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Abstract

Background: During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently
controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD
(Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether
such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC
regeneration by reactivation of Notch1 signaling.

Methodology/Principal Findings: We performed comprehensive in vivo inducible overactivation of NICD at various
developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated
ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when
tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in
either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the
new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-
negative).

Conclusions/Significance: Our data demonstrate that the developmental stage determines responsiveness of embryonic
otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type,
postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional
pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
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Introduction

The mouse inner ear is a well-organized sensory organ

responsible for balance and hearing [1,2,3,4]. It emanates from a

thickening ectoderm adjacent to the hindbrain at approximately

embryonic day 8 (E8), referred to as the otic placode, which

continues to invaginate and morph into the otocyst [5,6] at

approximately E10. The otocyst is further patterned into the dorsal

vestibular part of 3 cristae (for angular motion detection), utricle and

sacculus (for linear motion detection), and the ventral part of coiled

cochlea (for sound detection) [7]. Despite different morphologies, all

parts contain sensory epithelia and adjacent non-sensory epithelia.

Mechanosensory hair cells (HCs) and surrounding supporting cells

(SCs) are located inside the sensory epithelium [2]. Mouse HCs and

SCs are believed to have descended from the same prosensory

progenitors, as seen in the case of the avian inner ear [8].

Current literature supports that Notch1 is the primary Notch

receptor expressed in the mouse inner ear; thus, Notch1 signaling

is thought to subserve all Notch activities during inner ear HC and

SC development and to function via lateral induction and lateral

inhibition [2,9,10,11,12,13]. The lateral induction effect, mediated

through Jagged1/Notch1 signaling, is involved in specifying the

prosensory domains [14,15,16,17,18]. Consistent with this notion,

loss of Notch1 causes formation of a smaller otic placode, whereas

overactivation of NICD (Notch1 intracellular domain) in Pax2+
otic placode cells increases the size of the otic placode in Pax2Cre+;

Rosa26-NICDloxp/+ mice [19]. However, 2 recent reports show that

Notch1 signaling might not be necessarily required to form the

prosensory domain or maintain the properties of progenitor cells

[20,21]. Nonetheless, after the inner ear prosensory region

is formed, prosensory progenitor cells undergo cell fate deter-

mination and become either HCs or SCs. Progenitors with

high expression of Atoh1, a helix-loop-helix transcription

factor required for HC formation, develop into HCs

[22,23,24,25,26,27], whereas those maintaining Notch1 signaling

develop into SCs [9,28]. Moreover, loss of or decreased Notch1
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signaling in postnatal day 0 (P0) differentiating SCs after cell fate

commitment can result in conversion of SCs into HCs [29,30].

Overactivation of NICD in chick inner ears results in ectopic

HCs [13], highlighting that Notch1 signaling is competent to

specify the sensory domains that are permissive for further HC

generation. Recently, in vivo overactivation of NICD at early

embryonic stages has been shown to lead to ectopic HCs in mice

[31,32]. However, it remains unclear whether such an effect can

also be elicited in late embryonic or postnatal stages in vivo. An

insight into the effect of NICD overactivation at multiple time

points at later ages will be informative to design future experiments

that use overactivation of Notch1 signaling as a strategy for HC

regeneration in mammals.

In this study, we induced constitutive overactivation of NICD in

the developing mouse inner ear at various developmental stages.

We demonstrated that overactivation of NICD at embryonic ages

but not neonatal ages resulted in the formation of ectopic sensory

epithelia (with HCs) in non-sensory regions and supernumerary

HCs in sensory regions. Notably, new HCs did not express NICD,

suggesting a non-cell-autonomous effect of Notch1 signaling.

Taken together, our studies show that overactivation of NICD, in

an age-dependent manner, can specify extra inner ear sensory

patches or generate ectopic HCs. Our study also highlights the

importance of the effects of developmental stages (or differentia-

tion stages at the cellular level) on cellular reprogramming for

regenerative purposes [33].

Results

Constitutive overactivation of NICD in otocyst cells
generates ectopic hair cells (HCs) in the utricle

To activate NICD in vivo in cochlear cells at various

developmental ages, we used CAGCreER+; Rosa26-NICDloxp/+ mice

that would be given tamoxifen at different developmental stages.

NICD and EGFP cannot be expressed unless the preceding stop

fragment is removed by Cre (Fig. 1A). After Cre-mediated

recombination, the NICD will translocate into the nucleus and

subsequently activate Notch1 signaling. As NICD and EGFP

transcriptions are coupled by the same Rosa26 promoter, EGFP

will faithfully reflect NICD expression and also serve as a lineage

Figure 1. Ectopic hair cells (HCs) and supporting cells (SCs) in the utricle with overactivation of NICD at E10.5. (A) Diagram to illustrate
the strategy of driving constitutive NICD expression. (B–C) Low-magnification image of the utricle of Rosa26-NICDloxp/+ (B) and CAGCreER+; Rosa26-
NICDloxp/+ (C) embryos treated with tamoxifen at ,E10.5 and analyzed at ,E19. (D–D0) A high-magnification three-dimensional image of the white
rectangular area marked in (C), which belongs to the utricle non-sensory region (NSE). (E–F) Triple staining of Myosin-VI, Sox10, and EGFP at the HC
layer (F) and SC layer (G). (G–H) Whole mount (G–G9) and trans-section (H) images of the utricular endogenous sensory epithelium stained with EGFP
and Myosin-VI. HCs were absent in the small white dotted line circled region in HC layer (G) and SC layer (G9). Arrow in (H) also points to the area
where HCs are missing. NSE: non-sensory region; XY: Confocal XY plane; YZ: Confocal YZ plane; XZ: Confocal XZ plane. Scale bars: 200 mm in (B) and
20 mm in (D–H).
doi:10.1371/journal.pone.0034123.g001
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tracer for EGFP/NICD expressing progenitors and offspring.

Although the CAG promoter is ubiquitously active in most cases,

with a single tamoxifen injection the mice can be considered

mosaic, similar to the case of chimeric mice in which wild-type

cells and mutant cells (with ectopic NICD) are randomly mixed

together. Such a mosaic can be useful to analyze the lateral

induction and lateral inhibition effects of Notch signaling.

