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Abstract

Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on
bacterial evolution, are groups of ‘‘alien’’ elements which probably undergo special temporal–spatial regulation in the host
genome. Are there particular hallmark transcriptional signals for these ‘‘exotic’’ regions? We here explore the potential
transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon
usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the
GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase
for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we
developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these
regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing
method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring
genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased
‘‘non-optimal’’ codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression
regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4
outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production
of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the
genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for ‘‘alien’’ regions, but also
provide hints to the special evolutionary course and transcriptional regulation of GI regions.
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Introduction

Since the publication of the first pathogenicity island (PAI) [1],

originally described as clusters of virulence genes that were

identified in uropathogenic E. coli but absent in closely related

strains, various types of other islands, such as secretion islands and

resistance islands, have been detected. The more general term

‘‘genomic island’’ (GI) was then defined as horizontally acquired

genomic regions that undergo broad modes of transmission and

integration [2–6]. Through many studies, GIs have been noted for

their important roles in conferring multidrug resistance and

pathogenesis [7–13]. Recently, more and more important adaptive

functions derived from different GIs have been discovered. For

instance, it was reported that the emergence of symbiosis is driven

by GI [14]. For metabolism, the formation of a new pathway for

pollutant degradation is mediated by GI in Ralstonia [15], and the

GIs are related not only to secondary metabolism but also to

primary metabolism in many pathogens [16,17]. Moreover, the

intracellular synthesis of magnetosome, which accumulates ions

from aquatic environments, is also conveyed by the GI [18].

Probably, because GIs have multiple important contributions to

adaptability, metabolic versatility, fitness and so on [19], a pending

problem which attracts continual interests is whether there are any

signals which best identify these genomic regions.

So far, many GI-associated sequence features have been utilized

to identify GIs in silico. According to the theory that different

genomes have different preferences in codon usage, codon usage

bias was used as a measurement to detect GI by the software SIGI-

HMM [20]. Another method, IslandPath-DIMoB, was initially

developed based on dinucleotide bias and the association of novel

genes with GI [21], and it was lately combined with the SIGI-

HMM on the platform Islandviewer [22]. Whereas these methods

detect composition heterogeneity within the unit of a single gene

or a group of genes, several other methods, such as Alien_Hunter,

Centroid and the ‘‘top-down’’ approach reported by Arvey et al.

[23–25], split genomes into progressively smaller regions. Apart

from the composition features, including GC content, codon usage

and k-mer size bias (which can be of 2–8 nucleotides), many other

programs, based on comparative genomics or phylogenic

relationship, were also designed to predict mobile alien regions.

For instance, MobilomeFINDER identifies GI through searching

flanking regions of orthologous tRNA genes, and Yoon et al.

searched for the presence of homolog(s) of virulence genes to

detect PAI regions, and, recently, genomic barcode has also been

applied to identify PAIs [26–28].

Unfortunately, the performance of the existing methods,

irrespective of the feature or phylogenic relationship on which

they are based, falls far short of the level which is demanded. For
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example, although SIGI-HMM shows the highest overall accuracy

(about 86%), the recall rate is only 33%. Conversely, Alien_Hun-

ter has a comparatively higher recall rate (about 77%), but this is

greatly at the expense of accuracy (only 38%) [29]. Divergent

outputs may be mainly caused by the fact that these prediction

methods are based on dissimilar sequence composition features or

different genome collections for building phylogenic relationships.

These imply that there is a serious need for new signatures or

signals to serve as benchmarks for the identification of GIs.

Here, we attempt to characterize GIs at a novel dimension – the

potential signature of transcription signals. In prokaryotes, gene

expression is considered to be controlled mainly at the level of

transcription initiation by the repressor or activator proteins. To

maximize bacterial fitness and prevent possible detrimental effects

resulting from the expression of exotic genes, it is reasonable that

GI genes tend to experience more complex regulation than the

ancestral genes [30]. So, it is possible that GI regions can be

distinguished by the heterogeneity of certain transcription

initiation signals. Although many experiments have been designed

to disclose the particular transcriptional regulation mechanisms of

individual GIs or of single secretion systems [31–33], there is no

report to detect the special transcriptional regulation signals which

can delineate the GIs on genome-wide scale.

In this study, we systematically identified the main promoter

attribute – transcription start points (TSPs) across nine Salmonella

enterica genomes. Strikingly, for all the genomes examined, there is

a significant enrichment of potential TSPs in the GI regions. We

also found significantly more TSPs in the GI regions of E. coli K-12

MG1655, and this demonstrates that the phenomenon is not

confined to Salmonella enterica. Further, we used a set of objective

criteria based on this feature to predict putative GIs on a genome-

wide scale. Through the comparative analysis of known features

associated with GIs and the application in analyzing the GIs of the

German E. coli O104:H4 outbreak strain TY-2482, we found that

our method is powerful in detecting GI-like regions. From these

analyses, we propose that the particular characteristic, significantly

more prevalent TSPs in GIs, can manifest the GI, and this signal

may sustain the appropriate temporal–spatial transcription of GIs

as alien elements in the host cells.

