 and 8. This fact does not
diminish the effectiveness of the statistic in identifying the
homology; both subsequences are flagged with a very low type
2 error. Note that the offsets indicated for subsequences 7 and
8 differ by 24 which is exactly the amount of overlap of the two
subsequences. This confirms the fact that, as expected, the
alignments 7 and 8 are actually different portions of the same
alignment, namely the alignment which matches human alpha
globin exon 2 variant a with mouse alpha globin exon 2.

Table 2 exhibits other error probabilities that are indicative
of sites of homology. In fact, all of the probabilities are less than
1/4. In any case, these probabilities are indicative of more subtle
homology. For example, the probable homology in the align-
ment listed for sequence 4 may be due, at least in part, to bases
3949-4023 of HUMHBA4.PRI which match 39/75 (= 52%)
of the corresponding bases in the specified alignment with
MUSHBA.ROD. In the following listing of HUMHBA4.PRI
3949-4023, capital letters indicate matches in the specified align-
ment with MUSHBA.PRI:

subsequence of length 75 with 39 or more matches is only
0.00016. We conclude that (3.7) probably represents a significant
match.
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(3.7)
3949 CCtGTGCTGC caGCaACtTC tggaAaCgtC CCtGTcCCcg GTgctgaagt
3999 cctGgaaTcC ATGCtgggAA GtTGCa

GenBank documentation does not give any reason to suspect
homology at this site. In order to estimate the probability that
this much matching (39/75 = 52 %) occurred by chance, we can
reuse the same extreme value theory that we used above in
computing the probabilities of type 2 errors. Suppose that we
divide H and M into subsequences of the same length as the
subsequence exhibited above. The number of subsequences of
H is 12847/75 = 171.29 and ofM is 256/75 = 3.41. The total
number of possible comparisons is the product of these numbers
which rounds off to 584. If we count the number of matches for
each of the 584 alignments of subsequences, each of length 75,
and if we assume that each alignment of the subsequences consists
of Bernoulli trials with p = 1/4, what is the probability that at
least one of the alignments will contain at least as many matches
(39) as (3.7)? If this probability is low enough, then we conclude
that the matching exhibited in (3.7) did not occur by chance.
Using (3.5) and (3.6), we find that the probability of at least one


