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Abstract

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be
mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify
genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the
mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-
dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We
further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS),
and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be
mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex
rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2
protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity,
increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

Citation: Bayat V, Thiffault I, Jaiswal M, Tétreault M, Donti T, et al. (2012) Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative
Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans. PLoS Biol 10(3): e1001288. doi:10.1371/journal.pbio.1001288

Academic Editor: Douglas R. Green, St. Jude Children’s Research Hospital, United States of America

Received June 1, 2011; Accepted February 8, 2012; Published March 20, 2012

Copyright: � 2012 Bayat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: V.B. received support from the Edward and Josephine Hudson Scholarship Fund and DB Program training grant T32 HD055200. This study was
supported by the Canadian Institute of Health Research (CIHR grant #44202) and the Association Canadienne des Ataxies Familiales (ACAF). I.T. is a Scholar of the
Canadian Institute of Health Research and National Bank Financial Group (ETP fellowship program). G.B. is a Fellow of the Réseau de Médecine Génétique
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Introduction

A number of neurological diseases are associated with

mitochondrial dysfunction. For example, mutations in the

mitochondrial genome have been found in a wide range of

disorders including Leber’s Hereditary Optic Neuropathy

(LHON), Neuropathy, Ataxia and Retinitis Pigmentosa (NARP),

Mitochondrial myopathy, Encephalopathy, Lactic Acidosis and

Stroke (MELAS), Myoclonic Epilepsy associated with Ragged Red

Fibers (MERRF), Nonsyndromic Sensorineural Deafness (NSSD),

and Kearns-Sayre Syndrome [1,2]. All of these disorders cause

some dysfunction of the nervous system. Aside from these
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mitochondrially encoded genes, there is a growing list of

mitochondria-targeted nuclear genes that when mutated cause

diseases. These include (1) components of the respiratory chain/

assembly factors [3,4], (2) genes required for mtDNA mainte-

nance/replication [5,6], (3) genes that regulate dNTP pools [7], (4)

genes that regulate mitochondrial morphology/cellular trafficking

[8,9], and (5) genes involved in mtDNA transcription and

translation [10].

Mitochondria are critical for energy production and are

intricately linked to numerous aspects of cellular function. For

example, cell proliferation defects have been reported for several

mitochondrial fly mutants [11,12]. It has been proposed that

Complex I disruption results in reduced cell proliferation caused

by the buildup of Reactive Oxygen Species (ROS). ROS are short-

lived oxygen radicals that are produced at low levels as a result of

impaired electron transport. These ROS can react with proteins,

lipids, and DNA resulting in major damage to the cell and its

mitochondria [13].

Studies in Drosophila have provided insight into the function of

numerous human disease genes [14]. Indeed, work on the fly

homologue of the then newly discovered PARK2 gene responsible

for Autosomal Recessive Juvenile Parkinson’s Disease (OMIM

#600116) [15] provided compelling evidence that parkin mutations

result in mitochondrial dysfunction and oxidative stress [16,17,18],

work that was subsequently confirmed in human cells [19,20].

Forward genetic screens have also been carried out to isolate genes

that cause a neurodegenerative phenotype [21,22]. These forward

genetic screens may allow us to identify novel genes and help us

understand the cellular mechanisms required for neuronal

survival. For example, the gene nmnat, whose loss has a strong

neurodegenerative phenotype, encodes an important neuropro-

tective protein that may act as a chaperone [23,24]. Interestingly,

one of its orthologues in mice has been shown to confer significant

neuroprotective effects in several disease models [25].

We decided to reassess the phenotypes of numerous mutants

that were isolated in a mosaic eye screen in which we screened for

defective electroretinograms (ERGs) in mutant photoreceptors on

chromosome arm 3R [24,26,27]. Here we report the isolation and

characterization of the Drosophila mitochondrial gene Aats-met

(Aminoacyl-tRNA synthetase-methionine, NP_650348.1). We show that

a partial loss of Aats-met results in mitochondrial dysfunction and

causes a severe and progressive neurodegenerative phenotype. We

further show that rearrangements in its human homologue,

MARS2 (Methionyl Aminoacyl-tRNA Synthetase 2, NP_

612404.1), are responsible for a human neurodegenerative disease

named ARSAL, for Autosomal Recessive Spastic Ataxia with

Leukoencephalopathy, or Spastic Ataxia type 3 (SPAX3, OMIM

#611390) [28].

Results

Isolation of the Fly Mitochondrial Aats-met
We reexamined a collection of lethal mutants generated on

chromosome 3R to identify mutations that cause a degenerative

phenotype [26]. We induced large clones of homozygous mutant

tissue in the eyes using the ey-FLP system and screened for flies with

aberrant ERGs that significantly worsen with age as a readout for

degeneration of photoreceptors [29]. As shown in Figure 1, we

isolated a lethal complementation group consisting of two alleles,

HV and FB. Control flies exhibit an ‘‘on’’ transient (black

arrowhead) upon a flash of light (Figure 1A). A change in potential

ensues (arrow), which is followed by an ‘‘off’’ transient (white

arrowhead) when the light is switched off. The HV and FB mutants

produced ERGs with significantly reduced amplitudes (double-

headed arrow) (Figure 1B,D), suggesting a defect in phototransduc-

tion and synaptic transmission. As the flies age, the ERGs exhibit

gradually smaller amplitudes in response to light (Figure 1C,E). A

less severe genetic combination of alleles that produces adult flies

(see below), HV/FB, have normal ERGs at 1 d of age, while 3-wk-

old animals (Figure 1F,G) have severely affected ERGs.

To map the HV and FB mutations we turned to meiotic

recombination mapping with P-element lines [30] and deficiency

mapping (Figure S1A–B). This pinpointed a 120 Kb region with 18

candidate genes. One lethal mutation, a piggyBac (PB) transposon

insertion [31] in an intron of the Aats-met gene (Aats-metc00449), failed

to complement the lethality of the FB allele (Figures 1K, S1B).

Sequencing revealed that HV and FB affect the Aats-met gene: HV

carries a c.125T.A predicted to result in the missense mutation

p.V42D, whereas FB carries a c.671C.T predicted to result in the

missense mutation p.S224L (Figure 1L). Aats-met encodes the

uncharacterized Drosophila mitochondrial methionyl-tRNA synthe-

tase, with 44% identity and 75% similarity to its human orthologue

MARS2 (Figure 1L,M) [32]. Complementation tests with the three

alleles and a deficiency (Df(3R)Exel7321) indicate the following

allelic series: Df.PB.FB.HV. Flies homozygous for HV or

transheterozygous for HV and FB are semi-viable, although they

exhibit reduced lifespans (see below). To demonstrate that the

phenotypes associated with the mutations are indeed caused by a

defective Aats-met gene, we ubiquitously expressed the Drosophila

Aats-met and human MARS2 cDNAs using the Gal4/UAS system in

mutant backgrounds [33]. The fly and human cDNAs rescued the

lethality associated with FB/Df and HV/Df, the strongest allelic

combinations. Note that overexpression of these cDNAs in a wild-

type background, ubiquitously or only in the eye, results in a wild-

type ERG phenotype (Figure 1J). Moreover, the ERGs of aged HV/

Df rescued flies are normal (compare Figure 1C with 1H–I),

demonstrating that the mutations in Aats-met are indeed responsible

for the lethality and ERG defects. These data also indicate that

MARS2 and Aats-met are homologous genes as both rescue the Aats-

met mutants. We also Flag-tagged the human MARS2 construct at

the C-terminus and performed colocalization experiments with the

mitochondrial reporter mito-GFP protein [34] in mitochondria of

Central Nervous System neurons of 3rd instar larvae (Figure 1N).

Both proteins co-localize, indicating that MARS2 is indeed a

mitochondrial protein.

Author Summary

Neurodegenerative diseases, as a group, are relatively
common and often devastating to those who suffer from
them. Key insights are emerging from the study of
homologues of identified human disease-causing genes
in model organisms such as fruit flies, worms, and mice. In
this study, we used the fruit fly to identify novel
neurodegeneration-causing mutations and identified the
Aats-met gene, whose protein product is involved in
mitochondrial translation. We found that mutations in this
gene cause neurodegeneration, impaired mitochondrial
activity, and elevated oxidative stress. We were able to
attenuate these defects with antioxidants like Vitamin E.
We also determined that unusual duplications in the
homologous human gene, MARS2, were responsible for a
novel type of progressive ataxia found in some French
Canadian families. Cells taken from these patients have
many of the characteristic defects observed in flies,
showing that the fly mutants can be used to further
explore disease mechanisms and test potential treat-
ments.