Results and Discussion

High-density transcriptional initiation signals associated
with GIs

To explore potential transcriptional signals related to GIs, we

first located promoter sites at the genome-wide level by using the

software PlatProm, which has high precision and a low rate of false

positives because it exactly inspects the transcription start points

(TSPs), rather than defines the extensive promoter regions,

through scanning the promoter-specific elements in proper

positions on both strands [34] (see Materials and Methods). Thus,

relatively weak transcription initiation signals, possibly required for

provisional transcripts such as short RNAs or antisense RNAs, will

also be recognized [see Datasets S1, 2, 3, 4, 5]. Then, we created a

dataset including the GIs detected by various methods in all

examined genomes (see Materials and Methods, Figure S1). The

length of GI ranges from 4 kb to more than 100 kb and the

number of genes in each detected island ranges from 4 to more

than 30, reflecting a high diversity in ordinary GI features. To

facilitate comparative analysis, the TSPs were matched to the GI

regions. Subsequently, we compared the corresponding transcrip-

tion initiation signals, here denoted by the TSPs, between the GI

regions and genomes of the nine Salmonella strains. As depicted in

Figure 1, more than 88% of the GI regions have a TSP density

higher than two-fold of the genome average and the percentage is

even higher than 70% when the fold difference is up to four in all

examined strains, and even up to five in strains such as S.

Paratyphi A ATCC 9150, S. 62:z4,z23: – RSK2980 and S.

Paratyphi A AKU_12601. To further check whether this

phenomenon is specific to Salmonella, the same analysis was

performed in E. coli K-12 MG1655. Interestingly, similar results

were observed (see Figure 1). These suggest that the TSPs are

significantly enriched in the GI regions, potentially hinting at a

more complex regulation of the GI’s transcription initiation.

Predict the potential novel GIs through GIST: Genomic-
island Identification by Signal of Transcription

To detect the regions with heterogeneous transcriptional

initiation signals against the genomes, we have developed a

method named ‘‘GIST’’ based on successive windows (see

Materials and Methods). Regions with a TSP density 1.5 times

higher than a whole genome are selected, and there are 186

regions detected in each genome on average. The detected

regions almost include all the results from Islandviewer and

Alien_hunter (data not shown). Likewise, it is reported that S.

Typhimurium, since it diverged from its last common ancestor with

E. coli, has acquired and retained more than 200 discrete regions

and these regions even cover more than one-quarter of

Salmonella’s total genetic materials [35]. Moreover, many recently

acquired foreign genes and ORFans came from a still largely

unexplored reservoir rather than originated via transfer from

distant cellular sources [2]. These imply that there may be more

genomic islands undetected by previous methods. Here, consid-

ering that a confident prediction is more valuable for comparison,

a cut-off with a TSP density five times higher than the genome

background was selected, and the results are shown in Figure 2.

The average numbers of GIs detected by Islandviewer, GIST and

Alien_hunter are 33.1, 51.1 and 76.7, respectively. It is consistent

with the previous evaluation that Islandviewer, the one

combining the results of three methods, is regarded as the most

precise of the extant methods, and Alien_hunter is more sensitive

but with a lower accuracy [29,36]. To check the details, we

compared the results of GIST to those of Islandviewer, and the

comparison results are displayed with BRIG [37] (see Dataset

S6). The comparison of the genome of Salmonella 62:z4, z23: –

RSK2980 is presented as an example (see Figure 3). The

percentage of consistent results between GIST and Islandviewer

is about 74.5%. As shown in Figure 3, three main divergent

regions that are detected by GIST but missed by Islandviewer are

labeled with green triangles. Notably, by referring to the database

VFDB [38], we found that three pathogenicity islands (cluster of

virulence factor genes) are embedded in three distinct regions,

and they are illustrated as follows. The cluster bcfABCDEFG

carried in the Gist32 and Gist33 regions, encoding fimbrial

adherence determinants, is required for intestinal persistence

[39]. The virulence factor cluster pltAB coding for toxin and

mgtBC for magnesium uptaking, and these two clusters are

located in Gist28 and Gist43, respectively. These results suggest

that many omitted pathogenicity islands can be identified by

GIST even with a TSP density of five times higher than the

genome background, implying the robustness of GIST in GI

detection.

Further, to examine whether GIs detected by GIST favors

carrying of the classical features of GIs, in the following sections,

we compared the known features of GIs among the three groups:

GIs detected by GIST; those predicted by Islandviewer; and the

genome as a whole, respectively.

Transcriptional Signals Underline Genomic Islands
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Comparative Analysis: Distribution of gene function
categories

Some subsets of genes with specific functions are more likely to

be embedded in GI regions [40,41]. To examine whether the

distributions of gene function categories in GIs detected by GIST

also differ from the counterparts of the host genomes and the GIs

predicted by other methods, we assigned all the genes in the 10

genomes based on the orthologous groups of proteins (COG)

database in which the genes are classified into 22 clusters of

functional categories. In addition, genes without COG assign-

ments, such as ‘‘hypothetical’’ genes, are classified into another

group named ‘‘out_COG’’. Similarly, the functions of genes in GIs

are also identified (see Materials and Methods, Dataset S9). Then,

we compared the corresponding proportion of certain functional

categories between the genomes and GI candidates predicted by

GIST and Islandviewer, separately. In Table 1, the GIs predicted

by GIST carry the functional categories [M], [N], [U], [V], [W],

[R], [S] and out_COG with significantly higher percentage (t test,

p#0.05), and with a significantly lower percentage in 12 other

categories ([C], [E], [F], [G], [H], [I], [P], [Q], [J], [D], [O] and

[T]), respectively. Interestingly, eight out of the 12 categories with

a lower proportion ([C], [E], [F], [G], [H], [I], [P], and [Q]) are

from the functional cluster ‘‘Metabolism’’. It suggests that most

GIs cover fewer genes related to metabolism, although metabolism

islands are also identified [15–17]. The underrepresented [J], [D],

[O] and [T] ([J] Translation, ribosomal structure, and biogenesis,

Figure 1. Proportion of GIs with enriched TSPs among ten bacterial genomes. The y-axis represents the proportion of GI regions, and
names of bacterial genomes are shown along the x-axis.
doi:10.1371/journal.pone.0033759.g001

