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Abstract
Particulate matter (PM) is an important metric for studying the health effects of household air
pollution. There are limited data on PM exposure for children in homes that use biomass fuels, and
no previous study has used direct measurement of personal exposure in children younger than 5
years of age. We estimated PM2.5 exposure for 1,266 children in The Gambia by applying the
cookhouse PM2.5-CO relationship to the child’s CO exposure. Using this indirect method, mean
PM2.5 exposure for all subjects was 135 ± 38 μg/m3; 25% of children had exposures of 151 μg/m3

or higher. Indirectly-estimated exposure was highest among children who lived in homes that used
firewood (collected or purchased) as their main fuel (144 μg/m3) compared to those who used
charcoal (85 μg/m3). To validate the indirect method, we also directly measured PM2.5 exposure
on 31 children. Mean exposure for this validation dataset was 65 ± 41 μg/m3 using actual
measurement and 125 ± 54 μg/m3 using the indirect method based on CO exposure. The
correlation coefficient between direct measurements and indirect estimates was 0.01. Children in
The Gambia have relatively high PM2.5 exposure. There is a need for simple methods that can
directly measure PM2.5 exposure in field studies.
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Introduction
Biomass fuels and coal are the primary source of energy for cooking and heating for
approximately onehalf of the world’s population, and 80% of the population of sub-Saharan
Africa [1]. In most developing countries, biomass is burned in traditional open fires leading
to high concentrations of multiple pollutants [1–3]. Women and young children may spend
hours near cooking fires, and hence have high exposures. There is increasing evidence that
biomass smoke is a risk factor for pneumonia, the leading cause of child death worldwide
[4].

Air pollution is a complex mixture of solid and gaseous pollutants. Although multiple
components of combustion air pollution are associated with adverse health outcomes,
particulate matter (PM) has been consistently, independently, and coherently related to
various diseases affected by air pollution [5–8]. Measuring personal exposure of children to
PM is difficult because current PM monitors are too large and heavy to be carried by a small
child for many hours. As a result, there is very little data on personal exposure to PM from
biomass smoke among children. Previous research has used two indirect methods to assess
personal PM exposure of children: measuring personal exposure to carbon monoxide (CO)
as a proxy pollutant to estimate PM exposure [9–13] and micro-environment PM monitoring
combined with time-location-activity budgets [14–17]. A recent study directly measured the
personal PM exposure of school-age children and adult women in rural China [18]. To our
knowledge, no study has directly measured personal PM exposure of children younger than
5 years of age, who account for most pneumonia deaths [19]; nor have previous studies
compared estimates of PM exposure from the above two indirect methods. Finally, due to a
lack of measured PM exposure data, it has not been possible to correlate children’s PM
exposure with their CO exposure or with household PM concentration. The lack of validated
methods for measuring children’s PM exposure from biomass fuels is an obstacle to
estimating the dose-response relationship for biomass smoke and in evaluating how much
different interventions reduce exposure.

We conducted a study in The Gambia in which we used an indirect method to estimate PM
exposure by applying the PM-CO relationship from stationary monitors to personal CO
exposure. In addition, to assess the validity of CO as a proxy for PM exposure, we
conducted a distinct validation study in which we directly measured personal PM exposure
for a small number of children. We examined both the systematic and random error of the
indirect estimates of PM exposure based on CO exposure with direct PM measurements
collected over the same period.

Methods
The study was approved by The Gambia Government-MRC Joint Ethics Committee (SCC/
EC 1062) and was assessed as exempt by the Harvard School of Public Health Office of
Human Research Administration.

Overview
Our study had three components: First, we used an indirect method to estimate PM2.5
exposure for 1,266 children. Following a previous study in Guatemala [10–11, 13] and a
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pilot study in The Gambia [20], we used CO as a proxy for PM exposure, and estimated
PM2.5 using the PM2.5-CO relationship from stationary cookhouse monitors. In doing so,
this component applied an indirect method that has been deemed feasible for large field
studies in an African setting, where child mortality is higher than in other world regions
[21]. We extended this indirect approach by including fuel type, season (rainy vs. dry), and
study site in the PM2.5-CO relationship. We selected our statistical model based on formal
tests among multiple candidate models. Second, we estimated PM2.5 exposure for 76 of
these children using continuous cookhouse PM2.5 data and questionnaire data on time-
location-activity budgets. We examined the correlation between indirect PM2.5 exposure
using CO and indirect PM2.5 exposure using time-location-activity budgets. Finally and
importantly, we directly measured PM2.5 exposure for 48 children, and examined the
systematic and random error of the indirect estimates based on CO in relation to the direct
measurements over the same period. We could not compare indirect estimates using time-
location-activity budgets with direct measurements because there were very few usable
cookhouse measurements during direct exposure measurement days.

