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Abstract

Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown
that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the
molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we
identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with
NANOS2. We find that the first 10 amino acids (AAs) of NANOS2 are required for this binding. We further observe that a
NANOS2 mutant lacking these first 10 AAs (NANOS2-DN10) fails to rescue defects in the Nanos2-null mouse. Our current
data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In
addition, we further demonstrate that NANOS2-DN10 can associate with specific mRNAs as well as wild-type NANOS2,
suggesting the existence of other NANOS2-associated factor(s) that determine the specificity of RNA-binding independently
of the CCR4-NOT deadenylation complex.
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Introduction

The sexual development of mammalian germ cells leading to

the generation of eggs and sperm is a critically important

biological process. In the mouse, the primordial germ cells (PGCs)

are segregated from the somatic cell lineage at an early

gastrulation stage [1]. Although the PGCs are potent precursors

for both oogonia and spermatogonia, sexual differentiation is

induced after the colonization of the embryonic gonads with

somatic cells. Retinoic acid (RA) signaling is implicated as the

initial trigger for feminization [2,3]. RA molecules derived from

the mesonephros induce the meiotic initiation of germ cells in

female embryonic gonads via the induction of the RA responsive

gene Stra8, which is required for premeiotic replication [4]. On the

other hand, at least two somatic factors are required for

masculinization of germ cells in male embryonic gonads.

CYP26B1, an RA metabolizing enzyme, is expressed in the

Sertoli cells and protects germ cells from exposure to RA, resulting

in the suppression of meiosis [2,3]. In addition, somatically derived

fibroblast growth factor 9 (FGF9) promotes the expression of male-

type genes including Nanos2 via its receptors on the surfaces of

germ cells [5]. Nanos2 expression commences by E13.5 after the

downregulation of Cyp26b1 and is required for the maintenance of

the male germ cell state [6].

Nanos is an evolutionarily conserved RNA-binding protein that

is implicated in germ cell development. Three Nanos homologues,

Nanos1–3, exist in the mouse [7], among which Nanos2 is expressed

only in male gonocytes at the fetal stages and plays a key role in

the sexual development of germ cells by suppressing meiosis and

promoting male-type differentiation [6]. One of the molecular

mechanisms regulating these pleiotropic phenomena is dependent

on the interaction between NANOS2 and the CCR4-NOT

deadenylation complex [8]. The structure of CCR4-NOT dead-

enylation complex is also highly and evolutionarily conserved

among eukaryotes, consisting of at least 10 CNOT proteins

(CNOT1–4, 6, 6L, 7–10) in human and mouse [9,10]. Among the

components of this complex, CNOT1 is the largest protein and

acts as a scaffold [11], whereas two different types of deadenylases

are contained; CNOT6 or CNOT6L belongs to the exonuclease-

endonuclease-phosphatase (EEP) family [12], and CNOT7 or

CNOT8 belongs to DEDD (Asp-Clue-Asp-Asp) family, [13].

Although the various functions of this complex have been

reported, including transcription, mRNA regulation, and protein

ubiquitylation/degradation [9,14], we focus on the mRNA

deadenylation activity since we have previously demonstrated that

NANOS2-interacting CCR4-NOT complex retains the dead-

enylation activity against poly(A) RNA in vitro [8]. We expect that

the interaction between NANOS2 and CCR4-NOT deadenyla-

tion complex may lead the suppression of NANOS2-associated

transcripts via deadenylation-mediated RNA degradation. How-

ever, the molecular basis underlying this protein interaction

remains unknown. In addition, it is also unclear whether or not
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each of the functions of NANOS2 relies on its association with the

CCR4-NOT deadenylation complex.

In our current study, we have explored the molecular basis of

the interaction between NANOS2 and the CCR4-NOT dead-

enylation complex in vitro and identified CNOT1 as a direct

interacting protein. We further examined the biological signifi-

cance of this interaction by generating a transgenic mouse that

expresses a NANOS2 variant lacking the domain required for its

interaction with the CCR4-NOT deadenylation complex.