Mitochondrial Met-tRNA Synthetase Mutations Cause ARSAL
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Loss of Aats-met in the Eye Results in Retinal
Degeneration

To assess whether a worsening of the ERG phenotype is due to

progressive degeneration of photoreceptor neurons (PRs) in Aats-

met mutant retina, we performed Transmission Electron Micros-

copy (TEM) of the retinas of flies of different ages. We focused

our analysis on transheterozygous escapers (HV/FB) and clones of

the PB allele. Both have normal ERGs (Figure 1F), with no

obvious developmental defects, and possess the correct number of

photoreceptors per ommatidium in 1-d-old animals (Figure 2A–

C). They display no defects in their rhabdomeres, and the overall

appearance of the PRs also appears normal. As shown in

Figure 1. Identification/mapping of the Aats-met gene. (A) ERG of the control (y w; FRT82B iso). The black and white arrowheads indicate the
‘‘on’’ and ‘‘off’’ transients, respectively. The double-pointed arrow indicates the amplitude. (B–C) ERGs of homozygous HV clone-containing flies at 1 d
and 4 wk after eclosion. (D–E) ERGs of homozygous FB clone-containing flies at 1 d and 4 wk after eclosion. (F) ERG of a 1-d-old HV/FB escaper. (G)
ERG of a 3-wk-old HV/FB escaper. (H) ERG of a 2-wk-old HV/Df fly rescued with actin-Gal4 and UAS-Aats-met. (I) ERG of a 2-wk-old HV/Df fly rescued
with actin-Gal4 and UAS-HMARS2. (J) ERG of a 2-wk-old otherwise wild-type fly expressing HMARS2-FLAG driven by tub-Gal4. (K) Lethal stages of
homozygous and transheretozygous allelic combinations reveal an allelic series: Df.PB.FB.HV. (L) The Aats-met protein’s predicted domains are
shown (drawn to scale), with position of mutations and percentage identity compared to human MARS2 shown. (M) The Drosophila Aats-met gene is
homologous to the mitochondrial methionyl-tRNA synthetase genes of S. cerevisiae, C. elegans, M. musculus, and H. sapiens. (N) Colocalization of the
Flag-tagged human MARS2 protein with Mito-GFP in the cell body of a neuron in the ventral nerve cord, driven by the D42-Gal4 driver, is shown.
doi:10.1371/journal.pbio.1001288.g001

Mitochondrial Met-tRNA Synthetase Mutations Cause ARSAL
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Figure 2D–E and 2G, the PRs and support cells (glia)

progressively degenerate. By 2 wk of age, the PRs of HV/FB

animals display more severe phenotypes, and some PRs are

vacuolated (arrowhead, Figure 2D). By 3 wk of age, most PRs are

severely affected and many organelles are barely recognizable

(Figure 2E,G). Similarly, in mutant clones of the piggyBac (PB),

PRs are mostly normal at day 1 (Figure 2C) and become severely

affected by 2 wk of age (Figure 2F). In summary, different

mutations cause a severe progressive degeneration of PRs and

glia.

Figure 2. Retinal degeneration and lifespan of Aats-met mutants. (A) TEM of a single ommatidium from a control 1-d-old fly eye, showing the
characteristic seven dark rhabdomeres in the center. (B) TEM of a single ommatidium from the eye of a 1-d-old HV/FB escaper fly, showing no obvious
defects. (C) TEM of the eye of a 1-d-old fly containing homozygous clones of a PB allele. (D) TEM of the eye of a 2-wk-old HV/FB escaper fly, showing
the beginning of a neurodegenerative process, with a degenerating rhabdomere (arrowhead) and enlarged mitochondria (arrow). (E) TEM of the eye
of a 3-wk-old escaper. (F) A neurodegenerative process is evident in clones of the PB allele in a 2-wk-old fly. Arrows indicate lipid droplets in pigment
cells (arrowheads). (G) Quantification of 100 retinal photoreceptor rhabdomeres for the control, HV/FB escapers, and PB clone-containing mutants at
different ages. (H) Quantification of the total mitochondrial area as a percentage of the retinal area: HV/FB mutants clearly have a higher
mitochondrial content. (I) Quantification of average mitochondrial size, showing the mitochondrial number of the HV/FB mutant retinas (n = 50). (J)
Graph showing the shortened lifespans of 100–200 HV/FB and HV/HV escapers of each gender compared to controls, with males denoted in blue and
females in pink. Scale bars: 1 mm.
doi:10.1371/journal.pbio.1001288.g002

Mitochondrial Met-tRNA Synthetase Mutations Cause ARSAL
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A careful quantitative analysis of the TEM micrographs

revealed some subtle defects in young animals. Indeed, the total

mitochondrial area in mutant PRs is greater in 1-d- and 1-wk-old

animals (2-wk-old animals were too severely affected to quantify)

(Figure 2H). In addition, we also noted many grey spheres in the

glia in mutants, indicating the presence of lipid droplets that are

not observed in wild-type animals (black arrowhead, Figure 2B,F).

That these are indeed lipid droplets was confirmed with toluidine

blue staining (red arrows in Figure S1E–F), a possible indication of

a fatty acid metabolism defect [35]. In summary, the electrophys-

iological and ultrastructural features indicate that the mutant

photoreceptor neurons undergo progressive degeneration.

Loss of Aats-met Results in Reduced Lifespan and Muscle
Degeneration

HV/FB and HV/HV escapers are morphologically normal.

They feed, walk, and mate, suggesting that their development and

basic physiological features are relatively normal. They, however,

have much shorter lifespans than wild-type flies (Figure 2J) and are

unable to fly. In light of their inability to fly and shortened

lifespans, we examined the indirect flight muscles of these flies.

Interestingly, the myofibrils seem intact at 1 d of age (Figure 3A,C),

but the mitochondria are clearly aberrant: they are larger than

normal (Figure 3C–E). In 1-wk-old HV/FB flies, the myofibrils

display defects (arrowhead in Figure 3D), and the mitochondria

are very large (Figure 3D–E). At 2 wk of age the muscle is too

fragmented to take TEM images. Hence, partial loss-of-function

mutations in Aats-met impair longevity and mitochondrial mor-

phology.

Cell Proliferation Is Impaired in Aats-met Mutants
We noted that HV/Df mutants die as late 3rd instars or small

pupae, possessing small imaginal discs and larval brains

(Figures 1K, 4A–G). Despite their smaller size, mutant larval

brains do not show any obvious differences in the immunostaining

patterns and localization of neuronal and glial proteins like Elav,

Bruchpilot, Fasciclin II, and Repo when compared to wild-type

brains (unpublished data). Mutant cells exhibit a proliferative

Figure 3. TEM of indirect flight muscle. (A) TEM micrograph of 1-d-old control (FRT82B isogenized) flight muscle, with its characteristic myofibers
surrounded by mitochondria and small glycogen granules. (B) Micrograph of 1-wk-old control muscle. (C) Micrograph of 1-d-old HV/FB escaper, with
much larger mitochondria with poor cristae structure, and a high density of granules compared to control (arrowhead). (D) 1-wk-old escaper flight
muscle, with a similar but more severe mitochondrial phenotype and a complete absence of granules. Myofibril degeneration is highlighted by the
arrowhead. (E) Quantification of the average mitochondrial size between control (blue) and HV/FB (orange) escaper flight muscle, showing much
larger mitochondria present in the mutants. Scale bars: 1 mm.
doi:10.1371/journal.pbio.1001288.g003
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disadvantage when compared to wild-type cells as the mutant

clones are significantly smaller than their wild-type twin spots in

wing imaginal discs (Figure 4H–I). Moreover, anti-phosphoHis-

tone 3 (PH3) staining, a mitotic cell marker, is decreased by 23%

in mutant clones when compared to wild type clones in wing

imaginal discs (Figures 4L and S2A), suggesting that cell

proliferation is affected. However, cell growth does not seem to

be significantly impaired based on staining against the cell

membrane marker Dlg (Figure 4J–K). We also observed no

difference in the number of apoptotic cells between wild-type and

mutant clones based on Caspase 3 staining (Figure S2B–C), and

ubiquitous overexpression of the anti-apoptotic protein P35 did

not suppress the small larval brain phenotypes (Figure S2D–G). In

summary, these data strongly indicate that Aats-met affects cell

proliferation but not cell growth and apoptosis in non-neuronal

cells.

Figure 4. Aats-met mutants have reduced cell proliferation. (A–B) Brains of late 3rd instar control and HV/Df larvae stained with Rhodamine-
Phalloidin. (C–D) Wing discs of a late 3rd instar control and mutant larvae stained with Rhodamine-Phalloidin. (E–F) Control and mutant pupae are
shown. (G) Quantification of pupal length is shown. (H) Wing disc containing wild-type (outlined in yellow) and mutant clones (outlined in red) are
seen. (I) Wild-type clones are significantly larger than mutant clones, quantified in 16 to 20 pairs of clones. (J–K) Cells in mutant clones in wing discs,
stained with anti-Dlg, to mark the cell membrane, are similar in size to wild-type cells. (L) PH3-staining cells in mutant versus neighboring
heterozygous tissue is quantified for five wing discs, indicating that there is less cell proliferation in mutant clones. Data are mean 6 s.e.m. Scale bars
for (A–D) and (H) are 100 microns, (E–F) are 0.3 mm, and (J–K) are 5 microns.
doi:10.1371/journal.pbio.1001288.g004
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Upregulated UPRmt in Aats-met Mutants
A mitochondria-specific stress response (UPRmt) induced by the

overexpression of a misfolded mitochondrial matrix protein in

mammalian cells has been described [36] and confirmed to be

present in C. elegans [37]. In C. elegans, many of the RNAi

constructs found to activate the UPRmt correspond to mitochon-

drial translation factors [38]. Since Aats-met/MARS2 is a

mitochondrial translation factor, and since the highly conserved

mitochondrial chaperone Hsp60 is a good reporter of the UPRmt

in C. elegans, we examined expression of Hsp60 [39]. We observe

an elevation in Hsp60 levels in Aats-met mutant clones in the eye

(Figure S3A–B) as well as in mutant clones in the wing imaginal

discs (Figure S3C–D). To determine if the cytoplasmic UPR is

affected, we carried out immunohistochemical stainings with BiP/

Hsc3, which has been shown to be a reliable marker in flies for the

cytoplasmic UPR [40,41]. Unlike Hsp60, BiP/Hsc3 is not induced

in mutant cells, indicating that the two UPR processes are

uncoupled (Figure S3E–F).