CAGCreER+; Rosa26-NICDloxp/+ embryos were given tamoxifen at

,E10.5 and analyzed at ,E19 (Fig. 1A). Large EGFP+ clusters

were observed in both the utricles and cochleae. Although EGFP

was also expressed in the cristae and sacculus, this study focused

on only the utricles and cochleae. It should be noted that otocyst

cells at ,E10.5 targeted by tamoxifen were still rapidly

proliferating. Thus, even though only a few cells were targeted,

they could generate many EGFP+ descendants.

Neither EGFP+ cells nor ectopic HCs were found in the control

samples (n = 3) of Rosa26-NICDloxp/+ mice (Fig. 1B). However, in

experimental utricle samples of CAGCreER+; Rosa26-NICDloxp/+ mice

(n = 4), ectopic EGFP+ sensory patches of different sizes were found

in the non-sensory region between the utricle and cristae (Fig. 1C).

This result indicates that single tamoxifen injection induces

expression of NICD-IRES-EGFP in the otic precursor cells, and

the EGFP+ cells have ectopic Notch signaling and become sensory

progenitor cells. Inside each ectopic EGFP+ patch, there were

always new HCs (40611, n = 4) that were Myosin-VI+/EGFP2

negative (Fig. 1D–D0). Interestingly, more ectopic HCs were present

in larger EGFP+ patches. While the ectopic HCs were negative for

the SC marker Sox10 (Fig. 1E), cells adjacent to the ectopic HCs

expressed Sox10 [34]. These Sox10+ cells were either EGFP+ or

EGFP2negative (Fig. 1F), both of which were defined as new SCs.

Therefore, this result supports that the initial EGFP+ precursors, by

lateral induction effect of Notch activities [13,31,32], specify

additional progenitor cells that were EGFP2negative. Because of

the constitutive NICD expression in the EGFP+ progenitors, they

exclusively developed into EGFP+ SCs. The EGFP2negative

progenitors differentiated into either new HCs or SCs, a process (to

be discussed in detail later) that is reminiscent of the well-known

lateral inhibition effect of Notch activities [16,28,35]. Such an

explanation can be also applied to the following studies.

Inside the endogenous sensory epithelium of the utricle, most

HCs (EGFP2) underwent normal differentiation (Fig. 1G).

However, occasionally (in 2 out of 4 samples) HCs were absent

(white dotted line circled region in Fig. 1G–G9 and arrow pointed

area in Fig. 1H) in a very small contiguous area with only SCs

(either EGFP+ or EGFP2negative).

Constitutive overactivation of NICD in otic precursor cells
generates new HCs in the cochlea

In the ,E19 control Rosa26-NICDloxp/+ mice (n = 3), we found

no ectopic HCs (Fig. 2A–B0). However, ectopic sensory areas

Figure 2. Ectopic HCs in the cochlea with constitutive Notch1 signaling at E10.5. (A–B0) Images of the cochlea taken from Rosa26-NICDloxp/+

embryos treated with tamoxifen at ,E10.5 and analyzed at ,E19. (C–E0) Images of the cochlea taken from CAGCreER+; Rosa26-NICDloxp/+ embryos treated
with tamoxifen at ,E10.5 and analyzed at ,E19. White arrows in (C) point to ectopic sensory epithelia with new HCs in the spiral ganglion area. Inset in
(D) shows the same EGFP+ patch (EGFP signal alone) visualized in the GER area in (D). (E–E0) High-magnification three-dimensional images of the yellow
rectangular region in (C). OC: organ of Corti; GER: greater epithelium ridge; OHCs: outer hair cells; IHCs: inner hair cells; XY: Confocal XY plane; YZ:
Confocal YZ plane; XZ: Confocal XZ plane. Scale bars: 200 mm in (A) and 20 mm in (B, D and E).
doi:10.1371/journal.pone.0034123.g002
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containing Myosin-VI+/EGFP2 HCs were also found in the

cochlea of CAGCreER+; Rosa26-NICDloxp/+ mice (n = 4) (Fig. 2C).

Three regions had ectopic HCs in the cochlea. The first was the

endogenous organ of Corti (Fig. 2D–D0). The expanded organ of

Corti (in the medio-lateral dimension) with supernumerary HCs

was found in the basal or apical turn. Notably, the greater

epithelial ridge (GER) areas, which contained many EGFP+ cells,

had no Myosin-VI+ HCs (inset in Fig. 2D). This observation was

consistent with another recent study reporting that different chick

inner ear cells respond differently to overactivation of Jagged1

[36]. The second region with ectopic HCs was the cochlear spiral

ganglion (SGN) area (Fig. 2E–E0). Among the EGFP+ patches

(1565, n = 4), approximately half contained variable numbers

(762) of new HCs. Interestingly, patches with new HCs were

larger than those without new HCs. Furthermore, triple staining of

Myosin-VI, EGFP, and Tuj1 demonstrated that the new HCs

were distributed in the lateral edge of the SGN (Fig. 3A) and were

innervated by neuronal fibers (Fig. 3B–B9). In addition, double

staining of the synaptic marker Synaptophysin [37] and Myosin-

VI supports the presence of the synaptic structure between the new

HCs and neuronal cells in the SGN regions (white dotted line

circled area in Fig. 3C). Of note, the Synaptophysin signal

adjacent to new HCs was weaker than those around the

neighboring neuronal cells, suggesting that the synaptic structures

among new HCs and neuronal cells are not fully mature. The

third region was the outer sulcus area in which ectopic clustered

HCs (664, n = 4) were observed (Fig. 3D). In control samples, the

outer sulcus area did not contain HCs (Fig. 3E).

In all 3 areas, similar to what was observed in utricles (Fig. 1F–

G), cells (either EGFP+ or EGFP2) surrounding these new HCs

expressed Sox10 (Fig. 4), further supporting that ectopic HCs can

drive the formation of ectopic SCs.