Results

NANOS2 associates with the CCR4-NOT deadenylation
complex via a direct interaction with CNOT1

In a previous study, we showed that NANOS2 associates with

the CCR4-NOT deadenylation complex in male gonocytes, and

that this interaction is responsible for the deadenylation activity of

NANOS2 [8]. However, the mechanism underlying this associa-

tion had remained unknown. To address this issue, we first

compared the amino acid sequences of the Nanos proteins among

several species from fish to human to screen for possible consensus

sequences. Conserved sequences at both the N and C-terminus

were identified in addition to two highly conserved CCHC-type

zinc finger motifs (Figure S1). The N-terminal sequence was found

to be common to all of the species compared whilst the C-terminal

sequence was specific to mammals. We thus analyzed the function

of the N-terminal conserved sequence given that the CCR4-NOT

deadenylation complex is evolutionarily conserved in all of the

species compared here.

We generated several N-terminal deletion mutants of Nanos2

(Figure 1A) and co-transfected them into HeLa cells with HA-

tagged Cnot6, a component of the CCR4-NOT deadenylation

complex (since no antibody is currently available). Immunopre-

cipitation assays revealed that full length NANOS2 efficiently co-

precipitated endogenous components of CCR4-NOT deadenyla-

tion complex (CNOT1, 3, 7, 9) and also HA-tagged CNOT6

(Figure 1B, lane7), indicating that the interaction between

NANOS2 and the CCR4-NOT deadenylation complex can be

reproduced in HeLa cells. However, a deletion of the first 10 N-

terminal residues of NANOS2 (yielding NANOS2-DN10) com-

pletely abolished this interaction (Figure 1B, lane 9) whereas there

was no such affect if the first 5 amino acids (AAs) were deleted

(Figure 1B, lane 8). This indicated the importance of residues 6–10

for this interaction and we generated the corresponding deletion

Figure 1. NANOS2 associates with the CCR4-NOT deadenylation complex through a direct interaction with CNOT1. (A) Schematic
representation of NANOS2 deletion mutants. (B) Flag-tagged NANOS2 or its deletion mutants were precipitated with anti-FLAG antibodies from HeLa
cell extracts co-transfected with 36HA-Cnot6. Precipitates were analyzed by western blotting with the indicated antibodies. (C) Immunoprecipitated
Flag-tagged NANOS2 or NANOS2-DN10 were incubated with 59-fluorescein isothiocyanate-labeled poly(A) RNA substrate for 0, 30, 60 and
120 minutes. Samples were then analyzed on a denaturing sequencing gel. (D) Schematic representation of GST-fused CNOT1 protein. CNOT1 was
divided into three parts due to its length: the N-terminal region (CNOT1-1), middle region (CNOT1-2) and C-terminal region (CNOT1-3). (E) E. coli
extracts expressing GST-fused CNOT1-1, CNOT1-2 or CNOT1-3 were mixed with MBP-NANOS2 and subjected to a GST pull-down assay. (D) E. coli
extracts expressing CNOT1-3 were mixed with MBP-lacZa, MBP-NANOS2-DN10 or MBP-NANOS2 respectively, and subjected to a GST pull-down assay.
doi:10.1371/journal.pone.0033558.g001
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mutant of NANOS2 and found that only small amounts of CNOT

protein were precipitated with this product compared with the full

length and 1–5 AA-deleted variants (Figure 1B, lane 10). From

these data, we concluded that the first 10 AAs of NANOS2 are

required for a full interaction with the CCR4-NOT deadenylation

complex. We further assayed the deadenylase activity levels of

both NANOS2 and NANOS2-DN10 using synthetic poly(A)

RNA. The resulting data showed that cleavage of poly(A) RNA

occurred only with wild-type NANOS2 whereas this activity was

not observed in NANOS2-DN10 precipitates (Figure. 1C).