Aberrant Mitochondrial Respiration in Aats-met Mutants
To assess the functional consequence of mutations in Aats-met

on oxidative phosphorylation, the rate of oxygen consumption of

intact mutant mitochondria was measured in vitro by performing

polarography [42]. In the presence of the Complex I–specific

oxidizable substrates malate and glutamate, mutant mitochon-

dria exhibit a decreased respiratory control ratio (RCR), the ratio

of state III (ADP-stimulated O2 consumption rate) to state IV

(ADP-limiting O2 consumption rate). The RCR for the most

severe allelic combination (FB/Df) was significantly lower

compared to control mitochondria, primarily due to a relative

increase in the state IV rate, likely reflecting a partial uncoupling

of oxidative phosphorylation in mutant mitochondria (Figure 5A).

Interestingly, the oxygen consumption rates in the presence of

the Complex II–specific oxidizable substrate succinate are

increased for Aats-met mutant (FB/Df ) mitochondria compared

to controls, while the RCRs remain preserved, possibly indi-

cating a compensatory response (Figure 5A, Table S1). This is

consistent with the finding in C. elegans of increased Complex II–

dependent respiration activity when levels of various Complex I

components are knocked down with RNAi [43]. Given that the

mitochondrial genome encodes 13 polypeptides that are all

components of the mitochondrial Electron Transport Chain

(ETC) (Table S3), we investigated whether there is a respiratory

chain deficiency. To directly assess the individual ETC com-

plexes, enzyme activities of the individual respiratory chain

complexes from purified and disrupted mitochondria were

measured spectrophotometrically. We observed a significant

decrease in Complex I activity (Figure 5B, Table S2). The

partial deficiency of Complex I in mutant mitochondria is

relatively mild given that 7 out of the 40 or more Complex I

subunits are encoded in the mtDNA and are therefore dependent

on mitochondrial protein translation (Table S3).

Increased ROS and Suppression by Antioxidants
It has been proposed that high levels of ROS (primarily

superoxide anion) because of aberrant Complex I activity results in

reduced cell proliferation (Figure 4H–I), although low levels

appear to promote proliferation [12,44]. Hence, we hypothesized

that the reduced cell proliferation in Aats-met mutants may be

caused by elevated levels of ROS. Since mitochondrial aconitase

activity is highly sensitive to ROS [45,46], we measured aconitase

activity normalized to total protein levels and found it to be greatly

reduced (Figure 5C). Upon addition of a reducing agent, the

aconitase activity is restored in the mutants, showing that aconitase

is indeed more oxidized in the mutants than in the wild-type

controls.

One of the mutant phenotypes associated with loss of Aats-met in

the eye is very similar to the loss of Pdsw, which affects Complex I

[12]. Clones of Pdsw in the eye cause a glossy patch and reduce the

eye size. As shown in Figure 5D, Aats-met mutant clones exhibit

similar phenotypes. We therefore tested if these phenotypes can be

suppressed by antioxidants and supplemented with food with the

lipophilic/cell-permeable Vitamin E (a-tocopherol) and water-

soluble N-acetylcysteine amide (AD4) [47]. We scored the loss of

the glossy patch and the number of ommatidia. As shown in

Figure 5D–E, low levels of Vitamin E (20 mg/ml) significantly

improved eye morphology and size (p,0.001). In addition, the

percentage of adult female escapers of the genotype HV/FB able to

eclose at room temperature increased significantly with antioxi-

dants, although this was not observed in males (Figure 5F). Note

that the doses of Vitamin E and AD4 used had no effect on wild-

type eyes or eclosion rates (unpublished data).

ARSAL Patients Carry Deletions and Duplications of the
MARS2 Locus

We noted that the human orthologue of Aats-met, MARS2, was

located in a 3.33 Mb candidate interval on chromosome 2q33.1.

Some of the authors of this manuscript had previously mapped a

neurologic disease named ARSAL to this interval [28]. ARSAL is

found in a large cohort of French-Canadian families and is an

autosomal recessive spastic ataxia frequently associated with white

matter changes as detected by MRI [28]. To examine this region

closer, we generated Single Nucleotide Polymorphism (SNP)

haplotypes using the 300K Illumina SNP-array on selected

families. This documented the existence of three different disease

carrier haplotypes in French-Canadian ARSAL cases (Figure S4).

Recombination events within families established a minimum

candidate interval of 579 Kb (rs16865262–rs7581202) (black bar

in Figure S4), containing nine genes including MARS2. MARS2 is a

single exon gene that spans 3,528 bp of genomic DNA and

encodes a 593 aa protein homologous to Aats-met [32]. Interest-

ingly, no point mutations were uncovered by genomic or cDNA

sequencing.

The first mutation was identified by PCR in Family E and

consists of a 268 bp deletion predicted to lead to a premature

STOP codon at position 236 (c.681D268bpfs236X), referred to

subsequently as Dup-Del (Figure 6A). This deletion was confirmed

by sequencing in nine patients from different families (Tables S4

and S5). As shown in Figure 6A, PCR amplification of MARS2

encompassing the first third of the coding sequence revealed the

presence of a deleted fragment that segregates in ARSAL Family E

(arrow, E9, E10, E11) and can also be seen in the father (E9), who

is an unaffected carrier. This deleted fragment is not observed in

the mother (E8) and in Family B members, who possess a different

type of mutation in the MARS2 gene (see below). The wild-type

sequence of the MARS2 PCR products (Figure 6B) and DNA

sequencing of the amplicon of compound heterozygous case E10

documents the deletion (compare Figure 6C to 6B). This mutation

was confirmed by oligonucleotide custom array Comparative

Genomic Hybridization (aCGH), as discussed below. Interestingly,

the deletion is part of a complex duplication of MARS2 in these

patients (see below). In affected brothers E10 and E11, the aCGH

discriminated the presence of a duplication (black lines/dots above

the +2 copies green line in Figure 6D) in both patients as well as a

deletion (red arrows in Figure 6D–E, compare to Figure 6I).

Further evidence that mutations in MARS2 were causative came

from the identification of a 300 bp insert in the coding sequence

that segregated within Family C (patients C6 and C8 in Figure 6F
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but not in Family B, which possesses a different mutation—see

below). The insertion’s sequence provided evidence of a complex

59 mutation, since only a partial sequence of MARS2 was revealed

(Figure 6G,H). The presence of repetitive sequences at the 59 end

of MARS2 combined with a 250 bp GC-rich sequence immedi-

ately 59 of the ATG hampered MARS2 full genomic sequencing.

Figure 5. Aats-met mutants exhibit a complex I deficiency and phenotypes can be suppressed with antioxidants. (A) Polarography
(measurement of substrate-dependent O2 consumption of isolated 3rd instar larvae-derived mitochondria given needed substrates) was performed in
the presence of Complex I–specific substrates or Complex II–specific substrate. State III is the ADP-stimulated oxygen consumption rate; state IV is the
ADP-limited oxygen consumption rate; UC is the oxygen-consumption rate in the presence of an uncoupler; RCR is the Respiratory Control Ratio
(state III rate/state IV rate). (B) Individual respiratory chain activities were measured from disrupted mitochondria. Mutant mitochondria exhibit partial
deficiency of complex I as well as an increase in CS activity. Data are expressed as percentage control activity (mean 6 s.e.m.). (C) Purified disrupted
mitochondrial extracts from control 3rd instar, HV/Df, and FB/Df larvae were quantified for aconitase activity, showing a significant decrease resulting
from oxidation in the mutants. Treatment with reducing agent resulted in normal activity levels, indicating that the difference was not due to lower
levels of aconitase but from increased oxidized aconitase. (D–E) Aats-metHV eyes often exhibit glossy areas in the middle of large clones (arrow). In
addition, the eyes are typically smaller. With 20 mg/ml Vitamin E, there is significant improvement in eye morphology and size (p,0.001). (F) Mutant
escaper rates are increased for females supplemented with antioxidants. Male escaper rates are already high, even without antioxidants. Three
different drug supplementation regimens were used. For the female escaper rate, the last two drug regimens produced a significant improvement.
Data are mean 6 s.e.m.
doi:10.1371/journal.pbio.1001288.g005
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This region is 67% GC-rich and contains a 27 bp G/C stretch

that is not polymorphic in controls ([CGGGG]n in Figure 7A).