New HCs appear in the utricle but not cochleae when
ectopic NICD is turned on at ,E13

Next, CAGCreER+; Rosa26-NICDloxp/+ embryos were treated with

tamoxifen once at ,E13. Numerous EGFP+ cells were found in

cochleae (n = 4), but no ectopic HCs were found at E19 (Fig. 5A–

C). We further analyzed samples at E16 and E17 and did not find

any new HCs (data not shown). Therefore, it is unlikely that new

Figure 3. Ectopic HCs in cochlear spiral ganglion and outer sulcus region. (A–B9) Triple staining of TUJ1, Myosin-VI, and EGFP. (B) The high-
magnification image of the square area in (A). (B9) The image of confocal XZ plane through the dashed line in (B). Arrows target the same ectopic HC
in (B) and (B9). (C) Double staining image of Synaptophysin (a synaptic marker) and Myosin-VI in the cochlear spiral ganglion region. Very adjacent to
the new HC (inside the dotted white circle) lies the Synaptophysin+ dot, suggesting presence of the synaptic structure. (D–E) Images of samples
stained with Myosin-VI antibody in experimental (D) and control (E) cochlear samples. Ectopic HCs were present in outer sulcus regions in the
experimental but not the control group. OC: organ of Corti; OHCs: outer hair cells; IHCs: inner hair cells; XY: Confocal XY plane; XZ: Confocal XZ plane.
Scale bars: 200 mm in (A) and 20 mm in (B, D) and 10 mm (C).
doi:10.1371/journal.pone.0034123.g003
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HCs first formed and subsequently died between E13 and E19, as

further supported by the fact that new HCs generated by

overactivation of Notch signals can survive until adult ages [32].

These results are consistent with a recent study reporting that no

new HCs are present in cochlear explants (,E13.5) transfected

with NICD in vitro [20].

Although no ectopic HCs were found in Rosa26-NICDloxp/+

control embryos (n = 3), variable numbers (1666) of new HCs were

found in most of the ectopic EGFP+ sensory patches (763, n = 4)

present in each utricle (Fig. 5D–D90). However, these EGFP+
patches were smaller than those found in CAGCreER+; Rosa26-

NICDloxp/+ embryos when tamoxifen was given at ,E10.5 (Fig. 1).

The ectopic sensory patches were distributed in the non-sensory

region between the utricle and cristae (dashed line in Fig. 5D0).

Jagged1 is a sensory marker during early inner ear development

[17,31,32]. It was clear that SCs (either EGFP+ or EGFP2)

adjacent to the new HCs were Jagged1+ (Fig. 5E–E0). Because

Jagged1 is a protein only expressed in the membrane, it was

challenging to determine whether Jagged1 belonged to mem-

branes of HCs or SCs wrapping the new HCs. Therefore, we

additionally stained new HCs with another HC marker Parvalbu-

min [38]. Parvalbumin labeled the entire cell body of the new HCs

(arrow in Fig. 6A) but did not label the SCs (Fig. 6A9).

Furthermore, Sox2, another sensory marker [39], was expressed

in both the new HCs (arrow in Fig. 6B) and SCs (either EGFP+ or

EGFP2negative) (Fig. 6B9). Last, the new HCs were Sox102ne-

gative (arrow in Fig. 6C) but the adjacent SCs (either EGFP+ or

EGFP2negative) were Sox10+ (Fig. 6C9).

Turning on ectopic NICD after birth fails to generate new
HCs

To determine whether non-sensory cells in the neonatal utricle

still responded to NICD overactivation and generated ectopic

HCs, Rosa26-NICDloxp/+ (control group, n = 3) and CAGCreER+;

Rosa26-NICDloxp/+ (experimental group, n = 3) pups were given

tamoxifen at P0 and P1, and analyzed at P6 (n = 3). No ectopic

HCs were found in the non-sensory area of utricles from both

control (Fig. 7A–A9) and experimental group (Fig. 7B–B9),

although many EGFP+ cells were observed in experimental group

(inset in Fig. 7B9). To test whether new HCs would emerge at

older ages, we further analyzed CAGCreER+; Rosa26-NICDloxp/+ at

P10 (n = 3). No new HCs were found. However, the tracer EGFP

became faint and difficult to visualize at P10, possibly because of

decreased Rosa26 promoter activity and efficiency of IRES-

mediated EGFP translation. Similar difficulties have been

encountered in studies on older retina cells in which Rosa26-

NICDloxp/+ mice were used [40].

Figure 4. Expression pattern of Sox10 in ectopic cochlear SCs. Triple staining of Myosin-VI, Sox10, and EGFP of cochlear samples from
CAGCreER+; Rosa26-NICDloxp/+ embryos treated with tamoxifen at ,E10.5 and analyzed at ,E19. Ectopic HCs (Myosin-VI+) were Sox102 and SCs
(EGFP+ or EGFP2) were Sox10+ in spiral ganglion neuron area (A–A9), organ of Corti (B–B9), and outer sulcus area (C–C9). Scale bars: 20 mm.
doi:10.1371/journal.pone.0034123.g004
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To better visualize cells with Cre-mediated recombination at

P10, we crossed CAGCreER+; Rosa26-NICDloxp/loxp with Rosa26-

EYFPloxp/loxp to get CAGCreER+; Rosa26EYFP/NICD mice as the

experimental group, and Rosa26EYFP/NICD littermates were controls.

EYFP was used to visualize cells with ectopic NICD. We could

visualize EYFP but not EGFP, because EYFP is translated by the

cap-dependent mechanism and EGFP by the IRES-mediated

mechanism, which is known to have less translation efficiency.

CAGCreER+; Rosa26EYFP/NICD mice were treated with tamoxifen at P0

and P1, and analyzed at P10 (Fig. 8). Many EYFP+ cells were

observed, but again no new HCs were identified (Fig. 8). We could

not analyze samples after P10 because of lethality. We speculated

that mice died because of ectopic NICD in other organs [19].

Discussion

We show that the potential of Notch1 signaling in specifying

sensory patches is transient and declines with differentiation.

Furthermore, cochlear cells become insensitive to ectopic NICD

earlier than utricle cells. These findings are of particular interest

for conducting future studies on HC regeneration in postnatal

mammals. Also, it will be interesting to further test whether Notch

overexpression could induce HCs under pathogenic conditions

(i.e. ototoxic drug or noise-induced HC damage).