We next searched for a direct binding partner of NANOS2 that

could mediate the recruitment of the CCR4-NOT deadenylation

complex. Given that this interaction can be reproduced even in

HeLa cells, we surmised that germ cell specific factors would be

unnecessary, which in turn raised the possibility that the direct

partner may be one of the components of the CCR4-NOT

deadenylation complex. Of note in this regard, Drosophila Nanos

has been reported to directly bind to CNOT4 in yeast two-hybrid

experiments [15]. Hence, we cloned all of the known components

of the CCR4-NOT deadenylation complex [16], which include

CNOT1–4, 6, 6L, and 7–10, and D1Bwg0212e (a human C2orf29

homologue), into a GST-fusion bacterial expression vector (File

S1). CNOT1 was divided into three segments as indicated in

Figure 1D because of its long peptide sequence. Following the

expression of these components in bacteria, pull-down assays were

performed with purified recombinant MBP-NANOS2 (File S1)

and revealed that NANOS2 associates only with the C-terminal

region of CNOT1 (Figure S2, Figure 1E). We further found that

deletion of the 10 N-terminal AAs of MBP-NANOS2 abolishes

this interaction (Figure 1F). These data thus revealed that

NANOS2 associates with the CCR4-NOT deadenylation complex

via a direct interaction with CNOT1.

The NANOS2-DN10 mutant fails to rescue the Nanos2-
null phenotype

NANOS2 regulates several aspects of male gonocyte develop-

ment such as the suppression of meiosis, promotion of male

characteristics and suppression of apoptosis [6]. It is not known

however whether all of the functions of NANOS2 are mediated by

its interaction with the CCR4-NOT deadenylation complex. We

thus tried to express NANOS2-DN10 in male gonocytes instead of

wild-type NANOS2 to further analyze the physiological signifi-

cance of this association. We generated a transgenic mouse line

that expressed Flag-tagged NANOS2-DN10 under the direct

control of the Nanos2 enhancer (Figure 2A, DN10). We confirmed

the expression of this transgene in the embryonic gonads of two

lines. Western blotting revealed that the corresponding transgenic

mice produced an appreciable quantity of Flag-tagged NANOS2-

DN10, and that line #1 expressed this truncated protein at levels

that were comparable to the full-length Flag-tagged Nanos2

(Figure 2B, lane DN10#1 and full) transgene that can fully rescue

the Nanos2-null phenotype (Figure 2A, full) [8].

It is noteworthy that the endogenous levels of NANOS2 were

found to be unchanged in the presence of Flag-tagged NANOS2-

DN10, whilst the presence of full-length Flag-tagged NANOS2

reduced endogenous protein expression (Figure 2B, middle panel).

This is consistent with a previous report [8] and we thus analyzed

the expression of Nanos2 mRNA in the E14.5 male gonad of each

genotype (i.e. wild-type, Tg with full-length Nanos2, Tg with

Nanos2-DN10) by RT-PCR (Figure S3, File S1). In the Tg gonads

that express full-length Nanos2, the mRNA ratio was found to

correlate well with that of the protein products (Figure S3B, lane

full; Figure 2B, lane full) and the total RNA amount was similar to

that of the wild-type gonads (Figure S3C). However, the mRNA

ratio did not always reflect the protein amounts in Tg gonads

expressing Nanos2-DN10 (Figure S3B, lane DN10; Figure 2B, lane

DN10#1) and the total RNA amount was elevated in comparison

with the protein levels (Figure S3D). These results suggest that in

the presence of Flag-tagged NANOS2-DN10, endogenous Nanos2

mRNA produces more protein than expected, whereas mRNA

from the transgene produces less, indicating that there is an

unknown mechanism underlying the regulation of the NANOS2

protein levels independently of transcription. Further analysis was

conducted using line #1, which showed higher expression of the

Nanos2-DN10 transgene.