Figure 2. Number of GIs predicted by Islandviewer, GIST and Alien_hunter among ten bacterial genomes. The y-axis represents the
number of GIs detected by the three methods, and names of bacterial genomes are shown along the x-axis.
doi:10.1371/journal.pone.0033759.g002
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[D] Cell cycle control, cell division, chromosome part, [O] Post-

translational modification, protein turnover and [T] Signal

transduction mechanisms) may be explained by the fact that those

genes, such as coding for two-component systems (TCSs), are

more conserved or universal [42], and thus horizontal transfer is

not necessary. It is also consistent with the observation that

translation and transcription-related genes are far less likely to be

horizontally transferred [43]. Moreover, for categories with a

higher proportion, the result is consistent with a previous report

that categories [M], [N], [U], and [V] ([M] Cell wall/membrane/

envelope biogenesis, [N] Cell motility, [U] Intracellular trafficking,

secretion, and vesicular transport, [V] Defense mechanisms) were

predominant in GIs, confirming that modification of the cell

envelope, cell motility, secretion, and protection of cellular

DNA are major issues of GIs [40]. It is also rational that many

genes in GIs are more ‘‘poorly characterized’’ ([R], [S], and

out_COG) because these genes may be transferred from hitherto

unculturable and unstudied organisms [21]. Here, another

category [W], Extracellular structures, is found significantly

overrepresented in GIs. It is most likely that the organisms

examined here are gram-negative bacteria which have an outer

membrane structure, and have evolved to include a remarkable

variety of secretion systems with structurally and functionally

divergence [44].

Furthermore, when compared to the result obtained by

Genome-Islandviewer, as indicated in Table 1, similar spectra

Figure 3. BRIG diagram showing results of GIST and Islandviewer on Salmonella enterica 62:z4,z23:– RSK2980 (NC_010067). GIs
predicted with Islandviewer are marked as Island1, Island2, etc.; and those predicted by GIST are denoted with Gist1, Gist2, etc. The three main
divergent regions detected by GIST but missed by Islandviewer are labeled with green triangles.
doi:10.1371/journal.pone.0033759.g003
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are also found. The differences are only found in categories [J],

[N], [O], and [V] ([J] Translation, ribosomal structure, and

biogenesis, [N] Cell motility, [O] Post-translational modification,

protein turnover, and [V] Defense mechanisms). Further analysis

indicated that, compared to Islandviewer, the GIs predicted by

GIST cover functional categories [N] and [V] with a significantly

higher percentage (t test, p = 0.01 and p,0.0003, respectively)

and [O] with a significantly lower percentage (t test, p,0.0007).

Genes in [N] and [V] encode additional functions that are not

essential for bacterial growth but provide advantages under

particular conditions [45]. Obviously, the skewed proportion of

GI genes in [N] and [V], similar to the observation by Merkl

[40], is attributed to improvement of bacterial fitness. Further-

more, the proteins or pathways involved in post-translational

modification [O] are usually strictly conserved in bacteria

[46,47]. So, the lower ratio of GI genes in functional category

[O] seems reasonable. Thus, the results suggest that GIs detected

by GIST cover the spectrum of functional categories not only

similar to outputs by Islandviewer, but also to the results reported

previously. Meanwhile, the difference between the results from

GIST and Islandviewer also demonstrates that GIST has a higher

sensitivity to detect the regions embracing genes with a GI-like

function.

Comparative Analysis: Divergence of subcellular
locations

To inspect whether the genes in GIs detected by GIST have

preferential localizations, we predicted the subcellular location of

each gene across the 10 genomes by using the software PSORTb

version 3.0 [48]. To facilitate analysis, the subcellular location of

each GI was also assigned (see Materials and Methods, Dataset

S10). Then, we compared the proportion of each category of

subcellular location between the genome and the predicted GI. As

shown in Table 2, the genes in GIST-predicted GIs belonging to

the categories of Extracellular, OuterMembrane and Unknown

occupied a significantly higher proportion (t test, p = 5.14E-07,

8.7E-06 and 5.76E-09, respectively), but showed a significantly

lower proportion in the categories of Cytoplasmic and Cytoplas-

mic Membrane (t test, p = 2.17E-07 and 8.6E-07, respectively).

The assembly of OuterMembrane proteins to shape various

secretion systems for exporting Extracellular virulence factors is

crucial for virulence [49]. So, it is easy to imagine why the GIs,

which implant many virulence-related genes [9], have a higher

proportion of genes found in the Extracellular and OuterMem-

brane categories. As the software PSORTb is based on BLAST to

assign respective locations, a great proportion of genes with

unknown subcellular location in GIs may be caused by the absence

Table 1. Comparison of GIST and Islandviewer on detection of GIs in different function categories.