Lateral induction and lateral inhibition effects of Notch1
signaling

Notch1 signaling elicits lateral induction effects at early

embryonic ages when prosensory progenitors are being specified

and lateral inhibition effects at later embryonic ages when HC and

SC differentiation starts [2,9,10,13,16,17,28,35]. The phenotypes

observed in our CAGCreER+; Rosa26-NICDloxp/+ model can be

explained by these 2 sequential but different effects. EGFP and

NICD share the same cis-transcription element, but NICD

translation is cap dependent whereas EGFP translation is IRES

dependent. The efficiency of IRES-mediated protein translation is

generally lower than that of 59 cap-dependent translation. This

notion was further supported by the evidence that EGFP was hard

to visualize in utricle samples of CAGCreER+; Rosa26-NICDloxp/+

mice at P10, but EYFP was highly expressed in utricle samples of

CAGCreER+; Rosa26EYFP/NICD mice (Fig. 8). It is certain that EGFP+
cells will be NICD+ populations, but the level of NICD in

Figure 5. Overactivation of NICD at E13 generates new HCs in the utricle but not the cochlea. (A–C) Whole-mount cochlear image of a
CAGCreER+; Rosa26-NICDloxp/+ embryo treated with tamoxifen at ,E13 and analyzed at ,E19. Although many EGFP+ cells were present, no new HCs
were observed. (D–E0) Whole-mount images of the utricle and 2 adjacent cristae from the same embryo. White arrows in (D0) point to the ectopic
sensory epithelia region. (E–E0) A confocal three-dimensional, high-magnification image of the white rectangular region in (D90). NSE: non-sensory
region; XY: Confocal XY plane; YZ: Confocal YZ plane; XZ: Confocal XZ plane. Scale bars: 200 mm in (B and D90) and 20 mm in (E).
doi:10.1371/journal.pone.0034123.g005
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EGFP2negative cells (based on the sensitivity of the immuno-

staining technique) might still be lower than the threshold dosage

required to effectively induce Notch1 signaling, as supported by

previous studies involving this Rosa26-NICDloxp/+ strain [19,40,41].

Thus, for the purpose of this discussion, we define NICD+ cells as

EGFP+ cells and NICD2negative cells as EGFP2negative cells.

Given the permissive cellular environment, NICD overactiva-

tion induced new HCs in the EGFP+ patches in both utricles and

cochleae. All new HCs were EGFP2negative, and some SCs were

EGFP+. Although the emergence of EGFP+ SCs can be easily

explained by the prosensory-promoting ability of Notch1 signal-

ing, new EGFP2negative HCs and SCs should be generated by

the communication between EGFP+ cells and EGFP2negative

cells, known as the lateral induction effects of Notch1 signaling

(summary model in Fig. 9A). In other words, a single tamoxifen

injection first transforms some non-sensory cells into prosensory

progenitors (EGFP+). These EGFP+ prosensory progenitors in

turn further trigger their neighboring non-sensory cells, which are

not directly targeted by tamoxifen and are EGFP2negative, to

turn on Jagged1 (Fig. 5) and Notch1 signaling, leading eventually

to the transformation of these EGFP2negative cells into

prosensory progenitors as well. Thus, with EGFP as a lineage

tracer, new prosensory progenitors can be divided into EGFP+
and EGFP2negative groups. EGFP2negative progenitors can

differentiate into HCs or SCs. We speculate that the final cell fate

of each EGFP2negative progenitor is mediated by Notch1

signaling among different EGFP2negative progenitors (here

NICD from the endogenous Notch1 but not Rosa26 locus might

be involved), referred to as lateral inhibition between HCs and

SCs. In contrast, EGFP+ progenitors are prevented from

committing into HCs because they constitutively express NICD

(at the Rosa26 locus), and hence EGFP+ progenitors exclusively

develop into SCs. Last, because in the normal cochlear

development HC differentiation precedes SC differentiation, and

newly generated HCs can induce additional SCs [24], we propose

that in our studies emergence of new HCs occurs earlier than new

SCs as well. However, we currently lack the precise marker to

define the SC fate and Sox10 is turned on in the entire otic vesicle

epithelium [34], which prevents us from determining the onset of

the new SC formation.

Inside the endogenous sensory epithelium of the utricle, HC

density was sometimes slightly decreased in CAGCreER+; Rosa26-

NICDloxp/+ embryos injected with tamoxifen at ,E10.5. This

phenotype also can be explained by the lateral inhibition effect of

Notch1 signaling. If ectopic NICD is induced in too many

endogenous prosensory progenitors and subsequently not enough

progenitors are left for HC commitment, the HC density will likely

decrease. Such a pattern was occasionally found in endoge-

nous sensory epithelium regions where EGFP+ clusters were

extremely large (Fig. 1G–G9). In most endogenous sensory

epithelium regions, if only a small fraction of progenitor cells has

ectopic NICD expression (EGFP+), the overall progenitor pool

might buffer the ectopic NICD and still assign enough sources for

HC differentiation.

Of note, recently two reports showed that Notch signaling might

not be required in specifying and/or maintaining the properties of

the cochlear sensory progenitor cells in the early embryonic stages,

because available sensory markers were expressed normally

without Notch signaling [20,21]. Given that Notch signaling

becomes stronger (based on NICD antibody staining) in the later

embryonic cochlear development [42], it is possible that other

signaling pathways, such as Wnt signaling [19], could compensate

the loss of Notch signaling during the early embryonic ages when

overall Notch activities were slightly low.