We crossed the Nanos2-DN10 transgenic mice with Nanos2LacZ/+

mice to assess the function of NANOS2-DN10 in the absence of

wild-type NANOS2. Since the Nanos2-DN10 transgene was

successfully transmitted via males, we therefore introduced the

Flag-tagged Nanos2-DN10 transgene into Nanos2-null testes and

compared the phenotype with those of Nanos2-null mice to further

examine the function of NANOS2-DN10 in vivo. As shown

previously, Nanos2-null males have significantly smaller testes than

their wild-type counterparts, in which no germ cells exist from

about 4 weeks [7]. In our current experiments, we similarly

observed smaller testes in the transgenic mice with a Nanos2-null

background (Figure 2C). A subsequent histological study of these

transgenic tissues revealed a complete loss of germ cells from the

seminiferous tubules (Figure 2D, E, F). We next assessed whether

this was due to a failed rescue event during embryogenesis. We

performed immunostaining for activated cleaved caspase 3 at

E16.5 and found cells undergoing apoptosis, as predicted from the

lack of germ cells in the adult testes (Figure 2G, H, I). We further

found an upregulated meiotic marker, SCP3 (Figure 2J, K, L) [17],

and downregulated male-specific marker, DNMT3L (Figure 2M,

N, O) [18]. These phenotypes were almost identical to those

observed in Nanos2-null mice [6] and we thus concluded that the

first 10 residues of NANOS2 are essential for almost all of its

functions. These results also suggest that the interaction of

NANOS2 with the CCR4-NOT deadenylation complex is

essential for its developmental functions, although we cannot

exclude the possibility that the association of other factors with the

10 N-terminal AAs of NANOS2 is also critical.

To further examine the rescue events that cannot be initiated by

NANOS2-DN10, we compared the gene expression profiles

among E14.5 male gonads of Nanos2+/2, Nanos22/2 and

Nanos22/2 mice expressing NANOS2-DN10 (Nanos22/2_Tg+) by

microarray. Although a small set of genes showed significant

expression changes between Nanos22/2 and Nanos22/2_Tg+

(Table 1), box plot analyses of these genotypes showed that the

gene expression profiles were mainly similar, as predicted

(Figure 3A–B). Groups of both meiotic genes (Stra8, Sycp1, Taf7l;

Figure 3C, D, E) [4,19,20] and PGC genes (Esg1/Dppa5, Stella/

Dppa3, Sox2; Figure 3F, G, H) [21,22] were found to up-regulated

whilst male-type genes (Dnmt3l, Miwi/Piwil1, Tdrd1; Figure 3I, J,

K) [18,23,24] were down regulated in E14.5 male gonads as

compared with wild-type male gonads, even in the presence of the

transgene. These data support our contention that the interaction

of NANOS2 with CCR4-NOT deadenylation complex is essential

for it to exert its biological roles, and we predict that there are few,

if any, CCR4-NOT deadenylation complex-independent NA-

NOS2 functions.

NANOS2-DN10 interacts with specific RNAs
To further examine the properties of NANOS2-DN10, we next

analyzed the cellular localization of this mutant in Nanos2 knockout

mice by immunostaining with the antibody against NANOS2. As

previously mentioned, NANOS2 is dispersed throughout the

NANOS2/CCR4-NOT Complex Plays an Essential Role
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cytoplasm with some localization in P-bodies in male gonocytes

(Figure. 4A, B, C) [8]. In contrast to this, however, NANOS2-

DN10 was mainly found within the nucleus, although was partly

still detectable in the cytoplasm and localized at the P-bodies, as

seen for wild-type NANOS2 (Figure. 4D, E, F). This indicated that

the interaction with the CCR4-NOT deadenylation complex is

required for the proper localization of NANOS2. These data raise

the question of whether or not its interaction with CCR4-NOT

deadenylation complex is also essential for the association of

NANOS2 with its target RNAs. To address this issue, we purified

FLAG-tagged NANOS2-DN10 from E15.5 male gonad extracts to

analyze co-precipitated RNA molecules as described previously

[8]. Subsequent western blotting analyses revealed that there was

no detectable association between NANOS2-DN10 and the

CCR4-NOT deadenylation complex as the components of which

could be efficiently co-precipitated with wild-type NANOS2

(Figure 4G, lane 5) but were undetectable in NANOS2-DN10

precipitates (Figure 4G, lane 6). This confirmed that a deletion of

the first 10 AAs of NANOS2 abolishes its interaction with CCR4-

NOT dedenylation complex in vivo.