Average percentage (%) p valuea

Function category Genome GIST Islandviewer
Genome-
GIST

Genome-
Islandviewer

Information storage and processing

A: RNA processing and modification 0.03b 0 0 - -

J: Translation, ribosomal structure, and biogenesis 4.13 1.24 2.16 ** -

K: Transcription 7.01 6.68 4.58 - -

L: Replication, recombination, and repair 4.08 3.51 4.13 - -

Cellular processes and signaling

D: Cell cycle control, cell division, chromosome part 0.78 0.28 0.32 ** *

M: Cell wall/membrane/envelope biogenesis 5.41 7.48 7.48 ** **

N: Cell motility 2.65 3.58 2.49 ** -

O: Posttranslational modification, protein turnover 3.46 1.07 3.5 ** -

T: Signal transduction mechanisms 4.06 2.81 2.29 ** **

U: Intracellular trafficking, secretion, and vesicula 3.01 4.38 4.59 ** *

V: Defense mechanisms 1.08 1.57 0.9 * -

W: Extracellular structures 0.01 0.14 0 * *

Metabolism

C: Energy production and conversion 6.24 3.37 1.79 ** **

E: Amino acid transport and metabolism 7.95 4.32 1.87 ** **

F: Nucleotide transport and metabolism 2.02 1.02 0.14 ** **

G: Carbohydrate transport and metabolism 8.12 3.41 4.15 ** **

H: Coenzyme transport and metabolism 3.91 2 0.27 ** **

I: Lipid transport and metabolism 2.05 1.43 0.65 * **

P: Inorganic ion transport and metabolism 4.54 1.63 1.12 ** **

Q: Secondary metabolites biosynthesis 1.49 0.28 0.1 ** **

Poorly Characterized

R: General function prediction, S: Function unknown, Out_COG 27.98 39.74 47.39 ** **

a:Based on the t test, the * represents the p,0.05, the ** denotes the p,0.001 and the – indicates p.0.05.
b:The number is the average percentage (%) of corresponding function category in 10 strains.
doi:10.1371/journal.pone.0033759.t001
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of orthologous matches in the current sequence databases – for

example, acquired foreign genes coming from still largely unexplored

organisms [2]. Moreover, it is reported that the proportion of

integrated phage (a source of horizontal gene transfer (HGT))

proteins is predicted to be lower in the Cytoplasmic Membrane

category [21], which may partly account for the observation. The

genes in the category of Cytoplasmic mainly play structural roles

inside the cell, rather than serving particular functions such as

virulence. Hence, the mentioned results are comprehensible, hinting

that the genes in GIs detected by GIST have a biased GI-like

subcellular localization.

Further, as shown in Table 2, similar repertoires are

demonstrated between GIs detected by GIST and Islandviewer.

But, there are still significant differences for the categories

‘‘OuterMembrane’’ and ‘‘Periplasmic’’ among the results predict-

ed by GIST and Islandviewer (t test, p = 7.74E-05 and 6.78E-04,

respectively). This indicates that potential novel GIs from GIST

hold significantly higher levels of genes in the OuterMembrane

and the Periplasmic not only than the genomes, but also the GIs

from Islandviewer. Proteins present in the OuterMembrane,

serving as sensors and transporters, are in the foremost position

in interactions with the host tissue and the immune system, thus

suggesting their vital roles in bacterial adaptation [50]. Also, it is

reported that cell-surface-related genes tend to be more prevalent

in horizontally acquired regions [41]. Besides, many periplasmic

proteins, such as DsbA and members in the flagellar protein family

revealed by GIST, contribute to pathogenesis of the organism

[51–53]. Thus, consistent with our foregoing observation of a

remarkably higher ratio of genes in Cell wall/membrane/envelope

biogenesis (M) and Extracellular structures (W), it makes biological

sense that a higher proportion of genes from GIs predicted by

GIST are located in the OuterMembrane and the Periplasm. This

further supports the claim that this transcription signal-based

method GIST can identify the islands embedded with the genes

with a GI-like subcellular location.

Comparative Analysis: GC property and gene length
In a bacterial genome, a major portion of the sequence (70%–

80%) shows homogenous GC contents, and the rest of the

sequence with divergent GC property is usually designated as

‘‘genomic islands’’ [54]. Based on this feature, several programs

were developed to scan the GIs across genomes [55]. To acquire

more insights into whether this typical composition feature is also

observed among the GIs predicted by GIST and the genomes used

in this study, we calculated the GC contents and lengths of all the

genes in the 10 genomes (see Materials and Methods). Firstly, GC

property and gene length are compared between the genes in GIs

predicted by GIST and the genomes. It is shown that the genes in

GIs present significantly lower GC contents and shorter lengths

(average: 51.7% and 896 for genome, 45.6% and 842 for GIs;

ANOVA: F = 3039.62, p,0.0001 and F = 26.95, p,0.0001,

respectively). Such lower GC content in the GI regions is in

accordance with previous findings [56,57]. Oliver et al. also

reported that the long coding genes in prokaryotes are GC-rich,

whereas the short ones are GC-poor [58]. Interestingly, the GC

content and the gene length are both found to be related to codon

usage bias, and all these three factors are shown to influence gene

expression [59–62]. This partly supports the rationality of covering

distinct transcriptional signals in GI genes. And these characters of

GIs – significantly lower GC content and shorter length – may be

favored during evolution for dexterous expression. Furthermore,

the GIs specifically predicted by GIST have a significantly lower

GC content than the counterparts predicted by Islandviewer

(ANOVA, F = 365.21, p,0.0001). It suggests that compared to

those predicted by Islandviewer, the islands predicted by GIST

have the GC property much further away from the genome itself,

further implying the potency of our method to detect GIs as

‘‘alien’’ elements to the host genome.