The small size of the gene and the limited number of restriction

sites prevented us from generating informative Southern blots to

further investigate the breakpoints of rearrangements. Neverthe-

less, quantitative Southern Blot analysis using five additional

Figure 6. The human MARS2 mutations. (A) PCR amplification products of MARS2 encompassing a portion of the coding sequence revealed the
presence of a 268 bp deletion mutation segregating in ARSAL Family E but not in Family B. This truncated product is indicated by an arrow. The
normal PCR product is around 500 bp. Segregation of the deletion is shown in Family E; brothers E10 and E11 carry the mutation. Their unaffected
father E9 is also a carrier. The determined genotypes for the patients shown (summarized in Table S5 for all patients) are shown above the PCR bands.
(B) Wild-type sequence of MARS2 PCR products. (C) DNA sequencing of the deletion (c.681D268bpfx236X). (D–E) Nonrecurrent rearrangements
involving the MARS2 gene was confirmed by the oligonucleotide custom aCGH. In patients E10 and E11, the array discriminated the presence of the
duplication as well as the deletion (see arrows) as depicted by the lower band detecting only one additional copy. (F) PCR amplification products of
MARS2 encompassing the coding sequence revealed the presence of a ,300 bp insertion mutation segregating in ARSAL family members C6 and C8
but not in Family B. This larger amplification product is indicated by an arrow. The normal amplicon size is about 800 bp. C5 is the unaffected father
of C6 and C8 and also carries the mutation. (G) Wild-type sequence of MARS2. (H) DNA sequencing of the heterozygous case C6 corresponding to the
insertion revealed parts of the MARS2 duplication mutation. Rearrangement was confirmed by oligonucleotide custom aCGH. Note that the array data
of C6, a compound heterozygote (Dup2/Dup2), demonstrates the presence of a potentially larger duplication while not showing the 300 bp insertion,
the array not having been designed to include its sequence. (I) In homozygous patient B4 (Dup1/Dup1), the array suggests that the duplication has
identical distal and proximal breakpoint junctions with the other ARSAL cases.
doi:10.1371/journal.pbio.1001288.g006
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Figure 7. Schematic representation of the MARS2 region and ARSAL mutations. (A) Schematic representation of the chromosome 2q33.1
locus containing the mitochondrial methionyl-tRNA synthetase sequence (based on the UCSC genome browser). MARS2 is an intronless gene located
within the intronic sequence of a noncoding mRNA (BC021693). Its CpG island encompasses much of its coding sequence. Human Genome Structural
Variation Project data show the insertion of a 726 bp discordant clone (ABC8_43216400 E17, Yoruba sample) containing a 276 bp LINE sequence (L2)
within the coding sequence of the MARS2 gene. DNA of this clone is depicted as a black box below the MARS2 ideogram. Interestingly, the clone
insertion fragment is located within the same distal junction breakpoint of ARSAL CNVs. (chr2: 198,280,073–198,280,860). No polymorphic CNV,
structural variation, or segmental duplication have previously been reported on chromosome 2q33.1. Repeat elements are depicted as grey boxes.
Using several combinations of primer pairs, genomic sequencing of carrier chromosomes allowed us to cover over 7 Kb and showed a partial deletion
sequence at the 59 region of MARS2 and an insertion in the 39 region. Sequencing and CGH-array data suggest that homologies among repeat
elements are responsible for complex rearrangements accompanying the MARS2 duplications. (B) Illustration of the putative order and origin of the
complex rearrangements found in the MARS2 gene in ARSAL patients. The gene begins on the left (59). The ORF is colored red and the UTRs blue. As
mentioned above, the events share a common junctional sequence position, near the stop codon (black box). The presence of repetitive elements
within MARS2 39UTR and at the 59 end is suggestive of a template-driven event (event (1) slippage or replication fork pause) that caused partial
deletions or insertion (ABC8_43216400 E17, Yoruba sample) at the DNA lesion site (event (2A), (2B), or (2C)). We hypothesize that the complex
genomic architecture that has similar sequence features may be able to form cruciform structures, suggesting that these events may be recurrent and
stimulated by the abundance of AT-rich sequences around and within the MARS2 gene (event (3)). The replication fork may have switched to another
nearby homologous template consisting of short direct or inverted repeats (event (4)) resulting in the generation of duplication events, which could
be advancing in either direction. Sequencing and CGH-array data suggest that homologies among repeat elements are responsible for the yielding of
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restriction enzymes (ApaI, NcoI, XhoI, KpnI, and HindIII) confirmed

the presence of the duplication (unpublished data). Based on our

Southern blots, we conclude that the MARS2 breakpoints are

.15 Kb away from the wild-type copy of the MARS2 gene. In

summary, the presence of two mutations in the MARS2 locus was

documented using PCR and a Southern blot-based method. The

nature of these two mutations and a third type of mutation (e.g.,

Family B) is further documented below.

Complex Rearrangements of MARS2 in ARSAL Patients
To better define the rearrangements, we performed a series of

experiments to identify MARS2 copy number variations (CNVs).

In order to circumvent the problem of low average SNP densities

in the standard Illumina and NimbleGen CGHs, we designed a

custom 845 Kb NimbleGen aCGH array encompassing MARS2

with an average probe density of 60 nucleotides (nt) to uncover

small rearrangements. This high-resolution aCGH was performed

on six cases from four families. Note that the MARS2 gene is

surrounded by repetitive DNA, specifically Line 1 and Line 2

elements, but also AT- and TTTA-rich segments, as well as

[CGGGG] repeats (Figure 7A).

Based on haplotype analysis (Figure S4), at least three

duplication events have occurred in our ARSAL cohort

(Figure 7B–C). Indeed, evidence of MARS2 duplications was

uncovered in all six cases that were tested by aCGH

(Figure 6D,E,I). The CGH data analysis established that the

268 bp deletion, described above as the c.681D268bpfs236X

mutation, is part of a duplication since most oligonucleotide

probes covering the entire coding sequence of MARS2 have a log2

value (Cy5/Cy3) of ,0.5–1.0 (Figure 6D–E), whereas compound

heterozygous patients should have values of ,0.2–0.5. To

determine whether these complex mutations were segregating in

all families and were present in other ARSAL patients, we used

seven pre-designed ABI-based Copy Number Assays. Four were

located in the MARS2 coding region and one in each of the nearby

genes PLCL1, HSP60, and COQ10 (Table S4). PLCL1, HSP60, and

COQ10 do not exhibit CNVs, whereas MARS2 duplications were

uncovered in all 54 ARSAL cases belonging to 38 families and

were not found in 384 control chromosomes (Table S5). Similarly,

a Brazilian patient with an ARSAL phenotype also carried a

duplication (patient 57 in Table S5).

We hypothesized that the duplications may affect MARS2

expression levels. Indeed, Northern blots show the expected

mRNA size in all patients (Figure S5A), but qPCR quantification

assays revealed an increase in mRNA expression in two compound

heterozygous and four homozygous ARSAL patients that carry the

common duplication (Figure 8A). In addition to the normal

MARS2 mRNA band, we detected small mRNA fragments

(,500 bp) in ARSAL cases but not in the controls (Figure S5B).

These bands are suggestive of mRNA instability or aberrant

MARS2 mRNA products. Interestingly, PCR primer walking

produced different amplicon lengths that are suggestive of

microdeletions ranging from 1 bp to 33 bp in the 250 bp GC-

rich 59 region and interspersed L1-type repetitive elements

(Figure 7A). The numerous L1 and L2 elements suggest that the

duplications were generated by Fork Stalling and Template

Switching (FoSTeS) [48]. However, due to the repetitive nature of

the DNA, we were unable to determine precisely where and in

which orientation the MARS2 duplications were located.

In summary, our mapping and CNV data convincingly show

that the CNVs are responsible for the ARSAL mutations since

none of the 384 non-affected individuals show a CNV in the

MARS2 locus. In addition, the MARS2 rearrangements do not

affect the expression of surrounding genes such as HSPD1 and

PLCL1 as assessed by aCGH and quantitative PCR (unpublished

data). Further evidence of the rare nature of these mutations is the

fact that no CNV events have been catalogued for the MARS2

region in the Database of Genomic Variants (DGV) track.

Interestingly, a single Yoruba sequence clone from the Human

Genome Structural Variation Project Discordant Clone End track

was reported to be discordant from the reference sequence [49].

The discordant clone consists of a 726 bp sequence containing a

276 bp L2 element that mapped within the MARS2 coding

sequence (Figure 7A) and shares the junction breakpoint seen in

the ARSAL rearrangements. The CNVs, the quantitative

Southern blots, and the Northerns indicate that the rearrange-

ments alter both the dosage of the MARS2 gene and mRNA. Our

CNV results and the presence of numerous local repetitive

elements support the hypothesis that regional genomic instability

has caused template switching during DNA replication (FoSTeS)

(modeled in Figure 7B–C) [48,50] as well as recombination errors

[48,51,52].