We also examined the co-precipitated RNAs by real-time RT-

PCR, and found that FLAG-tagged NANOS2-DN10 efficiently

co-precipitated meiotic gene transcripts (Stra8, Sycp3, Taf7l, Dazl,

Meisetz) (Figure 4H–I) that are also associated with wild-type

NANOS2 as previously shown [8]. These data indicate that

NANOS2 binds specific RNAs independently of its interaction

with the CCR4-NOT deadenylation complex.

Discussion

In our current study, we have identified CNOT1 as a direct

NANOS2-associated protein, and shown that the first 10 AAs of

Figure 2. NANOS2-DN10 does not rescue the Nanos2 knockout phenotype. (A) Schematic representation of Flag-tagged Nanos2 and
Nanos2-DN10 transgenes under the direct control of the Nanos2 enhancer. (B) Western blotting analysis of NANOS2 protein in E15.5 male gonads
from Flag-tagged Nanos2-DN10 transgenic mouse lines #1 and #2 with anti-NANOS2 or FLAG antibodies. Wild-type and Flag-tagged full-length
Nanos2 transgenic mice were used as negative and positive controls, respectively. Tubulin was used as a loading control. (C) Comparison of testis size
from 6 week-old littermates of Nanos2+/2, Nanos22/2 and Nanos22/2 mice expressing the Nanos2-DN10 transgene. (D–F) Sections were prepared
from the testes described in (C) and stained with hematoxylin and eosin. (G–I) Sections of testes from Nanos2+/2, Nanos22/2 and Nanos22/2

expressing the Flag-tagged Nanos2-DN10 transgene at E16.5 were immunostained with anti-cleaved Caspase 3 (green) and TRA98 (red) antibodies.
(J–O) Sections of testes from the same littermates at E15.5 were immunostained with antibodies against SCP3 (green) and LAMININ (red) (J–L), and
DNMT3L (green) and TRA98 (red) (M–O). DNA was labeled with DAPI counterstain (blue). Arrowheads in (H) and (I) indicate germ cells undergoing
apoptosis. Scale bars, 20 mm in G for G–I; 50 mm in J for J–O.
doi:10.1371/journal.pone.0033558.g002
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NANOS2 is required for this interaction. In addition, we have

further shown that the interaction of NANOS2 with the CCR4-

NOT deadenylation complex is essential for it to exert its

biological roles in vivo by using transgenic mouse that expresses a

NANOS2 variant lacking these first 10 AAs (NANOS2-DN10). As

this NANOS2 variant still retains both the CCHC-type zinc finger

motif and a C-terminal region highly conserved among mammal

(Figure S1B), it is assumed that the Nanos2-DN10 transgenic mouse

would have some defects in germ cell development due to

presumptive dominant effects. However, we observed normal

spermatogenesis and successful transmission of this transgene to

next generation, which led us to speculate that endogenous

NANOS2 may be sufficient to suppress dominant-negative effects

of NANOS2-DN10.

On the other hand, NANOS2-DN10 did not rescue any major

defect observed in Nanos2-null mouse, indicating that the

NANOS2 function is mediated via interaction with the CCR4-

NOT complex. However, it is shown that the complex has various

Table 1. Results of Microarray analyses.

Subtraction procedures Nanos2+/2 Nanos22/2 Nanos22/2_Tg+ Total

All probe sets 41,326 41,326 41,326 41,326

Present a 25,759 26,036 25,695 27,033*

2 fold change vs Nanos2+/2 of 27,033* b - 804 1,014 -

T-Test, p,0.05 vs Nanos2+/2 of b c - 144 219 -

(Ratio of c/*) - 0.98% 0.81% -

2 fold change in c, ,Nanos2+/2 - 62

2 fold change in c, .Nanos2+/2 - 82

2 fold change vs Nanos22/2 of 27,033* e - - 310 -

T-Test, p,0.05 vs Nanos22/2 of b d - - 37 -

(Ratio of d/*) - - 0.14% -

doi:10.1371/journal.pone.0033558.t001

Figure 3. Comparative expression analysis of various genes in Nanos22/2 and Nanos22/2_Tg+ male gonads. (A, B) Box plots showing the
expression profiles of 144 genes that are significantly altered in the male gonads of E14.5 Nanos22/2 embryos compared with Nanos2+/2 embryos.
Note that the averages of the plots for Nanos22/2_Tg+ are very similar to those of Nanos22/2 in terms of both the increased (A) and decreased (B)
genes in Nanos22/2. (C–K) Expression levels of genes relevant to the sexual differentiation of germ cells in the male gonads of Nanos2+/2, Nanos22/2