Hints of ‘‘non-optimal’’ codon usage bias
Based on the fact that GIs are usually acquired from perhaps

taxonomically unrelated species through HGT, the feature of

atypical codon usage is broadly used by previous methods to

identify GIs. Here, whether the genes in GIs detected by GIST

also have biased codon usage is further examined (see Materials

and Methods). Firstly, we compared the effective number of

codons (Nc value) among the three mentioned groups. The results

show that there is a very significant difference between the genes in

GIs detected by GIST and those of the genomes (average Nc value:

49.68 and 46.72 for GIST genes and genome, respectively; p,1E-

16). Similarly, the difference is also significant between genes in

GIs predicted by Islandviewer and those of the genomes (average

Nc value: 50.58 and 46.72 for Islandviewer genes and genome,

respectively; p,1E-22). But, no significant difference was detected

between the genes in GIs predicted by GIST and those by

Islandviewer. These suggest that the genes within the predicted

GIs, with a significantly higher Nc value, carry a lower extent of

codon bias. This result, together with the finding that GI genes

also have a shorter length, is consistent with a previous report that

codon bias and gene length are positively correlated [63]. In

Table 2. Comparison of GIST and Islandviewer on detection of GIs in different subcellular locations.

Average number (Percentage) p valuea

Subcellular location Genome GIST Islandviewer Genome-GIST Genome-Islandviewer

Cytoplasmic 2062.1 (42.60)b 128.2 (34.00) 107 (31.94) ** **

Cytoplasmic-Membrane 1152 (23.80) 68.9 (18.00) 56 (16.86) ** **

Extracellular 70.5 (1.40) 15.7 (4.20) 10.6 (3.21) ** *

Outer Membrane 97.5 (2.00) 13.4 (3.50) 8.1 (2.51) ** -

Periplasmic 155.2 (3.20) 12.4 (3.30) 6.1 (1.92) - **

Unknown 1317.8 (26.70) 141.6 (36.40) 152.5 (43.57) ** **

a:Based on the t test, the * represents the p,0.05, the ** denotes the p,0.001 and the – indicates p.0.05.
b:The number in the bracket is the average percentage (%) of corresponding subcellular location in 10 strains.
doi:10.1371/journal.pone.0033759.t002
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addition, it implies that the GI genes detected by GIST, similar to

the counterparts by Islandviewer, are undergoing selective

pressure to use a smaller subset of codons for integrating into

the genome context. To further test this bias, the codon adaptation

index (CAI) representing the frequency of ‘‘preferred’’ codons

[64], is calculated and compared among the three groups. The

results indicate that the CAIs of the genes in GIs predicted by

GIST and those by Islandviewer are both significantly lower than

that of the genomes (average: 0.314, 0.269 and 0.252 for the

genome, GI genes detected by GIST and Islandviewer, respec-

tively; p,1E-16 and p,1E-25 for the comparisons of genomes vs

GIST and genome vs Islandviewer, respectively). This means that

the codons of the GI genes detected by GIST or Islandviewer are

less optimal. When the GIs are transferred from one species to

another, it is reasonable that the codon usage, which has already

adapted to the donor genome, may not be optimal in the recipient

context [65]. Moreover, preferred codons are usually recognized

by more abundant transfer RNAs (tRNAs) in the genomes [66,67].

The expression efficiency increases through faster recognition of

optimal codons, and, in the meantime, expression accuracy

decreases with incomplete translation and translation errors when

non-optimal codons are used at a cost of overall fitness [68–71].

Consequently, a problem emerges: for the recipient genome, how

should it express these ‘‘foreign’’ GI genes, with non-preferred

codons, efficiently and accurately? Interestingly, by mimicking the

horizontal transfer of an antibiotic resistance gene in E. coli, Dolors

et al. reported that the fitness cost of non-optimal codon usage

might be rapidly compensated by evolution in regulatory regions

[72]. Thus, our finding of a special transcription signal in GIs, just

as a snap of evolution in regulatory regions, probably attributed to

the optimal expression of the non-optimal codon usage genes in

GIs.

Application of GIST to analyze GIs in the German E. coli
O104:H4 outbreak strain

The E. coli strain in the recent German outbreak carries the

ability to cause haemolytic uraemic syndrome (HUS), which may

lead to severe kidney failure and even death. Based on the first

sequenced and completed chromosomal genome of strain TY-

2482 by the Beijing Genomics Institute (BGI), potential GIs in this

strain are detected by our method GIST (see Dataset S11).

Compared to two other E. coli strains, namely, the enteroaggre-

gative E. coli (EAEC) strain 55989 (NC_011748) and the

enterohaemorrhagic E. coli (EHEC) strain O157:H7 Sakai

(NC_002695), their GIs are depicted with BRIG (see Figure S2).