MARS2 Protein Levels Are Decreased in ARSAL Patients
To explore the impact of the mutations on protein levels,

control and ARSAL patient protein extracts were analyzed by

immunoblotting with a mouse polyclonal antibody against the N-

terminal end of human MARS2. Despite increased levels of

aberrant mRNA transcripts, we find a reduced level of MARS2

protein in all tested patients, ranging from 40%–80% of normal,

using mitochondrial proteins encoded in the nucleus as loading

controls (Figure 8C, quantified in 8D). Importantly, carriers of the

deletion (but none of the other patients or controls) produce the

expected 24 kDa truncated protein in addition to the normal band

(black arrow in Figure 8C, Figure 7C). The level of the truncated

MARS2 protein is at least three times higher than the level of the

wild-type protein found in controls. The Western blot data

combined with Northern blot data argue that some MARS2

transcripts are not translated, possibly because of a post-

transcriptional regulatory event such as an RNA-mediated

interference of translation (Figure 7B).

Mitochondrial Translation and Respiration Are Decreased
in ARSAL Patients

To test whether mutations in MARS2 affect mitochondrial

translation, we pulse-labeled the mtDNA-encoded polypeptides in

complex rearrangements accompanying the MARS2 duplications, but we could not determine the orientation. (C) Illustration of the four predicted
rearrangements of the MARS2 region seen in ARSAL patients. The most common rearrangement is Duplication 1, in which two copies of MARS2 are
detected on each chromosome. The first one contains the entire coding and noncoding sequence, however the duplicated copy includes only the
coding sequence. The brackets (//) refer to the fact that the duplication occurs at a distance from the endogenous MARS2 gene, at least 15 Kb away,
based upon our quantitative Southern data. Duplication 2 is very similar to the first one with the exception that the rearrangement includes a small
deletion in the 39UTR (caused by event 2A). The genomic structure of the third mutation (Duplication-Deletion) displays a large deletion of the MARS2
coding region (referred by the event 2B) resulting in a truncated MARS2 protein. Quantitative experiments on both genomic and mRNA reveal a
deletion rearrangement with partial duplication of the coding region of MARS2. A 726 bp discordant clone (ABC8_43216400 E17, Yoruba sample)
containing a 276 bp LINE sequence (L2) within the coding sequence of the MARS2 gene is reported in the UCSC track from the Human Genome
Structural Variation Project data, though its impact on mRNA and protein is unknown.
doi:10.1371/journal.pbio.1001288.g007
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Figure 8. MARS2 mRNA expression, protein levels, mitochondrial protein translation, Complex I, aconitase activity, and cell
proliferation. (A) Quantification of MARS2 mRNA expression levels was performed on six ARSAL cases and two control lymphoblast cell lines.
Relative expression levels were normalized to GAPDH levels. ARSAL patients expressed up to 36higher MARS2 mRNA levels compared to controls. (B)
Mitochondrial protein synthesis was measured in lymphoblasts and fibroblasts from three controls and six ARSAL patients by pulse-labeling
mitochondrial translation products with 35S-methionine for 1 h in the presence of emetine, followed by electrophoresis on a 15%–20% linear-
gradient polyacrylamide gel. The 13 mitochondrial products are identified at the left of the figure. A generalized mitochondrial translation deficiency
is observed in three of the six ARSAL patients tested. ANOVA analysis revealed significance for three of the patient’s mitochondrial translation levels:
Ctrl 1-B4: **, Ctrl 1-B5: n.s., Ctrl 1-P24: n.s., Ctrl 2-B4: ***, Ctrl 2-B5: n.s., Ctrl 2-P24: *, Ctrl 3-B4: ***, Ctrl 3-B5: *, Ctrl 3-P24: ***. (C) Immunoblotting
analysis was performed with antibodies against the proteins indicated at the left of the panel. MARS2 was visualized using a polyclonal antibody. For
case E10 carrying the heterozygous deletion (c.681D268bpfx236X), the truncated product is detected at the estimated size of 24 kDa (arrow); ARSAL
patients (B4, EE41, P24, B5, AA35, and E10) show decreased levels of MARS2 protein at the estimated normal size of MARS2 (67 kDa). The 130 kDa
LRPPRC and the 12 kDa SLIRP were used as loading controls. (D) Each patient’s MARS2 protein-level intensity from the Western Blot shown in (C) was
quantified using ImageJ and divided by the protein-level intensities of LRRPRC and SLIRP. The results were then graphed for the controls and the
patients, respectively. (E) Respiratory chain activity for Complex I was measured from patient fibroblast-derived disrupted mitochondria. Mutant
mitochondria exhibit deficiency of complex I. Data are expressed as percentage control activity (mean 6 s.e.m.). (F) Quantification of native and
reactivated aconitase activity for ARSAL patient and control immortalized fibroblasts. Three controls and 6 ARSAL patients were used for the analysis.
(G) Quantification of the proliferation rate for the same above-mentioned fibroblasts. (H) Graph showing the average age of onset for the three
different genotypes involved.
doi:10.1371/journal.pbio.1001288.g008
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patient and control immortalized lymphoblast lines as previously

reported (Figures 8B, Table S6) [53,54]. Of the six patients tested,

three showed a translation deficiency. These three patients are

homozygous for the common mutation (Dup1/Dup1) (cases B4, B5,

and P24) and correspond to the most severe cases diagnosed at the

ages of 6, 3, and 9, respectively (Table S5). Two patients with

control levels of translation were compound heterozygotes for two

different duplications (EE41, AA35). These patients were clearly

less severely affected and were diagnosed as adults at the ages of 36

and 26, respectively. In addition, other clinical variables such as

loss of walking ability (Table S5) correlate with the extent of the

translation defect in lymphoblasts. Despite the relative decrease of

MARS2 levels, no effect on the steady-state levels of mitochondrial

tRNAmethionine was uncovered (Figure S6A–B), suggesting that the

amino-acylation defect does not destabilize the cognate tRNA.

To address if and how knockdown of MARS2 in cells affects

translation of mitochondrial proteins, we reduced the levels of

MARS2 in HEK293 cells with three different shRNAs (Figure

S6C). A severe knockdown (SH-452) clearly affects mitochondrial

protein translation (Figure S6E), whereas a less severe reduction in

MARS2 (SH-152) does not cause an obvious reduction in

mitochondrial protein translation when compared to wild-type

controls. Similarly, overexpression of MARS2 had no effect on

mitochondrial protein translation (Figure S6D,F). Hence, unless

the MARS2 protein level is reduced beyond a certain level, levels

of mitochondrial translation are not obviously affected. We did not

identify a significant difference in MARS2 protein levels between

the patients of different genotypes, although most patients with the

Dup1/Dup1 genotype have slightly lower MARS2 levels than the

other patients (unpublished data). Finally, consistent with our

findings in Aats-met mutant flies, cultured patient fibroblasts

displayed reduced Complex I activity, increased ROS levels, and

concomitantly decreased cell proliferation rates (Figure 8E–G).

Finally, we performed an examination of the genotype-

phenotype relationship using the age of symptom onset as a

measure of the severity of the disease and noted that patients

carrying the duplication-deletion tend to have an earlier onset

(Figure 8H).

Discussion

Although mitochondria play an important role in all cells,

neurons and muscles are typically more affected by mitochondrial

dysfunction. The isolation of Aats-met mutations in a mosaic FLP-

FRT eye screen on 3R resulting in PR degeneration as well as

other mutations that cause neurodegenerative phenotypes on the

X-chromosome (Shinya Yamamoto et al., personal communica-

tion) attest to the power of these screens. Many of these genes

encode mutations in mitochondrial genes (unpublished data).

Hence, this strategy may allow us to uncover other human

neurodegenerative diseases and allow us to probe more system-

atically into the biology of other human disease genes.

Based upon the endosymbiont theory, most of the mitochon-

drial genome translocated to the nucleus, leaving only 13 coding

genes and a set of ribosomal and transfer RNAs in the

mitochondrial genome [55,56]. Among the genes that translocated

to the nucleus was a family of mitochondrial tRNA synthetases,

including the mitochondrial methionyl-tRNA synthetase—Aats-met

in Drosophila and MARS2 in humans. Interestingly, there is a

growing list of mitochondrial-targeted proteins that when mutated

cause neurological diseases [57]. Besides MARS2, mutations in

other mitochondrial tRNA synthetases are being linked to

heterogeneous human diseases (Table S7), highlighting their

importance for human health [58,59,60,61,62,63,64].

Severe allelic combinations of Aats-met in flies cause lethality,

while partial loss of function alleles exhibit phenotypes that can be

much more easily related to ARSAL. These partial loss-of-function

mutations will also allow us to perform modifier screens to identify

associated genes as well as drugs. Indeed, our preliminary efforts to

treat these flies with antioxidants indicate that such screens are

feasible.