and Nanos22/2_Tg+ embryos at E14.5. These data were obtained using the Agilent GeneChip System and analyzed with Genespring GX software.
doi:10.1371/journal.pone.0033558.g003
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functions other than deadenylation, including transcriptional,

post-transcriptional RNA regulation and protein ubiquitylation

[9,14]. For instance, CNOT1 interacts with nuclear receptors

[25], and CNOT3 is involved in chromatin remodeling [26],

thereby playing a role in transcriptional mechanism. In addition,

CNOT4 harbors E3 ligase activity, placing the CCR4-NOT

complex in the protein ubiquitylation/degradation pathways

[27,28]. Nevertheless, considered that NANOS2 is cytoplasmic

RNA-binding protein localizing in P-bodies and that NANOS2-

associated CCR4-NOT complex has deadenylase activity in vitro

[8], it would be reasonable to assume that a major function of

NANOS2-associated CCR4-NOT complex is deadenylation for

RNA degradation. However, at this point, we cannot rule out the

possibility that some other function(s), such as ubiquitylation or

post-transcriptional regulation, is also responsible for a part of

NANOS2 function.

We have also shown that a mutant NANOS2 lacking association

with CNOT1 still retains an ability to interact with specific mRNAs,

indicating that the RNA-binding specificity is determined indepen-

dently of the interaction with the CCR4-NOT deadenylation

complex. However, it is known that the CCHC-type zinc finger

motif in NANOS protein binds RNAs non-specifically in vitro [29],

indicating the other protein(s) is required to confer the specificity.

Consistently, our preliminary MAS analyses revealed that several

other proteins other than the CCR4-NOT complex are co-

precipitated with NANOS2, including several RNA-binding

proteins. These factors are currently under investigation.

Materials and Methods

Ethics statement
Experiments were carried out with the permission of the animal

experimental committee at the Yokohama National University

(project number; 1), which is approved March 3, 2009.

Mice
The Nanos2-knockout mouse lines and PCR methods used for

the verification of mutant alleles have been previously described

Figure 4. NANOS2-DN10 interacts with specific RNAs. (A–F) Sections of testes from Nanos2+/2 and Nanos22/2 expressing the Flag-tagged
Nanos2-DN10 transgene at E15.5 were immunostained with antibodies against NANOS2 (green) and DCP1A (red). DNA was counterstained with DAPI
(blue). Scale bar, 10 mm in A for A–F. (G) Immunoprecipitation-western blotting analysis of proteins from E15.5 male gonadal extracts of wild-type and
transgenic embryos expressing 36FLAG-NANOS2 or 36FLAG-NANOS2-DN10. (H, I) Quantification of mRNA enrichment in 36FLAG-NANOS2-DN10
immunoprecipitates using real-time RT-PCR. The level of g3pdh control mRNA was set at 1 and the expression of each mRNA species was calculated
relative to this control. The fold enrichment of each transcript in the 36FLAG-NANOS2-DN10 immunoprecipitates compared with wild-type is
indicated in the graph (H) and the accompanying table (I). These data were quantified from three QRT-PCR reactions in one set of
immunoprecipitations.
doi:10.1371/journal.pone.0033558.g004
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[7]. A 36FLAG-tagged Nanos2-DN10 vector with a 39-UTR under

the control of the Nanos2 enhancer (9.2 kb upstream sequence) was

used for the production of the transgenic mouse line. The primer

pairs used for the genotyping of these lines were as follows:

3FLAG-F1; 59-CTACAAAGACCATGACGGTG-39, and

N2-39U-R2; 59-CCCGAGAAGTCATCACCAG-39

Immunoprecipitation and western blotting
The 36Flag expression vectors for Nanos2 and Nanos2-DN10,

and 36HA-Cnot6 were constructed using pcDNA3.1 (Invitrogen).