The data show that most GIs are conserved among the three

strains. These conserved ones are probably the products of more

ancient HGT events and contribute little to the divergence of the

three examined strains. So, only the non-conserved islands are

focused here. As shown in Table 3, 11 islands are conserved only

between TY-2482 and EAEC 55989, and three islands (Gist1,

Gist11 and Gist58) are TY-2482-specific. Notably, there is no

island found conserved between TY-2482 and EHEC Sakai but

absent in EAEC 55989. It suggests that, compared to EHEC

Sakai, EAEC 55989 is a closer relative of TY-2482. This is

consistent with our previous finding by using the alignment-free

feature frequency profile (FFP) phylogenetic method during

Crowdsourcing analyses [73]. Firstly, within the 11 islands, we

found that the Gist15 encodes the E. coli O104 antigen gene cluster

and mainly contains the operons or replicons wzXY-NnaACBD

[74]. It confirms the closer relationship between TY-2482 and

EAEC strain 55989. Secondly, Gist4 embraces the gene cluster

ycgXEFZ-ymgABC. Tschowri et al. recently reported that, induced

by cold or starvation, the YcgF/YcgE can activate production of the

biofilm matrix as well as acid-resistance genes via the YmgB/YmgA

and RcsB system [75]. It is therefore reasonable to expect an

improved survivorship for strains harboring such gene clusters

under environmental stress. Another interesting gene cluster is

yhhZ-yrhAB contained in Gist34, which confers an efficient

conversion of methionine to cysteine in Bacillus subtilis [76].

Usually, owing to the lack of a bypass from methionine to cysteine

in sulfur metabolism, E. coli has to use selenomethionine to replace

methionine and cannot grow with methionine as the mere sulfur

source [77]. Thus, this cluster may contribute to the growth of

examined strains on methionine, especially when the sulfur source

is limited in the host environment. Moreover, the Gist36 mainly

consists of the transposon Tn7. Apart from targeting the

replicating DNA, Tn7 also recognizes other forms of DNA

damage induced by exposure to UV light, mitomycin C, or

phleomycin [78]. By this, the strains harboring Tn7 have the

advantage in maintaining chromosomal integrity and in acceler-

ating the genome evolution under UV or antibiotic challenges.

Besides, many fimbria or fimbria-like adhesion proteins are also

enclosed in the GIs, as shown in Table 3. It has been demonstrated

that the existence of the lpf operon coding for long polar fimbriae

is important for adherence [79]. Finally, we further examined the

three TY-2482-specific islands. Gist11 and Gist58 are possibly

derived from Phage cdtI and Tn21, and Gist1 contains a microcin

H47 (MccH47) system. A full set of MccH47 genes could be found

in Gist1, which is mainly necessary for the microcin production,

secretion and the immunity peptide for self-protection against its

antibiotic action. Indeed, proteins from the MccH47 system were

also previously identified in TY-2482 [80]. The first chromosome-

coded MccH47 was found produced by E. coli H47 [81]. How did

the functional island transfer to the recipient strain TY-2482?

Recently, Marı́a et al. suggested that as a GI in E. coli, the MccH47

system probably employs a parasitic strategy for its mobility, and,

in this manner, the genes responsible for the site-specific

recombination are provided by the recipient bacteria [82]. More

interestingly, MccH47 mimics siderophores structurally and

through a ‘‘Trojan horse’’ mechanism it interacts with microcins

and is recognized as siderophores by outer membrane receptors

[83]. So, at least in the environment with iron limitation, the strain

carrying MccH47 system has the ability to inhibit the growth of

other competitors. Although it is still unknown how big the role of

the identified GIs played in the German outbreak, the GIs not

only provide a more powerful arsenal especially when the stain

TY-2482 confronts environmental stresses such as cold, sulfur or

iron limitation and antibiotic, but they also accelerate the

divergence from EHEC and EAEC 55989 during evolution.

Meanwhile, it further demonstrates the ability of GIST in

functional GI detection from a new angle.

The implication of high-density transcription initiation

signals in GI regions. To determine whether GC content

influences the number of TSPs called, we calculated the Pearson

Correlation Coefficients (r value) between the GC content and the

number of TSP calls among the 10 examined genomes. The

results showed that there is a negative correlation but the

correlation is not strong (r2 values between 0.435–0.579,

p,0.0001) (Dataset S13). GC-content was found to influence

important features such as the bendability and conformational

changes of the DNA double helix, which can in turn affect the

interaction (such as binding free energy) between RNAP and

promoter DNA to affect transcription [84–86]. This property may

account partly for the comparatively more TSP calls in the region

with lower GC content. Moreover, except the tracts ((T)n- and

(A)n(T)n-tracts) with comparatively lower GC content, many other

features such as newly found non-coding functional elements and
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special structure modules are combinatorial utilized to constitute

the scoring system of algorithm PlatProm in TSP detection [34].

This may partly explain why the correlation between the number

of TSP calls and GC content is not strong. Hence, although the

GC-content can influence promoter features and gene expression

regulation, the GC property is not enough to reflect the full

promoter characteristics. And at least, to orchestrate the

expression of ‘‘exotic’’ GIs in host genomes, biased GC property

is not the only important component.

Then, why are TSPs enriched in the GI regions compared to

other genomic regions? What are the other underlying causes? It is

imaginable that the GIs, as alien DNA elements, have to undergo

numerous rounds of modification before they are best integrated

into the host genome. Here, we propose two reasons from the

perspective of evolution (Dataset S12). Firstly, if a GI can stay in its

recipient organism, the genes within the GI need to be transcribed

at the right time, in the right location and in a coordinated manner

with the host genes. Thus, although the foreign DNA segments

integrated by the model of ‘‘selfish operon’’ may contain inhouse

regulatory genes, they usually recruit the existing transcription

factors of the host and embed themselves into the ancestral

regulatory system [87,88]. However, because the GI hardly shares

orthologs of transcription factors with the host genome at the time

when the transfer event occurs [89], new regulatory relations have

to be established after the genes are acquired. New TSPs might

emerge by accelerated evolution in regulatory regions. Those newly

occurring TSPs allow the GI to recruit suitable transcription factors

in the host. A wider spectrum of transcripts for a same group of

genes might be produced during the course of evolution, until the

time when optimal transcripts are generated. Generally speaking, it

will take about 8–22 million years for the transferred genes to be

eventually integrated into the host regulatory network [90]. Hence,

to eliminate the fitness cost by non-optimal codon usage or absonant

transcripts of GI, accelerated evolution in regulatory regions will

result in TSPs accumulation in GI region, which are crucial for the

eventual integration into host regulatory system. Secondly,

according to the ‘‘life cycle model’’ of GIs, the GI region might

undergo gene loss (or acquisition) and genetic rearrangements

following HGT. And thus the GI is reshaped and reorganized [19].