Figure 6. Expression of the sensory epithelium marker Parvalbumin and Sox2 in new HCs, and Sox10 in new SCs. (A–A9) Images of
samples double stained with Parvalbumin and EGFP at HC layer (A) and SC layer (A9) of the ectopic sensory patches in the utricle non-sensory region
of a CAGCreER+; Rosa26-NICDloxp/+ embryo treated with tamoxifen at ,E13 and analyzed at ,E19. The arrow points to a new Parvalbumin+ HC. (B–B9)
Triple staining of Myosin-VI, Sox2, and EGFP. Both ectopic HCs (B) and SCs (B9) were Sox2+. The arrow points to a new Sox2+/Myosin-VI+ HC. Of note,
Myosin-VI was visualized in a pseudo-green color. (C–C9) Triple staining of Myosin-VI, Sox10, and EGFP. The arrow points to a new Myosin-VI+/
Sox102negative HC. The SCs (either EGFP+ or EGFP2negative) were Sox10+. Note that Myosin-VI was also visualized in a pseudo-green color. Scale
bars: 20 mm.
doi:10.1371/journal.pone.0034123.g006
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Roles of Notch1 signaling in development of the cochlear
neuronal lineage

Mouse inner ear neural and sensory progenitors are believed to

originate from the Ngn1+ neural-sensory progenitors [1]. This

hypothesis, especially in the inner ear vestibular part, is further

supported by the lineage tracing study with Ngn1CreER+; Z/EG mice [43]

and another study reporting that deletion of NeuroD1 leads to ectopic

HCs in vestibular ganglia [44]. However, only cochlear SGNs and not

cochlear prosensory progenitors were traced in Ngn1CreER+; Z/EG mice,

raising the question of whether cochlear SGNs and prosensory

progenitors derive from the same neural-sensory progenitors.

The observation that delaminating neuroblasts (neural progen-

itors) express the Notch ligand Delta1 [45] supports that sensory

progenitors are gradually specified among the neural-sensory

progenitors by Notch1 signaling. In our study, the presence of

ectopic HCs in cochlear SGN regions of CAGCreER+; Rosa26-

NICDloxp/+ embryos (Figs. 2, 3 and 4) suggests that cochlear SGN

progenitors with ectopic NICD are converted to prosensory

progenitors, which can further differentiate into either HCs or SCs

(summarized model in Fig. 9B), even though we cannot rule out

the possibility that some of the new HCs might originate from glia

cells. In addition, defective Notch1 signaling caused by deletion of

Delta1 resulted in expanded neural regions [16]. Taken together,

our results support that cochlear sensory progenitors and SGN

progenitors originate from identical neural-sensory progenitors.

Because of the different in vivo and in vitro experimental conditions,

or different levels of NICD, our results might not necessarily

conflict with another recent report in which Notch signaling

promotes cultured inner ear stem cells to follow neural lineage

differentiation [46].

Comparison of three different models explaining the
induction of ectopic HCs in mice

Besides our CAGCreER+; Rosa26-NICDloxp/+ model, two other

mouse genetic models have been recently used to show that

overactivation of NICD can induce the generation of ectopic HCs

[31,32]. These three models complement each other to provide

consorted evidence of Notch1 signaling activities in the developing

mouse inner ear. The advantage of the Pan et al. model [31] is

that it combines the mouse Cre/loxP and Tet-On genetic system.

NICD is transiently overactivated so that only lateral induction of

Notch1 signaling is augmented and subsequent lateral inhibition is

Figure 7. Overactivation of NICD in the postnatal utricle fails to generate new HCs at P6. Double staining of Myosin-VI and EGFP of
utricles from Rosa26-NICDloxp/+ control mice (A–A9) and CAGCreER+; Rosa26-NICDloxp/+ experimental mice (B–B9). Both groups were treated with
tamoxifen at P0/P1 and analyzed at P6. Although EGFP+ cells were present, no ectopic HCs were found in the experimental group. NSE: non-sensory
region. Scale bars: 200 mm.
doi:10.1371/journal.pone.0034123.g007
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intact. Thus, ectopic prosensory progenitors can become either

HCs or SCs. This model is different from our model in the

following ways: 1) ectopic HCs can be found in cochlear SGNs

regions across the entire turns in our model (Fig. 2) but exclusively

in basal turns in the Pan et al. model; 2) ectopic HCs can be found

in the cochlear ventral part in our model (Fig. 2) but in the dorsal

part only in the Pan et al. model; 3) our data show that not all cells

(,E10.5) respond to NICD and become prosensory progenitors,

but all cells seem to do so in the Pan et al. model. These differences

may arise because different non-sensory cells were targeted: all

types of cells were randomly targeted in our model, whereas

Col2a1Cre activity determined the scope of the targeted cell

population in the Pan et al. model.

The Hartman et al. model [32] is similar to our model in that

NICD is constitutively overactivated. The tamoxifen-independent

hGFAPCre bypassed the dystocia problem encountered in our

model, thereby allowing the analysis of juvenile and adult inner

ears. In the Hartman et al. model, the presence of ectopic HCs at

adult ages suggests that they can survive for a long time and are

possibly functional. However, hGFAPCre will overactivate NICD

soon after Cre is active and this model therefore cannot be used to

induce Notch1 signaling at various ages. Our tamoxifen-

dependent CAGCreER+ allowed the overactivation of NICD at

E10.5, E13 and P0/P1, by which we were able to show that there

is an age-dependant decrease in the responsiveness of inner ear

non-sensory cells to Notch1 signaling.

Implication of Notch1 signaling in HC regeneration in
mammals

After HC damage, non-mammalian vertebrates (e.g., birds, fish

and amphibians) can regenerate HCs [47] but mammals (e.g.,

mice and humans) either completely lose or have limited

regenerative capacity in different inner ear sensory epithelia

[3,48,49,50]. Similar to the chick inner ear study [13], our study

and 2 other reports [31,32] show that either constitutive or

transient overactivation of NICD can induce ectopic HCs in the

mouse. These results can have significant implications on studies of

HC regeneration after HC damage in mammals. The non-sensory

cells adjacent to the endogenous sensory epithelium might be good

candidates for manipulating Notch1 signaling.

Not all EGFP+ patches contain ectopic HCs and only

embryonic non-sensory cells respond to NICD overactivation

and generate new HCs, suggesting that other factors or signals

besides Notch1 signaling may be needed to generate a bona fide

sensory epithelium permissive for mechanosensory HC formation

[51]. In support, Notch1 signaling has been shown to be required

to maintain but not to initiate prosensory patch formation [18].