HeLa cells were then transfected with 12 mg of these constructs per

10 cm dish using polyethylenimine [30]. After 48 hours, cellular

proteins were extracted with 1 ml of lysis buffer (50 mM Tris-HCl

[pH7.4], 150 mM NaCl, 0.5% NP-40, 7.5 mM b-glycerophos-

phate, 0.1 mM Na3VO4, 1 mM DTT, 1 mM EDTA, 1 mM

PMSF, 1 mM leupeptin, 1 mM aprotinin, 1 mM pepstatin), and

spun at 20,000 g for 15 min at 4uC. The supernatants were then

incubated with 10 ml of anti-FLAG M2 affinity gel (Sigma) on a

rotator for 3 h at 4uC. After several washes, precipitates were

boiled with 10 ml of 26Sample buffer, separated by SDS-PAGE,

and then subjected to western blotting analysis as described

previously. The membranes were incubated with primary

antibodies against Flag (1:8,000; Sigma-F3165), HA (1:10,000;

12CA5), CNOT1 (1:500, a gift from H. T. Timmers), CNOT3

(1:500, a gift from T. Tamura), CNOT7/Caf1 (1:500, a gift from

A. B. Shyu) and CNOT9/Rcd1 (1:500, a gift from H. Okayama).

Positive signals were visualized by incubation with an appropriate

secondary antibody conjugated with horseradish peroxidase

followed by detection using an ECL AdvanceTM Western Blotting

Analysis System (GE Healthcare). All antibodies were diluted

using Can Get Signal Immunoreaction Enhancer Solution

(Toyobo).

In vitro deadenylase assay
After immunoprecipitation as mentioned above, precipitates

were subjected to a deadenylase assay as previously described

[8,31].

GST pull-down assay
MBP-LacZa, MBP-NANOS2 or MBP-NANOS2-DN10 fusion

proteins were expressed in the E. coli BL21 (DE3) strain and purified

with Amylose Resin (New England Biolabs). All CCR4-NOT

deadenylation complex components were cloned from a single

stranded E15.5 mouse male gonad cDNA library into pGEX-5X

vectors (GE Healthcare), and then expressed in E. coli, BL21 Star

(DE3) (Invitrogen) cells. Bacterial pellets were sonicated in a binding

buffer (25 mM HEPES-KOH [pH 7.4], 150 mM NaCl, 0.1% NP-

40, 1 mM DTT, 1 mM EDTA, 1 mM PMSF), and then spun at

15,000 rpm at 4uC. The supernatants were mixed with 1–5 mg of

MBP-NANOS2, NANOS2-DN10 or LacZa incubated for 2 h at

4uC, and then mixed with 30 ml of glutathione-sepharose 4FF (GE

Healthcare) followed by a further incubation for 2 h. After extensive

washing with the above binding buffer supplemented with 350 mM

NaCl, precipitates were separated by SDS-PAGE and analyzed by

western blotting with anti-MBP antibody (1:2000; New England

Biolabs) or by CBB staining.

Histological methods
For immunostaining, mouse gonads were directly embedded in

O.C.T. compound (Sakura) and frozen in liquid nitrogen. After

sectioning (8 mm), samples were stained according standard

procedures. Details of these methods have been previously described

[6].

Microarray
For one hybridization assay, 200 ng of total RNA was labeled

with Cy3 and then hybridized to a Whole Mouse Genome Oligo

Microarray (G4122F, Agilent) in accordance with the manufac-

turer’s protocols (Agilent) for the Low RNA Input Linear

Amplification Kit, and the One Color Gene Expression Hybrid-

ization Kit, respectively. Arrays were analyzed using a Microarray

Scanner System (G2565BA, Agilent) and the images were

processed with Feature Extraction, version 9.1 (Agilent) to

generate signal values and present/absent calls for each probe

set. Two independent datasets were obtained for each collation.