Mutations in MARS2 in ARSAL Patients
ARSAL exhibits clear inter- and intrafamilial variability

reminiscent of Friedreich Ataxia [28,65,66]. In the present study,

we report a group of 54 affected French-Canadian cases belonging

to 38 families with a mean age of onset of 24.4 (2–59) in which we

uncovered complex genomic MARS2 rearrangements (Table S5,

Figure 7B–C). The mutations are complex genomic MARS2

rearrangements that always include a gene duplication event.

Duplications were found with similar breakpoints located in a GC-

rich 59 UTR sequence and in a 39 non-coding region. The

junctions created by the rearrangements are located outside the

coding region of MARS2 or other known genes and do not disturb

the expression of neighboring genes as demonstrated by CNV

assays and quantitative PCR. The 39 UTR of MARS2 also seems

affected by putative disruptions of regulatory elements at the

breakpoint junction (Figure 7A). This duplication was neither

detected in 384 controls, nor described in the structural variation

database. Moreover, in all families for which we have affected and

unaffected relatives available for genetic analysis, the presence of

the rearrangement (CNV) segregated with the disease. These data

strongly argue that mutations in MARS2 are the cause of ARSAL,

and this in turn is supported by an increase in message levels of

MARS2 mRNA, reduced levels of MARS2 protein, and a

reduction in mitochondrially translated proteins and Complex I

activity in patients.

The high prevalence of repetitive sequences at both breakpoint

junctions, including many long-interspersed elements (LINES) at

the 59 region of MARS2, and several AT-rich repeat sequences are

likely to have mediated the rearrangements (Figure 7A) [67,68].

Despite the increased mRNA levels, we observed decreased

MARS2 protein levels. The increased mRNA levels may be due to

the duplications of the gene as well as duplications of regulatory

elements in the CpG island at the 59 end of the MARS2 gene.

Consistent with recent studies, analysis of the MARS2 genomic

structure reveals a functional CpG island (Figure 7A) [69,70].

CpG islands act as constitutive promoters of housekeeping genes

and are methylated to silence transcription [71]. These findings

suggest that the MARS2 duplications may dysregulate transcrip-

tion, possibly by affecting the size, composition, or methylation

ability of these islands.

The decrease in protein levels contrasts with the increase in

message. The simplest hypothesis is that the gene duplications

were caused by FoSTeS, and a small fragment of DNA encoding

some of the 59 or 39 UTRs was inverted. This inverted segment

may affect mRNA stability and/or translation of MARS2 via an

RNAi-mediated mechanism. Indeed, FoSTeS has been shown to

result in duplicated inverted segments [72,73]. Unfortunately, the

highly repetitive nature of the DNA surrounding the MARS2 gene

did not allow us to document this inversion.

Mitochondrial Dysfunction/ROS in Aats-met Mutants and
ARSAL Patients

Our data suggest that decreased levels of Aats-met/MARS2

protein or protein function lead to a subtle reduction in

mitochondrial translation in humans and problems with mito-

chondrial function in flies and humans. The partial loss of Aats-
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met protein seems to lead to the accumulation of misfolded

proteins in mitochondria, triggering a mitochondrial Unfolded

Protein Response (UPRmt) (Figures S3A–D, S3G). Mutant flies

and patient cells also exhibit abnormal mitochondrial physiology,

most notably a rather surprisingly mild reduction in Complex I

activity, as well as accumulation of ROS (Figures 5A–C, 8D–E).

The reduction in Complex 1 activity is consistent with the

observation that 7 of the 13 mitochondrially encoded proteins are

incorporated in Complex 1.

The brain tissue of Aats-met mutants contains lipid droplets that

are almost never observed in wild type neurons and glia. Such an

increase in lipid droplets, potentially related to a lipid metabolism

defect, was also recently observed in a 12-y-old girl exhibiting

progressive muscle degeneration and autoimmune polyendocrino-

pathy and was determined to have cosegregating mutations in

MARS2’s cognate tRNA, mitochondrial tRNAmethionine, as well as

COX III [74], as well as in patients with other mitochondrial

diseases such as Leigh Syndrome, Alpers Disease, and Lethal

Infantile Mitochondrial Disease [75].

Aats-met/MARS2 mutations do not solely affect neuronal

function and survival. Indeed, severe allelic combinations affect

cell proliferation, but not cell growth and apoptosis. These data

are consistent with the role of increased levels of ROS in the

activation of the G1-S checkpoint via the JNK signaling pathway,

blocking cell cycle progression [12]. ROS has been shown to play

a role in the regulation of the cell cycle, both in its promotion and

blockage [44]. Importantly, several of the patient cell lines, similar

to what was observed in flies, also exhibit reduced cell proliferation

and increased ROS (Figure 8F–G).

The clinical features of ARSAL clearly argue that the neurons,

glia, and muscles are more affected than other tissues or organs

(Table S5) [28]. Indeed, ARSAL patients exhibit ataxia, severe

cerebellar and some cerebral atrophy, dystonia, and leukodystro-

phy. Flies that carry weak allelic combinations also exhibit a

progressive demise of the muscles and brain, as can be seen in

Figures 2, 3, and S1. In both patient cells and flies we observe

decreased levels of Complex I activity and increased levels of

ROS. The ability to partially suppress the morphological defects in

flies with various antioxidant compounds is noteworthy. Normally,

ROS levels are tightly controlled and known to play important

roles in signaling pathways, including the HIF-1a, JNK, NFkB,

TNF-a, and NADPH Oxidase pathways [76]. The production of

excessive levels of ROS may also play a prominent role in other

neurodegenerative diseases [77,78,79]. Finally, Vitamin E defi-

ciency as a cause of an ataxia (AVED, OMIM #277460) further

supports a role for ROS in hereditary cerebellar diseases [80].

In conclusion, mutations in Aats-met in flies or reduced levels of

MARS2 protein in humans result in aberrant translation of the

Respiratory Chain and concomitant production of ROS. These

ROS are especially damaging to neurons, as evidenced by our

finding that the ERG progression of the Aats-met mutants can

partially be suppressed by antioxidants (unpublished data). This

ROS also has the effect of reducing cell proliferation, a phenotype

that can also be suppressed by antioxidants (Figure 5D–E). Our

model is summarized in Figure S7. It remains to be determined if

antioxidants will prove beneficial for ARSAL patients.

Materials and Methods

Clinical Information and Ethics Statement
All probands and family members underwent a detailed

neurological examination by experienced neurologists. All medical

records and imaging were reviewed. All families were of French-

Canadian ancestry except for one Brazilian family. None of the

families were known to be consanguinous. All MRIs were

reviewed by J.L. This project was approved by the Institutional

Ethics Committee of CRCHUM. Informed consent was obtained

from all patients, all family members, and controls. Genomic DNA

was extracted from blood or saliva using standard procedures

(Oragene, DNA Genotek).

Strains
Mutagenesis of chromosome 3R was performed as described

previously [26]. The genotypes of FB and HV are: y w; FRT82B

Aats-metFB/TM3 and y w; FRT82B Aats-metHV/TM3. P-element/

deficiency mapping was performed as described [30]. The

genotype of the Df stock is: y w; Df(3R)Exel7321/TM3, hs-hid

[81]. The genotype of the piggyBac is: y w; FRT82B pBacc00449/

TM3, hs-hid [31]. The control strain used was y w; FRT82B

isogenized. To generate mutant eye clones, y w eyFLP; FRT82B w+

cl/TM3 was crossed to y w; FRT82B Aats-metFB/TM3 and y w;

FRT82B Aats-metHV/TM3. Transheterozygous escapers were

generated in large numbers by raising the larvae/pupae at

18uC. They were subsequently raised at room temperature and

transferred and scored every 2–3 d for aging experiments. Heat-

shock clones were generated using y w hsFLP; FRT82B ubi-GFPnls/

TM6B. For rescue experiments, y w; Act5C-Gal4/CyO was used.

The UAS-p35 stock used to inhibit apoptosis has been described

[82]. Climbing assays were performed exactly as described [83].

Unless indicated, stocks were obtained from the Bloomington

Drosophila Stock Center (BDSC) and are listed on FlyBase (http://

flybase.bio.indiana.edu).

Drug Studies
AD4 (N-acetylcysteine amide) and Vitamin E (MP Biomedicals)

were dissolved in standard fly food. The same food batch without

drug supplementation was used for the control.

Electrophysiology
ERGs were recorded as described previously [26].

Microscopy
Images of eyes and pupae were taken with a MicroFire camera

(Optronics) mounted on a Leica MZ16 microscope. TEM of

photoreceptors was performed as described previously [24]. At

least five animals were analyzed. Thick sections were prepared for

inspection of sample integrity. For quantification, 18–20 photore-

ceptor cartridges for each genotype were analyzed. Thick sections

of the optic lobe (Figure S1) were visualized using a microscope

(Imager.Z1; Carl Zeiss, Inc.), camera (AxioCam MRm; Carl Zeiss,

Inc.), AxioVision release 4.3 software (Carl Zeiss, Inc.), and the

Plan-Apochromat 206NA 0.75 lens.