Study area, population, and participants
Our study took place in The Gambia, in the greater Banjul area and the Basse area of the
Upper River Region. The study areas consist primarily of periurban and rural locations, but
a few urban homes were also included. Study participants were children aged between 2 and
59 months at the time of recruitment into an epidemiologic study of child pneumonia
conducted at the Medical Research Council (MRC), The Gambia Unit. Details on the study
area and population, recruitment, and the child-care behaviors, cooking fuel and location,
and demographic characteristics of study participants are provided elsewhere [12]. At the
time of this analysis, 1,303 children had been enrolled. Of these, 37 withdrew from the study
as detailed elsewhere [12], and were excluded from all analyses, leaving a sample of 1,266
children.

CO exposure
We used a parsimonious mixed effects model to estimate CO exposure. The model is
described in detail elsewhere [12]. In brief, the model used measurement season (rainy vs.
dry), and questionnaire and measured CO exposure data to estimate each child’s “usual” CO
exposure (see below). The questionnaire data used were type of fuel used for cooking and
other PM sources in the child’s home (incense, trash, and insect coil burning). The model
had two parts that together accounted for the following features of CO exposure (i) CO
exposure of some children may be non-zero but below the limit of detection (LOD) of the
CO measurement equipment and (ii) there is within-child exposure variability across days
that can be addressed using repeated measurements. The model parameters were estimated
using CO exposure data measured between July 2007 and January 2011; 43% of children
had up to five repeated measurements to quantify within child exposure variability.
Repeated measurements were done over a period of 2–3 months for each child, to reflect the
exposure period that is likely to be relevant for pneumonia. We used the model to predict
CO exposure using this method for all 1,266 children in the rainy and dry seasons, removing
or reducing the within-child variability as above; exposure to a time-varying risk factor
calculated using this method is commonly referred to as a “usual exposure” [22]. Season-
specific usual CO exposures were predicted by separately setting the season variable to rainy
or dry. Annual CO exposure for each child was calculated using a weighted average of rainy
and dry season usual exposures, with weights being the approximate duration of each season
(5 months rainy and 7 months dry).
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Cookhouse CO and PM2.5

We measured 72-hour integrated CO and PM2.5 concentrations in cookhouses of the homes
of 321 of the above subjects (Table S1), simultaneously with their personal CO exposure
measurements. These homes were randomly selected by the scheduling database among
those eligible for CO exposure measurement in each week. In each cookhouse, we placed
CO and PM2.5 monitors on a wooden stand approximately 1 m away from the main fire used
for cooking. If the sampling pump connected to the PM2.5 sample operated for <90% of the
72-h measurement period, the PM2.5 measurement was not included in analysis (106
households). Data from another 12 households were excluded because the filter or
measurement equipment was compromised, leaving 203 households with 219 integrated
cookhouse PM2.5 measurements included in the analysis. Of these, 197 households also had
a valid cookhouse CO measurement leading to 213 co-located CO and PM2.5 measurements;
CO measurements in the other 6 households were excluded because the CO tubes were
missing from the cookhouse or were discolored, possibly due to excessive exposure to direct
sunlight.

We estimated the relationship between cookhouse integrated PM2.5 and CO using the 197
co-located measurements. To assess whether variables available in questionnaires help
improve PM2.5 prediction, we developed a series of regression models with different
covariates including fuel used for cooking, cooking location and duration, study site, and
measurement season. We also considered the interactions among variables. We applied
natural splines with 2–6 degrees of freedom because exploratory analysis showed that the
PM2.5-CO relationship was non-linear (Figures 1 and 2). We developed a total of 36
regression models. We used the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) to evaluate the models. The AIC and BIC measure the relative
goodness of fit of a model; they reward how well the model fits the data but discourage
overfitting, with the BIC including a larger penalty term for overfitting than the AIC [23–
25]. The model below emerged as the model with the lowest AIC and 6th lowest BIC
(Supplementary Figure 1), indicating that this model has good relative fit without being
overly complex in terms of number of terms and their interactions. The model with the
lowest AIC was chosen because the model will be used for prediction. We used the spline
with 4 degrees of freedom because the additional regression coefficient was statistically
significant, and could help characterize the non-linear PM2.5-CO relationship.

Where β0 is the overall intercept; ns(ln(CO),4) is a natural spline with 4 degrees of freedom
applied to the natural log of CO concentration; fuel is type of fuel used most for cooking
(purchased firewood, collected firewood, charcoal, other); season represents whether the
measurement was done in the rainy or dry season; study site represents whether the
measurement was done in Banjul or Basse; and e is random error. Covariate data were from
a household questionnaire administered to each child’s mother or primary caregiver by
trained MRC fieldworkers. Detailed questionnaire results and characteristics of the study
population are provided elsewhere [12].

We also measured PM2.5 continuously in cookhouses of 191 homes, collocated with the
integrated monitor (Table S1). After exclusions due to equipment malfunction, we had 124
continuous PM2.5 measurements in 116 homes remaining. Of these, 80 households had
usable co-located integrated data.
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Annual PM2.5 exposure estimated indirectly using CO as proxy (all children)
We applied the above PM2.5-CO relationship to the estimates of season-specific usual CO
exposure for the 1,266 children in the analysis. Annual PM exposure for each child was
calculated using a weighted average of season-specific usual PM exposures. We calculated
the uncertainty of each child’s annual PM2.5 exposure accounting for: 1) the uncertainty in
the estimated regression coefficients; and 2) uncertainty due to unexplained variation,
measured by the residual variance. These uncertainties will be used in subsequent
epidemiological analyses.