Figure 8. Overactivation of NICD in the postnatal utricle fails to generate new HCs at P10. (A–C) Double staining of Myosin-VI and EYFP
of utricles dissected from CAGCreER+; Rosa26EYFP/NICD mice that were treated with tamoxifen at P0/P1 and analyzed at P10. (D) The high-magnification
image of the squared area in (C). No ectopic HCs were present in the non-sensory area. NSE: non-sensory region. Scale bars: 200 mm in (C) and 20 mm
in (D).
doi:10.1371/journal.pone.0034123.g008
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Although these factors have yet to be identified, previous studies

have shown that during inner ear morphogenesis, Fgfr

[11,52,53,54,55,56], Wnt [57,58,59], BMP [60,61,62,63], and

Sonic Hedgehog (Shh) [63,64,65,66] signaling pathways are

involved in patterning the prosensory area. It is possible that a

combined modulation of these signals triggers the conversion of

postnatal non-sensory cells to HCs.

Materials and Methods

Mice
Rosa26-EYFPloxp/loxp (stock number: 006148) and Rosa26-

NICDloxp/loxp (stock number: 008159) lines were purchased from The

Jackson Laboratory (Bar Harbor, ME). The CAGCreER+ mouse line was

obtained from Dr. Guillermo Oliver, with permission of Dr. Andrew

McMahon. Mice were crossed at 5 p.m. and the next morning was

designated as E0.5 when vaginal plugs were found. Pregnant female

mice were given tamoxifen (intraperitoneal, 100 mg/g body weight)

[67] once when embryos were at ,E10.5 and ,E13. Neonatal mice

were given tamoxifen (3 mg/40 g body weight) at P0 and P1.

In vivo approach of overactivating of NICD in the mouse
inner ear at different ages

CAGCreER+; Rosa26-NICDloxp/+ mice were given tamoxifen at

different developmental stages. In the previous study where

CAGCreER+; Rosa26-LacZloxp/+ embryos received single tamoxifen

treatment at early embryonic ages [68], detectable recombination

event (X-gal+ cells as read-out) occurred within 6 hours and

became more apparent within 24 hours after tamoxifen treatment.

Because we were using the same CAGCreER+ mouse line and the

NICD-IRES-EGFP is also knocked into the same Rosa26 locus, we

reasoned the timing of turning on ectopic NICD (or Notch1

signaling) should be 0.5 or 1 day after ,E10.5 tamoxifen injection

and this should be applicable to other tamoxifen injection time

points as well in our study.

Moreover, the level of NICD overexpression is dictated by the

Rosa26 promoter, which is moderate active and about 1/8 21/10

of the activities of the CAG promoter [69,70], as it would otherwise

result in nonphysiological responses such as cell death. In addition,

all progenitors and their progeny that express EGFP after

tamoxifen induction should maintain the Rosa26 promoter–driven

ectopic NICD expression permanently, so that their effects can be

studied in vivo until the time of analysis. Which cells are induced by

tamoxifen injection is largely determined by the CAG promoter of

CAGCreER+ and the tamoxifen dose [68].

In this study, we gave the earliest tamoxifen injection at

,E10.5, because it was difficult to get live mutant embryos at

perinatal ages when the pregnant mother was given tamoxifen

at ,E9.5 or earlier. Because tamoxifen frequently caused dystocia,

we analyzed embryos at ,E19 (equivalent to P0).

Figure 9. Working models to explain the generation of ectopic HCs and SCs in utricles and cochleae. (A) Non-sensory cells targeted by
tamoxifen have ectopic NICD/EGFP expression (EGFP+). These EGFP+ cells become sensory progenitors (1). They also entitle neighboring cells
(EGFP2negative) to be sensory progenitors by lateral induction (2). Next, ectopic EGFP+ sensory progenitors commit to EGFP+ SCs (3), whereas
ectopic EGFP2negative sensory progenitors develop into either HCs or SCs (4). Lateral inhibition occurs between new EGFP2negative HCs and SCs,
which might be mediated by Notch1 signaling from the endogenous Notch1 locus. (B) Gain of function (GOF) of NICD converts neural progenitor
cells into sensory progenitor cells (dotted arrows), with generation of ectopic HCs and SCs (dotted circles) in the cochlear spiral ganglion area. TMX:
tamoxifen.
doi:10.1371/journal.pone.0034123.g009
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Ethics Statement
All animal work conducted for this study was approved by the

Institutional Animal Care and Use Committee at St. Jude

Children’s Research Hospital and performed according to NIH

guidelines.

Histology and immunofluorescence
Samples of the inner ear were processed by our routine protocols

described previously [71,72]. All images were examined using a Zeiss

LSM 700 confocal microscope. The following primary antibodies

were used: anti-Myosin-VI (rabbit, 1:200, 25-6791, Proteus

Bioscience, Ramona, CA), anti-TUJ1 (mouse, 1:1,000, MMS-

435P, Covance, Princeton, NJ), anti-GFP (rabbit, 1:50, A-21311,

Invitrogen, Carlsbad, CA) or anti-GFP (chicken, 1:1000, ab13970,

Abcam, Cambridge, UK), anti-Parvalbumin (mouse, 1:1000, P3088,

Sigma), anti-Synaptophysin (mouse, 1:200, 101011, Synaptic

Systems), anti-Jagged1 (goat, 1:300, sc-6011, Santa Cruz Biotech-

nology), anti-Sox10 (goat, 1:250, sc-17342, Santa Cruz Biotechnol-

ogy) and anti-Sox2 (goat, 1:1000, sc-17320, Santa Cruz Biotechnol-

ogy). The following secondary antibodies were used: donkey anti-

rabbit Alexa Fluor 647 (1:1000, A31573, Invitrogen), donkey anti-

chicken DyLt 488 (1:200, 703-486-155, Jackson ImmunoResearch,

West Grove, PA), donkey anti-goat Alexa Fluor 568 (1:1000,

A11057, Invitrogen), goat anti-rabbit Alexa Fluor 568 (1:1000,

A11036, Invitrogen), goat anti-mouse Alexa Fluor 647 (1:1000,

A21236, Invitrogen) and goat anti-chicken Alexa Fluor 488 (1:1000,

A11039, Invitrogen). All images were taken with confocal micro-

scope (Zeiss 700 model). Utricle and cochlear samples were scanned

at 1 mm intervals.