Molecular Biology
For sequencing, DNA from mutant larvae was sequenced

(Macrogen) and analyzed (DNAStar). The Aats-met cDNA (DGC

clone GH13807) and the human MARS2 cDNA (Open Biosystems

MHS4426-99239542) using iProof polymerase (Bio-Rad) and

appropriate oligos (with a Kozak sequence) were subcloned into

the pUAS-attB vector and injected into embryos containing the

VK37 attP site [84].

Mitochondrial Physiology and Labeling Experiments
Third instar larvae were homogenized in cold mitochondrial

isolation buffer using a Dounce homogenizer (Kontes), filtered

through cheesecloth, and centrifuged at 150 G, then 9,000 G.

Oxygen consumption of mitochondria was measured (Clark
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microelectrode (YSI Life Sciences)), recorded (PowerLab data

recorder), and analyzed (ADInstruments LabChart). Rates (ng

atomic oxygen/min/mg mitochondrial protein) were expressed as

percentage control activity. Polarography was performed for six

independent mitochondrial isolations. For enzymology, 3rd instar

larval mitochondria were sonicated as above. Spectrophotometric

kinetic assays were performed (monochromator microplate reader

(Tecan M200)). Complex I activity was determined by measur-

ing NADH oxidation (340 nm), Complex II activity by measur-

ing DCIP reduction (600 nm), Complex III activity by measuring

CytC reduction (550 nm), Complex IV activity by measuring

CytC oxidation (550 nm), and Citrate synthase activity by

measuring DTNB reduction (412 nm) coupled to acetyl-CoA

reduction. All activities were calculated as nmoles/min/mg

protein and expressed as percentage control. Six independent

samples for each genotype were tested. The activity of mitochon-

drial aconitase was measured on the basis of conversion of citrate

into a-ketoglutarate coupled with NADP reduction (Sigma) and

was normalized for total protein [45]. Activity was measured in the

native state and after ‘‘reactivation’’ by incubating mitochondria

in ferrous ammonium sulfate for 5 min before performing the

assay. In vitro labeling of mitochondrial translation products was

performed as described previously [53].

Immunohistochemistry
Immunohistochemistry was performed as previously described

[85]. Anti-BiP (1:200) [41], anti-Drosophila Hsp60 (1:200) [39],

anti-Dlg (1:50) [86], anti-cleaved caspase 3 (1:500) (Cell Signaling),

anti-PhosphoHistone 3 (ab5176) (1:1,000) (Abcam), anti-Fasciclin

II (1D4) (1:10) [87], anti-Elav (1:500) (7E8A10) [88], anti-Brp

(Nc82) (1:100) [89], and anti-Repo (8D12) (1:10) [90] were used.

Secondary antibodies conjugated to Cy3, Cy5, or Alexa 488

(Jackson ImmunoResearch and Invitrogen) were used at 1:250.

For anti-PH3 quantification, homozygous FB clones were stained

with anti-PH3 to mark cells undergoing DNA synthesis. The

largest box possible was made of the disc, and PH3-positive cells

were documented with red dots in heterozygous tissue or purple

dots in the homozygous tissue. The area was then determined for

both, and paired Student t tests were performed for each of five

discs to compare the difference in the number of PH3-positive cells

in homozygous tissue versus heterozygous tissue. A total of 20 pairs

of clones and their twin spots for each genotype+temperature were

measured.

SNP Genome Scan, CNV, and CGH Arrays
A SNP genome-wide scan with the Illumina HAP300 SNP chip

was conducted at the Genome Quebec Innovation Center, McGill

University (Montreal, Canada) on nine affected individuals and six

non-affected family members. BeadStudio Software was used as an

analysis tool for genotyping, homozygosity, and loss of heterozy-

gosity analysis. Copy number analysis was performed using the

PennCNV program.

We used seven pre-designed ABI-based Copy Number Assays

for human CNV screening; four were located in the MARS2

coding region, one in each coding sequence of the surrounding

genes (PLCL1, HSPD1, and COQ10) (Table S4). Each reaction was

performed in quadruplicate on a 384-well PCR plate with the ABI

Copy Number Reference Assay (RNaseP). CopyCaller (Applied

Biosystems) was used for data analysis, and all steps were done

according to instructions. NimbleGen CGH-array was performed

using a chr2 specific fine-tilling oligonucleotide (HG18 CHR2 FT)

to detect chromosomal changes. The median probe spacing was

,500 bp. Custom high-resolution NimbleGen’s 126135K CGH

arrays (38,725 probes per array on Chr2) were designed to cover

the entire 0.845 Mb surrounding MARS2 [91,92]. The median

probe spacing was 1 bp.

Mutation Analysis and qRT-PCR
Primers were designed (Table S4) using Primer 3 or ExonPri-

mer (see URLs section below). Sequences were analyzed on an

ABI3730 Genetic Analyzer (Applied Biosystems). RNAs were

treated with DNase I to avoid genomic DNA amplification.

Reverse transcription was performed using 3 mg total RNA using

random hexamers, OligodT, and Superscript III (Invitrogen)

according to the vendor’s protocol. We prepared cDNAs from

total RNA and performed cDNA analysis by PCR with the

primers as indicated in the manufacturer’s protocol. Purified PCR

fragments were subcloned into pCR II-TOPO TA cloning kit

(Invitrogen) (Table S4).

Quantitative real-time PCR experiments were performed using

an ABI PRISM 7900 HT (Applied Biosystems) on genomic DNA

and cDNAs. Transcript-specific primers were designed with

Primer Express software (Applied Biosystems). The PCR condi-

tions and analysis of the obtained data were optimized using

published protocols [93,94]. The cycle of threshold value (Ct) was

normalized to the transcripts for the housekeeping genes b-globulin

and GAPDH. We performed calculations as described previously

[93,94]. Primer sequences are shown in Table S4 [95].

Cell Culture and RNA Extraction
Cell lines were maintained under normal condition (37uC, 5%

CO2) in standard culture media (DMEM containing 10% FBS and

100 mg/ml Pen-Strep and 50 mg/ml gentamicine). RNA extrac-

tion was performed using TRIZOL (Invitrogen). To measure the

fibroblast cell proliferation rate, fibroblasts from the three control

and seven patient cell lines were cultured in 12 well plates as

described earlier. They were plated at the same pre-determined

concentration (900 cells/ml) using a hemocytometer as a guide

and were counted using a Beckman Coulter Vi-Cell XR2.03 cell

viability analyzer after 48 h and then quantified.

Immunoblotting
An N-terminal mouse polyclonal antibody was obtained from

Abnova (MARS2-H00092935-Q01) and used at 1:1,000. We used

antibodies against LRPPRC and SLIRP as loading controls. The

LRPPRC polyclonal antibody was prepared by Zymed Labora-

tories (#295–313) and used at 1:3,000. The polyclonal antibody

against SLIRP was used at 1:1,000 (Abcam #ab51523). Protein

was extracted from cultured cells, and 20 mg were subjected to

SDS-PAGE and transferred to nitrocellulose membranes (Milli-

pore). The blot was probed overnight at 4uC with the primary

antibodies and then probed for 1 h at room temperature with anti-

rabbit IgG-HRP secondary antibody (1:10,000; Santa Cruz

Biotechnology). We visualized proteins using ECL Western Blot

detection reagent (PerkinElmer).

Northern and Southern blotting Analysis
10 mg of total RNA extracted from control and patient

lymphoblasts were run on a 10% polyacrylamide gel containing

7 M urea, followed by transfer to Hybond N+ membrane (GE

Healthcare). Pre-hybridization and hybridization were carried out

in EXPRESS-Hyb solution (Clontech) according to the manufac-

turer’s instructions. The oligonucleotides used for the generation

of the 32P-labeled probes had the following sequences: 59-

TGGTAGTACGGGAAGGGTATAACC-39 for tRNA-Met and

59-TGGTATTCTCGCACGGACTACAAC-39 for tRNA-Glu.

The commercial cDNA of MARS2 was digested by Xho1/Pst1
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(OriGene; SC100504) and oligonucleotides of complement and

reversed MARS2 sequences.

Southern blot analysis was performed to assess MARS2 genomic

rearrangements. Southern blots were produced using standard

protocol with control and mutation carrier DNA. The following

restriction enzymes for DNA digestion were used: AflIII, ApaI,

BamHI, BglII, HindIII, KpnI, NcoI, PstI, and XhoI. A cDNA probe

was obtained from commercial human cDNA digested with XhoI/

PstI (OriGene; SC100504). The blots were hybridized with a 32P-

labeled MARS2 cDNA probe as described (http://www.protocol-

).

Statistical Analysis
Statistical analysis was performed using Excel (Microsoft) and

Prism (GraphPad). Except where otherwise mentioned, unpaired

two-tailed Student t tests were used. Percentage protein similarity

was determined using BlastP (NCBI).

Accession Numbers
We used sequences for MARS2 with accession numbers

NM_138395.2 and NP_612404.1.

