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Abstract
Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of
Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting
oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with
PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived
macrophages are the primary source of cytokine production in excess adipose tissue, and also
promote adipocyte cytokine production in a paracrine fashion.

The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin
resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of
inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of
activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may
be a potential mechanism for promoting diet-induced inflammation in PCOS.

Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed
adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose
ingestion incites oxidative stress in normal weight women with PCOS even in the absence of
increased abdominal adiposity.

In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating
androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation
in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the
ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme
responsible for androgen production. These findings support the contention that inflammation
directly stimulates the polycystic ovary to produce androgens.
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Introduction
Polycystic Ovary Syndrome (PCOS) is characterized by hyperandrogenism, chronic oligo-
or anovulation and polycystic ovaries [1]. Hyperandrogenism in particular, is a hallmark
feature of PCOS because it is strongly implicated in the genesis of the disorder [2]; and is
also associated with metabolic derangements that contribute to the underlying
pathophysiology [3]. Consequently, the AE-PCOS Society maintains that the presence of
hyperandrogenism is required to diagnose PCOS in consort with either chronic oligo- or
anovulation or the presence of polycystic ovarios [4].

It is now clear that PCOS is a proinflammatory state, and emerging data suggests that
chronic low-grade inflammation underpins the development of metabolic aberration and
ovarian dysfunction in the disorder [5,6]. Most importantly, there is a strong association
between hyperandrogenism and inflammation in PCOS that has been the focus of ongoing
investigation [5,7-10]. Novel data presented herin suggests that in PCOS, diet-induced
inflammation may directly invoke hyperandrogenism.

Insulin resistance and defective insulin signaling in PCOS
Insulin resistance is a common feature of PCOS affecting 50-70% of women with the
disorder. The compensatory hyperinsulinemia is considered to be a promoter of the
hyperandrogenism and chronic oligo- or anovulation. Android obesity is evident in
~52%-64% of women with PCOS, and is independently associated with metabolic
abnormalities such as insulin resistance [1,11]. Abdominal adiposity in particular is present
in ~30% of normal weight women with PCOS [12].

Circulating levels of the proinflammatory cytokine tumor necrosis factor-α (TNFα) are
elevated in obesity, and are also elevated in PCOS independent of obesity [13,14]. In fact,
the discovery of TNFα elevations in PCOS served as the initial clue that PCOS is a
proinflammatory state. In obesity-related diabetic syndromes, TNFα is a known mediator of
insulin resistance by causing increased serine phosphorylation of insulin receptor substrate-1
(IRS-1) in insulin sensitive tissues [15]. This leads to decreased expression of GLUT 4, the
insulin sensitive glucose transport proteín [16].

The insulin receptor in PCOS is genetically and functionally normal. Insulin resistance in
PCOS is also caused by a post-receptor defect in insulin signaling with increased serine
phosphorylation implicated as the cause of decreased insulin-stimulated IRS-1 activation
and decreased GLUT 4 expression [17,18]. Thus, the ability of TNFα to stimulate increased
serine phosphorylation makes it an ideal candidate for initiating these molecular events in
PCOS.

Although insulin resistance per se is considered to be the responsible entity for
hyperandrogenism in PCOS, this mechanism does not explain the hyperandrogenism evident
in women with the disorder without insulin resistance and/or excess adiposity. Inflammation
may be the common thread in the induction of insulin resistance that is related to PCOS per
se, or to superimposed excess adiposity. This concept raises the possibility that
inflammation may be capable of directly inducing hyperandrogenism in PCOS.

Chronic low-grade inflammation in PCOS
There is a genetic basis for the chronic low-grade inflammation observed in PCOS. Several
proinflammatory genotypes including those that encode TNF-α, and the type 2 TNF receptor
as well as interleukin-6 (IL-6) and its signal transducer are associated with PCOS [19-21].
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The majority of studies addressing the status of chronic low-grade inflammation in PCOS
have focused on the measurement of circulating C-reactive protein (CRP) using high-
sensitivity assays. CRP is an acute phase reactant produced by the liver following
stimulation by IL-6, the endocrine cytokine originating from adipose tissue in this instance
[22]; CRP is also directly produced by adipose tissue [23]. CRP levels >3 mg/L are equally
predictive of a cardiovascular event compared to the ATP III criteria for metabolic
syndrome [24]. CRP also plays a functional role by promoting the uptake of lipids into
foamy macrophages within atherosclerotic plaques [25].