Acknowledgments

We thank J. Woods, G. Redd, C. Davis, and D. Wash for determining the

embryonic ages and S. Connell, J. Peters, and Y. Ouyang for help in

confocal imaging.

Author Contributions

Conceived and designed the experiments: ZL JZ. Performed the

experiments: ZL TO JF. Analyzed the data: ZL TO JF. Wrote the paper:

ZL JZ.

References

1. Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear.

Curr Opin Neurobiol 12: 35–42.

2. Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner

ear. Nat Rev Neurosci 7: 837–849.

3. Brigande JV, Heller S (2009) Quo vadis, hair cell regeneration? Nat Neurosci 12:

679–685.

4. Kelly MC, Chen P (2009) Development of form and function in the mammalian

cochlea. Curr Opin Neurobiol 19: 395–401.

5. Groves AK, Bronner-Fraser M (2000) Competence, specification and commit-

ment in otic placode induction. Development 127: 3489–3499.

6. Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing:

mechanisms of otic placode induction. Int J Dev Biol 51: 463–472.

7. Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the

mouse inner ear and origin of its sensory organs. J Neurosci 18: 3327–3335.

8. Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting

cells share a common progenitor in the avian inner ear. J Neurosci 18:

7811–7821.

9. Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, et al. (2007)

Multiple roles of Notch signaling in cochlear development. Dev Biol 307:

165–178.

10. Hayashi T, Kokubo H, Hartman BH, Ray CA, Reh TA, et al. (2008) Hesr1 and

Hesr2 may act as early effectors of Notch signaling in the developing cochlea.

Dev Biol 316: 87–99.

11. Hayashi T, Ray CA, Bermingham-McDonogh O (2008) Fgf20 is required for

sensory epithelial specification in the developing cochlea. J Neurosci 28:

5991–5999.

12. Eddison M, Le Roux I, Lewis J (2000) Notch signaling in the development of the

inner ear: lessons from Drosophila. Proc Natl Acad Sci U S A 97: 11692–11699.

13. Daudet N, Lewis J (2005) Two contrasting roles for Notch activity in chick inner

ear development: specification of prosensory patches and lateral inhibition of

hair-cell differentiation. Development 132: 541–551.

14. Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, et al. (2001) The

Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl

Acad Sci U S A 98: 3873–3878.

15. Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, et al. (2001) The mouse

slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in

the organ of Corti. Hum Mol Genet 10: 507–512.

16. Brooker R, Hozumi K, Lewis J (2006) Notch ligands with contrasting functions:

Jagged1 and Delta1 in the mouse inner ear. Development 133: 1277–1286.

17. Kiernan AE, Xu J, Gridley T (2006) The Notch ligand JAG1 is required for

sensory progenitor development in the mammalian inner ear. PLoS Genet 2: e4.

18. Daudet N, Ariza-McNaughton L, Lewis J (2007) Notch signalling is needed to

maintain, but not to initiate, the formation of prosensory patches in the chick

inner ear. Development 134: 2369–2378.

19. Jayasena CS, Ohyama T, Segil N, Groves AK (2008) Notch signaling augments

the canonical Wnt pathway to specify the size of the otic placode. Development

135: 2251–2261.

20. Basch ML, Ohyama T, Segil N, Groves AK (2011) Canonical Notch signaling is

not necessary for prosensory induction in the mouse cochlea: insights from a

conditional mutant of RBPjkappa. J Neurosci 31: 8046–8058.

21. Yamamoto N, Chang W, Kelley MW (2011) Rbpj regulates development of

prosensory cells in the mammalian inner ear. Dev Biol 353: 367–379.

22. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, et al. (1999)

Math1: an essential gene for the generation of inner ear hair cells. Science 284:

1837–1841.

23. Zheng JL, Gao WQ (2000) Overexpression of Math1 induces robust production

of extra hair cells in postnatal rat inner ears. Nat Neurosci 3: 580–586.

24. Woods C, Montcouquiol M, Kelley MW (2004) Math1 regulates development of

the sensory epithelium in the mammalian cochlea. Nat Neurosci 7: 1310–1318.

25. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008)

Functional auditory hair cells produced in the mammalian cochlea by in utero

gene transfer. Nature 455: 537–541.

26. Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear

development: Uncoupling the establishment of the sensory primordium from

hair cell fate determination. Development 129: 2495–2505.

27. Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes:

classic proneural activity in the inner ear and regulation by Fgf and Notch.

Development 134: 295–305.

28. Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T (2005) The Notch

ligands DLL1 and JAG2 act synergistically to regulate hair cell development in

the mammalian inner ear. Development 132: 4353–4362.

29. Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, et al. (2009)

Hey2 regulation by FGF provides a Notch-independent mechanism for

maintaining pillar cell fate in the organ of Corti. Dev Cell 16: 58–69.

30. Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, et al. (2006) Inhibition of

Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas.

J Mol Med 84: 37–45.

31. Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the

generation of hair cells and supporting cells in the mammalian inner ear. Proc

Natl Acad Sci U S A 107: 15798–15803.

32. Hartman BH, Reh TA, Bermingham-McDonogh O (2010) Notch signaling

specifies prosensory domains via lateral induction in the developing mammalian

inner ear. Proc Natl Acad Sci U S A 107: 15792–15797.

33. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, et al. (2009)

Differentiation stage determines potential of hematopoietic cells for reprogram-

ming into induced pluripotent stem cells. Nat Genet 41: 968–976.

34. Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, et al. (2009) Sox10

promotes the survival of cochlear progenitors during the establishment of the

organ of Corti. Dev Biol 335: 327–339.

35. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, et al. (1999) Notch

signalling pathway mediates hair cell development in mammalian cochlea. Nat

Genet 21: 289–292.

36. Neves J, Parada C, Chamizo M, Giraldez F (2011) Jagged 1 regulates the

restriction of Sox2 expression in the developing chicken inner ear: a mechanism

for sensory organ specification. Development 138: 735–744.

37. Mustapha M, Fang Q, Gong TW, Dolan DF, Raphael Y, et al. (2009) Deafness

and permanently reduced potassium channel gene expression and function in

hypothyroid Pit1dw mutants. J Neurosci 29: 1212–1223.

38. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The

concentrations of calcium buffering proteins in mammalian cochlear hair cells.