Processed data were analyzed with Genespring GX software. The

following normalization steps were applied to each dataset:

measurements were set from less than 5 to equal to 5 for data

transformation, per chip normalization was set to the 50th

percentile, and per gene normalization was set to median. All

data is MIAME compliant and the raw data has been deposited in

a MIAME compliant database (GEO, accession number:

GSE33138).

Immunoprecipitation and real-time RT-PCR
For the immunoprecipitation – realtime RT-PCR analysis, 60

male gonads from E15.5 embryos of either wild-type or Nanos2-

DN10 transgenic mice were homogenized on ice in 200 ml of

Buffer A (25 mM Hepes-KOH [pH7.4], 250 mM sucrose, 75 mM

b-glycerophosphate, 1 mM DTT, 0.05% NP-40, 26Complete

Mini (Roche) containing 400 units/ml of RNase inhibitor

(Toyobo) and 1/100 volume of phosphatase inhibitor cocktail 1

(Sigma, St Louis, MO), and spun at 10,000 g for 10 min at 4uC.

NaCl (5 M) was then added to the supernatants to a final

concentration of 150 mM. The samples were then mixed with

20 ml of anti-FLAG M2 affinity gel (Sigma) and incubated on a

rotator for 3 h at 4uC. After 5 washes with Buffer A containing

150 mM NaCl, co-precipitated RNAs were purified using the

RNeasy Mini Kit (Qiagen). After synthesis of first-strand cDNAs

with 200 U SuperScript III reverse transcriptase (Invitrogen) and

100 pmol (dT)20 primer, real-time RT-PCR analyses were carried

out according to manufacture’s instruction. The level of G3pdh

control mRNA was set at 1 and the levels of each mRNA were

calculated (each mRNA/G3pdh mRNA). Then, the fold enrich-

ment of each mRNA in IP from tg extracts compared to IP from wt

extracts is calculated (ratio of each mRNA level in FLAG IP from

tg to those from wt). Quantifications were from three QRT-PCR in

one set of immunoprecipitations [8].

Supporting Information

File S1 This file includes Materials and Methods for amplifica-

tion of cnot genes and Realtime RT-PCR.

(DOCX)

Figure S1 Conservation of Nanos proteins. (A) Amino acid

sequence alignment of putative NANOS2 proteins among

different vertebrate species. The overall sequence identity values

in comparison with the mouse NANOS2 protein are shown at the

end of each sequence. Three highly conserved regions are

indicated in frame. Red and blue circles indicate conserved

CCHC residues in the former and latter zinc finger motifs,

respectively. (B) Schematic structure of the NANOS2 protein

indicating the conserved zinc finger motif. NR, N-terminal region;

CR, C-terminal region.

(TIF)

Figure S2 GST pull-down assay. E. coli extracts expressing

GST-fused CNOT1-1, 1-2, 1-3, 2, 3, 4, 6, 6L, 7, 8, 9, 10, or

NANOS2/CCR4-NOT Complex Plays an Essential Role

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e33558



D1Bwg0212e were mixed with MBP-NANOS2 and subjected to a

GST pull-down assay. CNOT proteins that precipitated with

Glutathione Sepharose were visualized by CBB staining whereas

co-precipitated MBP-NANOS2 was detected by western blotting.

Note that only CNOT1-3 precipitates large amount of MBP-

NANOS2.

(TIF)

Figure S3 RT-PCR analyses of Nanos2 mRNA. (A)

Schematic representations of endogenous Nanos2, 3xFlag-tagged

full-length Nanos2 and 3xFlag-tagged Nanos2-DN10 mRNAs. Red

arrows indicate the primer pair used to measure the total Nanos2

mRNA level (C, D), whilst the blue arrows indicate a primer pair

designed to discriminate between endogenous and exogenous

Nanos2 mRNA (B). (B) Semi-quantitative RT-PCR analysis of

Nanos2 mRNA in E14.5 male gonads from wild-type, transgenic

mice expressing full-length Nanos2 and Nanos2-DN10. (C, D)

Comparison between the total Nanos2 mRNA levels in the E14.5

male gonads of wild-type and transgenic mice expressing full-

length Nanos2 (B) or Nanos2-DN10 (C) by realtime RT-PCR

analysis.

(TIF)
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