A recent meta-analysis revealed that CRP is the most reliable circulating marker of chronic
low-grade inflammation in PCOS [26]. However, the CRP elevation in normal weight
women with PCOS (<3.0 mg/L) is still much less compared to the obese (>3.0 mg/L)
regardless of whether or not they have PCOS [27,28]. Thus, CRP elevations attributable to
PCOS are obscured in the presence of obesity, and are below the range to predict metabolic
or cardiovascular risk. This suggests that in PCOS, a single static circulating marker may not
be reflective of inflammation at the molecular level.

The role of diet-induced inflammation in PCOS
Circulating mononuclear cells (MNC) and MNC-derived macrophages in tissue produce
proinflammatory cytokines such as TNFα and IL-6 [29]. While TNFα is a known mediator
of insulin resistance, the impact of IL-6 on insulin resistance is variable [15,30,31].
Moreover, IL-6 is clearly involved in the promotion of atherogenesis [32].

Circulating mononuclear cells utilize glucose during glycolysis for mitochondrial
respiration. Some glucose is diverted to the hexose monophosphate shunt to generate
nicotinamide adenine dinucleotide phosphate (NADPH) [33]. Membrane-bound NADPH
oxidase is activated by translocation of a cytosol component known as p47phox to the cell
membrane [34,35]. Oxidation of NADPH by NADPH oxidase generates superoxide, a
reactive oxygen species (ROS) that induces oxidative stress [36]. This in turn activates the
transcription factor, nuclear factor κB (NFκB) by its dissociation from the inhibitory proteín,
inhibitory κB (IκB). Activated NFκB translocates to the nucleus to promote TNFα and IL-6
gene transcription [15,37].

In PCOS, glucose ingestion induces an inflammatory response as evidenced by increased
ROS-related oxidative stress, and increased NFκB activation that are independent of obesity
(Fig. 1A-B) [5,9]. The release of TNFα and IL-6 from circulating MNC is also altered in
PCOS by glucose ingestion in vivo, and by glucose exposure in vitro [7,8]. In addition, these
markers of oxidative stress and inflammation are associated with glucose-challenged
measures of insulin sensitivity and/or fasting measures of insulin resistance [5,8,9]. Thus,
diet-induced inflammation in PCOS culminates in proinflammatory signaling known to be
involved in the development of insulin resistance and atherogenesis.

The influence of adipose tissue on inflammation in PCOS
The proinflammatory state of obesity contributes to the promotion of insulin resistance and
atherogenesis when present in PCOS. Hypoxia-related adipocyte death in response to
adipose tissue expansion promotes an influx of MNC into the stromal-vascular compartment
[38]. These MNC alter morphologically to become resident macrophages. MNC-derived
macrophages are the prime source of TNFα and IL-6 production in adipose tissue, and also
stimulate cytokine production in adipocytes through paracrine mechanisms [39].

The expression of molecular markers of inflammation is similar in adipose tissue of
overweight women regardless of PCOS status, and there is lower expression in normal
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weight women with PCOS compared to overweight individuals [40]. Thus, the inflammatory
load derived from adipose tissue in PCOS is in proportion to body mass, but is not uniquely
greater compared to that of individuals without PCOS. Even in the absence of frank obesity,
increased abdominal adiposity is prevalent across all weight classes in PCOS [12].

Until recently, it remained unclear whether increased abdominal adiposity was the cause of
the proinflammatory state in normal weight women with PCOS. However, it is now known
that markers of oxidative stress such as MNC-derived ROS generation and p47phox protein
content increase in response to glucose ingestion in normal weight women with PCOS
without increased abdominal adiposity [41]. This population is also insulin resistant, and
exhibits higher testosterone levels and lower CRP levels compared to normal weight women
with PCOS who have increased abdominal adiposity. Nevertheless, markers of oxidative
stress are still greater in normal weight women with PCOS who have increased abdominal
adiposity. There are also associations between CRP and abdominal adiposity, and between
markers of oxidative stress and circulating androgens in normal weight women with PCOS.
Thus, glucose-stimulated oxidative stress is independent of increased abdominal adiposity in
normal weight women with PCOS, but increased abdominal adiposity contributes to the
inflammatory load in the disorder. In addition, testosterone production in PCOS is greater in
the absence of increased abdominal adiposity while CRP elevations are mostly an adiposity-
related phenomenon.