During this process, former operon was broken and more

transcription units were probably formed. Comparatively, in most

prokaryotic genomes, more than 70% of genes are organized in

operon [91]. Thus, compared to the other regions in genome, the

transcription units in the newly reshaped GIs are more scattered

before they can be coordinately reorganized into one or several new

operons. So, precipitation of TSPs in GIs may exhibit transcrip-

tional incompatibility of the newly reshaped GIs at least.

Materials and Methods

Genome sequence and annotation data
The chromosome sequence and annotation of the German E. coli

O104:H4 outbreak strain TY-2482 were downloaded from GenBank

under accession number AFOG01000000. Other sequences of

genomes included in this study were retrieved from the NCBI ftp

site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). Our dataset consist-

ed of nine Salmonella enterica strains (S. Typhimurium LT2,

NC_003197; S. Typhi CT18, NC_003198; S. Typhi Ty2,

NC_004631; S. Paratyphi A ATCC 9150, NC_006511; S.

Choleraesuis SC-B67, NC_006905; S. 62:z4,z23: – RSK2980,

NC_010067; S. Paratyphi B SPB7, NC_010102; S. Paratyphi A

AKU_12601, NC_011147 and S. Paratyphi C RKS4594,

NC_012125) and one E. coli strain (E. coli K-12 MG1655,

NC_000913). Only chromosomal sequences, but not plasmid data,

were analyzed in this study. Moreover, other corresponding

annotation files used in downstream analyses, including ‘‘gff’’,

‘‘fna’’, ‘‘faa’’ and ‘‘ptt’’, were also downloaded from the NCBI ftp site.

TSP scanning
The PlatProm approach, developed by Ozoline et al. [34] to

search for potential promoters in the genome through predicting

transcription start points with optimal position-specific weight

matrices, was adopted to detect the TSPs across all the 10 genomes.

For E. coli K-12 MG1655 and the German E. coli outbreak strain

Table 3. Non-conserved genomic islands among three examined E. coli strains.

GIs Start–End Operons or replicons Annotation or Notes

Gist4a 161735–169690 ycgXEFZ-ymgABC Activate production of the biofilm matrix [74]

Gist15a 1251957–1267105 wzXY-NnaACBD O-antigen gene cluster [73]

Gist23a 1903476–1912915 B7LDK9 Integrase; CP4-57 prophage

Gist27a 2312266–2319405 - Putative uncharacterized protein

Gist28a 2334883–2342762 D3GU29, B7LG82 Antigen 43 (Ag43) phase-variable biofilm formation autotransporter;
CP4-44 prophage

Gist29a 2436282–2443184 B7LGI6 Putative fimbrial-like adhesin protein

Gist34a 2822740–2830307 yhhZ-yrhAB Conversion of Methionine to Cysteine [75,76]

Gist36a 2894844–2907891 TnsDCBA Tn7-like transposition proteins [77]

Gist38a 2982406–2992135 SfmD, lpfBA Long polar fimbria protein [78]

Gist50a 3888114–3894384 E1U309, B7LDQ7 Transposase InsAB; Putative Filamentation

Gist54a 4186166–4193990 HtrE, B7LGK3 Periplasmic pilin chaperone, fimbria-like adhesion

Gist1b 775–9220 mchS3, mchS4, insH Microcin H47 system—An E. coli Genomic Island [79–81]

Gist11b 1039464–1046318 N6-adenine-methyltransferase (Phage), rusA Phage cdtI

Gist58b 4326970–4337621 B3HAL5 Tn21 resolvase and many uncharacterized proteins

Based on the comparison of non-conserved GIs among the three E. coli strains (TY-2482, EAEC strain 55989 and EHEC strain O157:H7),
adenotes islands present only in TY-2482 and EAEC strain 55989 and.
bdenotes TY-2482-specific islands. The start–end was defined by the start site of the first gene and the end site of the last gene embraced.
doi:10.1371/journal.pone.0033759.t003
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TY-2482, TSPs were extracted by the E. coli-specific matrices.

Accuracy of the PlatProm approach was previously tested on E. coli

K-12 MG1655 [34]. Briefly, based on 290 known promoters and

two control datasets, 85.5% of the known promoters were correctly

recognized by PlatProm (start coordinates of predicted TSPs match

with experimentally mapped ones within 2 nucleotides). Here, to

obtain more accurate prediction for Salmonella enterica, PlatProm was

attuned to S. Typhimurium LT2 promoters by training compilation

with 76 experimentally mapped promoters. Meanwhile, informa-

tion of 214 TSPs mapped by experimental techniques (primer

extension, S1-mapping, 59-RACE and RNA-seq) was collected (see

Table S1). Weight matrices for consensus elements, extended -10

dinucleotides and start positions were improved. Each position on

both strands was then scored by the newly equipped PlatProm.