J Neurosci 25: 7867–7875.

39. Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, et al. (2005) Sox2 is

required for sensory organ development in the mammalian inner ear. Nature

434: 1031–1035.

Notch1 and Inner Ear Hair Cell Specification

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e34123



40. Jadhav AP, Cho SH, Cepko CL (2006) Notch activity permits retinal cells to

progress through multiple progenitor states and acquire a stem cell property.

Proc Natl Acad Sci U S A 103: 18998–19003.

41. Murtaugh LC, Stanger BZ, Kwan KM, Melton DA (2003) Notch signaling

controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A

100: 14920–14925.

42. Murata J, Tokunaga A, Okano H, Kubo T (2006) Mapping of notch activation

during cochlear development in mice: implications for determination of

prosensory domain and cell fate diversification. J Comp Neurol 497: 502–518.

43. Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, et al. (2007)

Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and

sensory hair cells during inner ear development. Development 134: 4405–4415.

44. Jahan I, Pan N, Kersigo J, Fritzsch B (2011) Neurod1 suppresses hair cell

differentiation in ear ganglia and regulates hair cell subtype development in the

cochlea. PLoS One 5: e11661.

45. Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, Lewis J (1999)

Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev

84: 169–172.

46. Jeon SJ, Fujioka M, Kim SC, Edge AS (2011) Notch signaling alters sensory or

neuronal cell fate specification of inner ear stem cells. J Neurosci 31: 8351–8358.

47. Stone JS, Cotanche DA (2007) Hair cell regeneration in the avian auditory

epithelium. Int J Dev Biol 51: 633–647.

48. Kwan T, White PM, Segil N (2009) Development and regeneration of the inner

ear. Ann N Y Acad Sci 1170: 28–33.

49. Burns J, Christophel JJ, Collado MS, Magnus C, Carfrae M, et al. (2008)

Reinforcement of cell junctions correlates with the absence of hair cell

regeneration in mammals and its occurrence in birds. J Comp Neurol 511:

396–414.

50. Collado MS, Burns JC, Hu Z, Corwin JT (2008) Recent advances in hair cell

regeneration research. Curr Opin Otolaryngol Head Neck Surg 16: 465–471.

51. Sweet EM, Vemaraju S, Riley BB (2011) Sox2 and Fgf interact with Atoh1 to

promote sensory competence throughout the zebrafish inner ear. Dev Biol 358:

113–121.

52. Pirvola U, Ylikoski J, Trokovic R, Hebert JM, McConnell SK, et al. (2002)

FGFR1 is required for the development of the auditory sensory epithelium.

Neuron 35: 671–680.

53. Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL (2007) Fgf3 is required

for dorsal patterning and morphogenesis of the inner ear epithelium.

Development 134: 3615–3625.

54. Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF

signaling regulates otic placode induction and refinement by controlling both

ectodermal target genes and hindbrain Wnt8a. Dev Biol 340: 595–604.

55. Wright TJ, Mansour SL (2003) FGF signaling in ear development and

innervation. Curr Top Dev Biol 57: 225–259.

56. Huh S, Jones J, Warchol M, Ornitz D (2012) Differentiation of the Lateral

Compartment of the Cochlea Requires a Temporally Restricted FGF20 Signal

PLoS Biol 10: e1001231.

57. Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK (2006) Wnt

signals mediate a fate decision between otic placode and epidermis.
Development 133: 865–875.

58. Freyer L, Morrow BE (2010) Canonical Wnt signaling modulates Tbx1, Eya1,

and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 239:
1708–1722.

59. Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of
inner ear morphogenesis is balanced by the opposing and supporting roles of

Shh. Genes Dev 19: 1612–1623.

60. Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, et al. (2005) BMP4 signaling is
involved in the generation of inner ear sensory epithelia. BMC Dev Biol 5: 16.

61. Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, et al. (2007) Disruption
of fibroblast growth factor receptor 3 signaling results in defects in cellular

differentiation, neuronal patterning, and hearing impairment. Dev Dyn 236:
1905–1917.

62. Hwang CH, Guo D, Harris MA, Howard O, Mishina Y, et al. (2010) Role of

bone morphogenetic proteins on cochlear hair cell formation: analyses of Noggin
and Bmp2 mutant mice. Dev Dyn 239: 505–513.

63. Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, et al. (2010) BMP
signaling is necessary for patterning the sensory and nonsensory regions of the

developing mammalian cochlea. J Neurosci 30: 15044–15051.

64. Bok J, Dolson DK, Hill P, Ruther U, Epstein DJ, et al. (2007) Opposing
gradients of Gli repressor and activators mediate Shh signaling along the

dorsoventral axis of the inner ear. Development 134: 1713–1722.
65. Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002)

Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes
Dev 16: 2365–2378.

66. Driver EC, Pryor SP, Hill P, Turner J, Ruther U, et al. (2008) Hedgehog

signaling regulates sensory cell formation and auditory function in mice and
humans. J Neurosci 28: 7350–7358.

67. Rawlins EL, Clark CP, Xue Y, Hogan BL (2009) The Id2+ distal tip lung
epithelium contains individual multipotent embryonic progenitor cells. Devel-

opment 136: 3741–3745.

68. Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a
tamoxifen-inducible form of Cre: a tool for temporally regulated gene

activation/inactivation in the mouse. Dev Biol 244: 305–318.
69. Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, et al. (2009)

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting
vectors and F1 hybrid ES cells. Nucleic Acids Res 37: e55.

70. Chen CM, Krohn J, Bhattacharya S, Davies B (2011) A comparison of

exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase
mediated cassette exchange approach in mouse ES cells. PLoS One 6: e23376.

71. Liu Z, Owen T, Zhang L, Zuo J (2010) Dynamic expression pattern of Sonic
hedgehog in developing cochlear spiral ganglion neurons. Dev Dyn 239:

1674–1683.

72. Yu Y, Weber T, Yamashita T, Liu Z, Valentine MB, et al. (2010) In vivo
proliferation of postmitotic cochlear supporting cells by acute ablation of the

retinoblastoma protein in neonatal mice. J Neurosci 30: 5927–5936.

Notch1 and Inner Ear Hair Cell Specification

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e34123