The relationship between inflammation and hyperandrogenism in PCOS
Circulating and molecular markers of oxidative stress and inflammation are highly
correlated with circulating androgens [5,7-10]. These findings raise the possibility that in
PCOS, either hyperandrogenemia pre-activate MNC to account for the hyperglycemia-
induced inflammation, or conversely that glucose-stimulated inflammation promotes ovarian
androgen production in PCOS. There is data to support that both mechanisms may occur
[42-44].

Induction of hyperandrogenism in normal weight ovulatory women
In PCOS, MNC are pre-activated as evidenced by increased ROS generation and activated
NFκB in the fasting state [45-46]. This accounts for the increased MNC sensitivity to
glucose ingestion in the disorder. In contrast, MNC of normal weight ovulatory women are
not sensitive to hyperglycemia, and do not exhibit an inflammatory response to glucose
ingestion [5,7-9]. Acute oral androgen administration raises circulating androgen levels in
normal weight ovulatory women to the range observed in PCOS. In the process, ROS-
related oxidative stress, activated NFκB and TNFα RNA content from MNC increase in the
fasting state, and in response to glucose ingestion (Fig. 2A-B) [42,43]. Thus,
hyperandrogenemia to the degree present in PCOS, promotes MNC activation and increases
MNC sensitivity to glucose ingestion. This suggests that hyperandrogenism, the hallmark
feature of PCOS, is the progenitor of diet-induced inflammation in the disorder.

Suppression of androgens in women with PCOS and ovulatory women
Alteration in circulating CRP reflects exacerbation or amelioration of inflammation in
clinical practice making it a useful measurement of inflammatory load [47-49]. CRP and
body weight increase in obese women with PCOS, but remain unaltered in normal weight
women with PCOS in response to chronic gonadotropin releasing hormone agonist (GnRH)
agonist-induced androgen suppression. CRP is also unaltered in obese ovulatory women, but
decreases in lean ovulatory women without significant weight change in either group during
similar treatment (Fig. 3A-B) [44].
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The ability of elevated circulating androgens to promote lipolysis may be responsible for the
rise in CRP following chronic GnRH agonist administration in obese women with PCOS
[50]. Testosterone in particular, is known to stimulate catecholamine-induced hormone
sensitive lipase activity, which in turn, limits adipose tissue expansion [51]. A decrease in
lipolysis following androgen suppression to castrate levels may explain the progressive
weight gain in obese women with PCOS that most likely represents expansion of the adipose
tissue compartment during chronic of GnRH agonist administration. In fact, circulating free
fatty acids (FFA) decline in obese women with PCOS during chronic GnRH agonist
administration [43]. Subsequent increases in IL-6 production from inflamed adipose tissue
could result in the progressive rise in CRP observed in these individuals during this period.

Circulating androgens have a limited effect on lipolysis in normal weight women with
PCOS and obese ovulatory women. Moreover, catecholamine resistance of subcutaneous
adipose tissue precluding adequate induction of hormone-sensitive lipase activity is well
documented in these individuals [52]. This phenomenon can limit expansion of inflamed
adipose tissue to explain their unaltered levels of CRP and FFA and lack of significant
change in weight during GnRH agonist administration. Thus, the factors responsible for
limitation of fat mass in normal weight women with PCOS and obese ovulatory women are
not dependent on the release of control by circulating androgens. In contrast, the decline in
CRP in normal weight ovulatory women following GnRH agonist-induced androgen
suppression corroborates the studies showing an increase in inflammatory load following
androgen administration in this population [42].

These data demonstrate that hyperandrogenism in PCOS exerts an anti-inflammatory effect
when obesity is present, but does not promote inflammation in the disorder. These unique
observations support the contention that androgens have a pleiotropic effect on inflammation
dependent on the combination of PCOS and weight status present in a given individual.

Induction of androgen production capacity by inflammation
Inflammation may be the promoter of hyperandrogenism in the disorder. Infiltration of the
ovary by MNC-derived macrophages has been previously demonstrated [53]. In vitro studies
show that CYP17, the ovarian steroidogenic enzyme responsible for androgen production is
upregulated by proinflammatory stimuli, and inhibited by anti-inflammatory agents such as
resveratrol and statins [6,54]. TNFα is a proinflammatory cytokine capable of stimulating in
vitro proliferation of androgen producing theca cells [55]. It is possible that MNC recruited
into the polycystic ovary may cause a local inflammatory response that stimulates ovarian
androgen production in women with PCOS.