Supporting Information

Figure S1 FB and HV mutants correspond to Aats-met
and degenerative phenotypes in HV/FB escapers. (A)

After rough mapping with seven widely spaced P-elements were

used (unpublished data), four P-elements were used to refine the

locus. Deficiency complementation tests in this area were

performed to identify four overlapping ones that uncovered a

120 Kb region. (B) Available lethals were ordered and crossed,

with a PiggyBac insertion in the Aats-met gene failing to

complement. (C) Light micrograph of a resin-embedded thick

section of a 3-wk-old HV/FB escaper fly’s optic lobe, showing

vacuolization (arrows) and retinal degeneration (arrowhead). (D)

Light micrograph of a resin-embedded thick section of a 3-wk-old

Act-Gal4/UAS-Aats-met; FB/Df rescued fly’s optic lobe, showing

normal features. (E) Light micrograph of a resin-embedded thick

section of a control (FRT82B iso) retina (1006) stained with

toluidine blue to mark the lipids. (F) A micrograph of a mutant

(FB) retina stained with toluidine blue, showing large lipid droplets

in the glia (indicated by red arrows).

(TIF)

Figure S2 Cell proliferation is impaired, but apoptosis
is not affected in mutant clones. (A) An example of one of the

five wing imaginal discs quantified for cell proliferation, as

described in the Materials and Methods section. (B) A represen-

tative homozygous mutant clone in the wing disc marked

negatively with GFP is shown. (C) Yellow dashed lines denote

the position of the mutant clone from B and is stained with

aCleaved Caspase 3, showing that there is no increase in Caspase

3 levels in the clones. (D–F) Larval brains of late third-instar

control, FB/Def, and actin.P35; FB/Def larvae are shown,

indicating that both mutant and apoptosis-inhibited mutant larval

brains are both similarly small. (G) Quantification of the above is

graphically displayed. Scale bars are 50 mm for (A) and (D–F) and

5 mm for (B–C).

(TIF)

Figure S3 Upregulation of the mitochondrial unfolded
protein response without concomitant cytoplasmic UPR
response. (A) A control adult eye (y w eyFLP; FRT82B iso/

FRT82B w+ cl) stained with anti-Hsp60, a protein that has been

implicated as a marker of the UPRmt. (B) A mutant eye (y w eyFLP;

FRT82B Aats-metFB/FRT82B w+ cl) stained with anti-Hsp60 shows

a marked increase in staining in the retina and lamina (where the

flippase is expressed). The dashed white lines mark the lamina, and

the green lines mark the retina. (C–D) Heat-shock clones of Aats-

metFB were generated in the wing imaginal disc (negatively marked

for GFP) and stained for anti-Hsp60 (red), showing elevated levels

of Hsp60 in mutant clones. Genotype: y w hsFLP; FRT82B Aats-

metFB/FRT82B Ubi-GFPNLS. (E–F) Similar experiments were done

with anti-BiP, a marker of the cytoplasmic UPR, showing

unchanged levels in Aats-metFB mutant clones. (G) Quantification

of the increased levels of Hsp60 in mutant clones versus

neighboring tissue. (H) Quantification of the eye surface area of

eyes carrying HV and FB mutant clones, untreated and treated with

20 mg Vitamin E, showing that it suppresses the small eye

phenotype.

(TIF)

Figure S4 Homozygosity mapping by SNP microarray
analysis. Homozygosity and haplotype analysis of DNA samples

from nine patients belonging to five ARSAL families. Homozy-

gosity spans over 50 Mb in Family B (unpublished data). Three

common haplotypes on chromosome 2q33–34 surrounding the

MARS2 region were identified (indicated in light grey for Dup1,

dark grey for Dup2, and blue for the Dup-Del). An overlapping

region for the three haplotypes was identified (black bar).

(TIF)

Figure S5 Northern blots of ARSAL patients. (A) Northern

blot of six patients’ and three controls’ lymphoblasts is displayed.

mRNAs of the same size (arrow) were detected by using a cDNA

probe covering the entire MARS2 coding sequence for all cases

examined. (B) Northern blot of patients’ and controls’ lympho-

blasts is displayed. mRNA degradation (arrowheads) was detected

using a cDNA probe covering 875 bp MARS2 coding sequence for

all patients examined but not in the controls. Red lettering

indicates patients and blue lettering refers to controls.

(TIF)

Figure S6 Mitochondrial tRNAs are stable in ARSAL
patient cells, and loss of MARS2 in cells results in
impaired mitochondrial translation. (A) Total steady-state

levels of mitochondrial (mt) tRNA-met in patients and controls are

similar, suggesting that decreased amino-acylation does not

interfere with the stability of mt tRNA-met. mt tRNA-glu was

used as a loading control. (B) Quantification of the mitochondrial

methionyl-tRNA level relative to mitochondrial glutamic acid-

tRNA is shown. MARS2 protein levels and mitochondrial protein

translation. (C) Western blot of MARS2 protein performed on

HEK293 cells transfected with shRNA constructs against human

MARS2. Relative expression levels were normalized to prohibitin

levels and the two controls (Mock, Alexa). shRNA constructs

reduce MARS2 protein levels (SH-451: 15% of control, SH-452:

25%, SH-152: 75%). (D) Western blot of MARS2 protein in

HEK293 cells expressing a MARS2-GFP transgene that results in

26 normal expression. (E) Mitochondrial protein synthesis was

measured in siRNA experiments by pulse-labeling mitochondrial

translation products with 35S-methionine for 1 h in the presence of

emetine, followed by electrophoresis on a 15%–20% linear-

gradient polyacrylamide gel. The 13 mitochondrial products are

evident. A significant generalized mitochondrial translation

deficiency is observed when the protein level of MARS2 is

reduced to 25% of controls. There was too much cell death caused

by SH-451 expression to perform the translation assay. (F)

Mitochondrial protein synthesis was measured after GFP-MARS2

overexpression in HEK293 cells by pulse-labeling mitochondrial

translation products with 35S-methionine for 1 h in the presence of
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emetine, followed by electrophoresis. The experiment was

conducted 3 times. No impact on mitochondrial translation is

observed.

(TIF)

Figure S7 Pathologic Aats-met model. The model can be

summarized as follows. Mutations in Aats-met result in impaired

translation of the 13 components of Complexes I, III, IV, and V

that are encoded in the mitochondrial genome. This results in

impaired complex formation, a mitochondrial UPR, and an

uncoupled respiratory chain. The resulting ROS causes tissues to

degenerate, most notably neurons and muscle, and also affects cell

proliferation via its effect on the cell cycle (JNK signaling). These

effects of degeneration and cell proliferation can be partially

suppressed by antioxidant supplementation.

(TIF)

Table S1 Respiration rates of isolated mitochondria
from control and Aats-met mutant larvae. The respiration

rates for isolated mitochondria from 3rd instar larvae are listed for

each of the genotypes used—control (FRT82B isogenized), HV/Df,

and FB/Df, with means and standard deviations listed.

(PDF)

Table S2 Respiratory chain enzyme activities of isolat-
ed sonicated mitochondria from control and Aats-met
mutant larvae. The enzyme activities, with means and standard

deviations, for Complexes I, II, III, IV, and Citrate Synthase are

listed. The genotypes used were control (FRT82B isogenized), HV/

Df, and FB/Df.

(PDF)

Table S3 Drosophila and human mitochondrially en-
coded proteins possess many methionines. The Drosophila

and human mitochondrially encoded proteins are listed in the first

column. The Respiratory Complex that they each belong to is

listed in the second column. The number of methionines and

methionine percentage of the Drosophila proteins is listed in the

third column. The number of methionines and methionine

percentage of the human proteins is listed in the fourth column.

(PDF)

Table S4 Primers used. The primers used for quantitative

PCR, sequencing of the MARS2 genomic region and cDNA, and

for the CNV assays are displayed.

(PDF)

Table S5 ARSAL patients’ genetic variations and clini-
cal characteristics. ARSAL patients are listed. Alongside them

are their family identifiers, gender, their genetic variations, the

method by which their mutations were identified, the age of

symptom onset, and the presence or absence of 11 clinical/

imaging characteristics.

(PDF)

Table S6 Mitochondrial protein synthesis. Quantification

of mitochondrial protein synthesis shows a generalized deficiency

in the patients homozygous for the common mutation (54%, 67%,

and 79% of the average of controls). On the other hand, patients

who are compound heterozygous for MARS2 mutations have

normal mitochondrial translation (89%, 107%, and 118% of the

average of controls).

(PDF)

Table S7 AARS diseases. These 12 AARS-related diseases,

the responsible genes, and their documented clinical phenotypes

are listed. Note that those genes with a ‘‘2’’ at the end of their

name (i.e., MARS2, DARS2, RARS2, YARS2, HARS2, AARS2,

SARS2, and LARS2) are purely mitochondrial tRNA synthetases.

GARS and KARS encode both the mitochondrial and cytoplas-

mic tRNA synthetases based on the splice forms translated, and

YARS and AARS encode purely cytoplasmic synthetases.

(PDF)
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