Only signals with a cut-off score .7.36 were selected as being

reliable (with 4 SD higher than background, p,0.00004). To

further test the performance of PlatProm in the genome of S.

Typhimurium LT2, the known TSPs were compared with their

corresponding computational calls and 172 out of 214 (80.37%)

TSPs were found correctly detected (Table S1). If we consider TSP

calls +/26 nucleotides also as positive hits, the accuracy of the

method could reach 92.06%. These demonstrate the robustness

of our method in detecting TSPs, at least in the examined E. coli

and Salmonella genomes. Using this approach, other considered

genomes were scanned and the results were attached [see Datasets

S1, 2, 3, 4, 5].

Genomic island dataset construction
Five known methods, namely IslandPick, IslandPath-DIMOB,

SIGI-HMM, PredBias and Alien_hunter, were used to detect

potential genomic islands [see Figure S1]. The numbers of GIs

detected by different methods varied from less than 10 to more

than 90 for the same strain. The numbers for IslandPick,

IslandPath-DIMOB and SIGI-HMM were less than 40. It is

consistent with the evaluation that these three methods have a

high accuracy rate and a very low recall rate [36]. To reduce the

probability of sampling bias and meanwhile to pay more attention

to precision, the results from these three methods were selected.

And the results of these methods were combined together by

joining the overlap outputs [see Dataset S7]. Recently, they have

been integrated into a single web platform Islandviewer (http://

www.pathogenomics.sfu.ca/islandviewer/query.php). Further, the

putative TSPs were matched to the corresponding GI regions for

comparison against the whole genomes.

GIST: Genomic-island Identification by Signal of
Transcription

To assess the heterogeneity of sequence within certain regions,

the first problem encountered is the determination of the optimal

length for the sliding windows. Here, by splitting the genomes to n

successive windows, we calculated the X value by using different

lengths of sliding windows each time (from 500 bp to 4,000 bp

with a step of 500 bp). The hk represents the TSP density in the k

window, and h denotes the average density of all the split windows.

X~
Pn

k~0

(hk{h)
2
,

h
� �2

Interestingly, for all the 10 genomes, the first inflexion point of

the X value emerged when the window length is fixed at 3,000.

Thus, we detected all atypical regions with the criteria:

a) each window in this region carries the TSP density higher

than genome with y folds (testing from 1.5 to 6.0 with a step

of 0.5); and

b) the total successive window must be longer than 4 kb.

Then, to test the optimal number of fold, we calculated the

true positive rate (TPR: equivalent to sensitivity) and false

positive rate (FPR: equivalent to (1-specificity)) for each fold

being tested. To maximize the arithmetic product of sensitivity

and specificity, we selected ‘‘5 folds’’ to predict the heteroge-

neous regions. Finally, based on the GFF file downloaded from

NCBI, the genes found within the regions were identified. The

boundary of GI was defined by the start site of the first gene and

the end site of the last gene embraced. The results are shown in

Dataset S8.

Functional characterization and subcellular localization
analysis

The COG assignment results of the 10 genomes were retrieved

from the JCVI center (http://www.jcvi.org/). The one-letter

code of COG categories is depicted in Table 1. In addition, genes

without COG assignments, such as ‘‘hypothetical protein’’, were

classified into another group named ‘‘out_COG’’. To facilitate

the comparison, the genes in GIs predicted both by GIST and

Islandviewer were matched to the corresponding functional

annotation. Then, with self-written Perl scripts, we calculated

the number of genes deposited in each functional category

for genomes and GIs [see Dataset S9]. Consequently, PSORTb

version 3.0 was used to predict the subcellular location across all

the 10 genomes [48]. During the process, we selected the results

with a score higher than 7.5 under the option of ‘‘gram-

negative’’. PSORTb was designed to emphasize precision (or

specificity) over recall (or sensitivity) and the results were thus

more confident. Similarly, after assigning the genes in GIs with

the corresponding results, we calculated the number of genes

deposited in each type of subcellular location for genomes and

GIs with self-written Perl scripts. The results are shown in Dataset

S10.

Codon usage, GC content and gene length
To further delineate the sequence characteristics of different

groups, codon usage, GC content and gene length are

considered. Here, Codon usage bias was measured by the

effective number of codon (Nc value), and the possible traits of

expression were estimated by the codon adaptation index (CAI),

which reflects the extent of bias towards codons known to

be favored in highly expressed genes [64]. Both indexes

were calculated with the program CodonW 1.4 (written by

John Peden, obtained from http://sourceforge.net/projects/

codonw/). Further, based on the GFF files obtained from NCBI,

we extracted the GC content and the gene length in all the

examined genomes. Then, these two features of GI genes were

also measured for comparisons. The raw data are not shown

here. To examine to what extent the GC property can influence

the number of TSP calls, we adapted the sliding window method

(4,000 bp with a step of 1000 bp) and then extracted the

sequences and calculated the GC content in each window

among all the 10 considered genomes by using Perl scripts.

Subsequently, corresponding number of TSP calls in each

window was also counted according to the foregoing results.

Then, based on SAS (statistical analysis system), we calculated

the Pearson Correlation Coefficients (r value) between the GC
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content and the number of TSP calls among the 10 examined

genomes. The data are enclosed in Dataset S13.

Statistical analyses
Various features of different groups were analyzed with the

SAS program. Values in different groups were compared using the t

test and ANOVA with F test and ranked by Student Newman Keuls

test.
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