Conclusions
In PCOS, a dietary trigger such as glucose is capable of inducing oxidative stress to
stimulate an inflammatory response even in the absence of excess adiposity.
Hyperandrogenism may be the progenitor of chronic low-grade inflammation. Diet-induced
inflammation in particular may be the underpinning of insulin resistance in the disorder.
Inflammation directly stimulates excess ovarian androgen production. Increased abdominal
adiposity contributes to the inflammatory load in PCOS, and its development may be
controlled by the severity of hyperandrogenism.
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In Polycystic Ovary Syndrome

• a prooxidant, proinflammatory state exists that is independent of excess
adiposity,

• inflammation triggered by glucose ingestion is associated with insulin
resistance,

• hyperandrogenism may be the progenitor of diet-induced inflammation,

• oxidative stress and inflammation promotes hyperandrogenism, and

• superimposed excess adiposity augments the inflammatory load.
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Figure 1.
(A) The change from baseline (%) in ROS generation from mononuclear cells (MNC) when
fasting samples (pre) were compared to the samples collected 2 hours after glucose ingestion
(post). * the percent (%) change in ROS generation in normal weight women with PCOS
was greater than that of normal weight ovulatory controls, P < 0.009. † the % change in
ROS generation in obese women with PCOS was greater than that of normal weight
ovulatory controls, P < 0.003. (B) Representative EMSA bands from the 4 study groups
showing the change in quantity of NFκB in nuclear extracts from MNC when fasting
samples (pre) were compared to the samples collected 2 hours after glucose ingestion (post).
Densitometric quantitative analysis of intranuclear NFκB protein content in MNC.
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Compared to normal weight ovulatory controls, the % change in NFκB activation was
significantly greater in obese ovulatory controls (*, P<0.03), in normal weight women with
PCOS (†, P<0.006), and in obese women with PCOS (‡, P<0.002). Adapted from González
et al. [5,9], with permission. Copyright The Endocrine Society, 2006.
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Figure 2.
(A) Representative EMSA bands from the two study groups showing the quantity of NFκB
in nuclear extracts from mononuclear cells (MNC) in samples collected in the fasting state
(0) and 2 hours post-glucose ingestion (2), before and after treatment with DHEA or
placebo. Densitometric quantitative analysis comparing the change from baseline (%) in
MNC-derived activated NFκB between the two study groups for fasting samples before and
after (before versus after, 0) DHEA or placebo administration (left panel); and for fasting
and 2 hour post-glucose ingestion samples for each OGTT (before, 0 versus 2; after, 0
versus 2) as a measure of the response to glucose challenge before and after DHEA or
placebo administration (right panel). After DHEA administration, the % change in activated
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NFκB was significantly greater compared to placebo in the fasting state (*, P<0.04), and in
response to glucose ingestion (†, P<0.005). (B) Comparison between groups of the change
from baseline (%) in TNFα mRNA content in MNC for fasting samples before and after
(before versus after, 0) DHEA or placebo administration (left panel); and for fasting and 2
hour post-glucose ingestion samples for each OGTT (before, 0 versus 2; after, 0 versus 2) as
a measure of the response to glucose challenge before and after DHEA or placebo
administration (right panel). Values are normalized to 28S rRNA expression. After DHEA
administration, the percent (%) change in TNFα mRNA transcripts significantly increased
compared to placebo in the fasting state (*, P<0.05), and in response to glucose ingestion (†,
P<0.05). Adapted from González et al. [43], with permission. Copyright The American
Physiological Society, 2011.
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Figure 3.
The incremental change (Δ) from baseline in (A) serum C-reactive protein (CRP) levels and
(B) body weight after 3 and 6 months of gonadotropin-releasing hormone (GnRH) agonist
administration. The incremental Δ in CRP was significantly (*, P<0.009) higher in obese
women with PCOS compared to normal weight ovulatory controls after 3 and 6 months of
GnRH agonist treatment; and compared to obese ovulatory controls (†, P<0.005) and normal
weight ovulatory controls (‡, P<0.007) after 6 months of treatment. The incremental Δ in
body weight was significantly higher in obese women with PCOS compared to obese
ovulatory controls (*, P<0.02) and normal weight ovulatory controls (†, P<0.04) after 3 and
6 months of GnRH agonist treatment. González et al. [44].
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