Direct PM2.5 exposure (validation study)
We directly measured personal exposure to PM2.5 on 48 children between January 2010 and
January 2011 (Table S1). These children were aged between 15 and 61 months at the time of
measurement, with a mean and median age of 34 months, and standard deviation of 9
months. There were no other criteria for their selection beyond being eligible for
measurement at the time of the study and being large enough to comfortably carry the
backpack containing measurement equipment. Each child wore a toddler-sized backpack
(Figure 3) fitted with a PM2.5 monitor for 48 hours. We could not measure personal
exposure on younger children because they were too small to carry the backpack and
monitor. Five children were excluded from analysis because of initial equipment failure or
because the backpack was removed due to child’s illness or inability to carry the backpack;
12 were excluded because the monitor operated for less than 38.4 hours (80% of the target
48-h period). The remaining 31 children were included in analysis. Of these, 29 had valid
simultaneously measured personal CO exposure; CO exposure measurements were initiated
24 h prior to the start of PM exposure measurement, to ensure that there was sufficient color
change on the CO tubes.

Indirect PM2.5 exposure from time-location-activity budgets
We calculated PM2.5 exposure using a time-location-activity budget and cookhouse area
measurement of PM2.5 for 76 children from households with cookhouse continuous PM2.5
measurement. Information on time-location-activity budgets was from the questionnaire
described above. The questionnaire included questions on stove use and child’s location
during different time periods of the day, divided to morning (5:00 am – 10:00 am), mid-day
(10:00 am – 5:00 pm), and evening (5:00 pm – 5:00 am). The caregiver was asked to
indicate the typical duration the fire was burning (to the nearest whole hour) and the location
of the child “most of the time” during each period. Personal PM2.5 exposure for each child
was calculated as:

(PM2.5)j: personal exposure to PM2.5 for child j

i =1,2,3: time period of the day, as above

fi,j: fraction of hours the fire is burning in the cookhouse of child j during time period i

li,j: location of child j during time period i

ci,j: mean concentration of PM2.5 in the cookhouse of child j during time period i,
corrected against integrated data (see below)

We set li,j = 1 if the stated location of the child was on the caregiver’s back, near the stove
(within 1 meter), or not near the stove but around the cooking area (1–4 meters). When the
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location of the child was away from the stove inside (another room), away from the stove
outside, or in a different compound, we set li,j to 0, 0.5, or 1 under three different scenarios.

All analyses were conducted in R version 2.14.0.

Measurement methods
Methods used to measure personal and cookhouse CO and PM2.5 are described in detail in
supplementary material.

Results and Discussion
Cookhouse PM2.5 and CO

Mean 72-h cookhouse PM2.5 concentration in the 203 households with 219 measurements
was 395 ± 364 μg/m3. This is substantially higher than PM2.5 cookhouse concentrations in
China of 107 μg/m3 [18] but lower than the 900 μg/m3 in kitchens with open fires in
Guatemala [13]. With somewhat different size fractions, mean PM4 concentrations were 500
μg/m3 in kitchens of wood users in India [26], and ranged from 187 to 719 μg/m3 in
different provinces and seasons in China [27]. Mean 72-h cookhouse CO concentration was
6.7 ± 7.3 ppm (356 measurements in 322 households), lower than the 10–11 ppm in
Guatemala before stove interventions [28], and similar to those in the non-heating season in
China (5.5 ppm) [27]. Both the China and Guatemala studies used a different brand of CO
diffusion tube than was used in our study in The Gambia.

25% of cookhouse PM2.5 and CO concentrations in our study were above 585 μg/m3 and 9.4
ppm respectively, while 5% of measurements were above 1,088 μg/m3 and 20.8 ppm
respectively. Cookhouse PM2.5 and CO concentrations differed by fuel type, study site, and
measurement season (Table 1). Households using collected or purchased firewood had
substantially higher cookhouse PM2.5 and CO concentrations, and larger variability, than
households using charcoal (mean measured PM2.5 in households using collected firewood,
purchased firewood, and charcoal were 476 ± 357 μg/m3, 395 ± 387 μg/m3, and 121 ± 123
μg/m3 respectively) (Table 1), similar to results of a study in Kenya [3]. The reasons for
higher PM2.5 in homes using collected (vs. purchased) firewood are not known and may
include the type of wood, longer duration of cooking (6.6 ± 2.0 hours in homes with
collected firewood vs. 5.2 ± 1.4 hours in homes with purchased firewood) or other cooking
behaviors. Pollution was also much higher in households in the Basse region than in the
Banjul region; this may be because firewood was the nearly universal fuel in Basse but
charcoal was used by 18% of Banjul study households (Table 1). Cookhouse PM2.5 and CO
concentrations in the rainy season were slightly higher than concentrations in the dry season
(Table 1), possibly due to longer hours of stove use for warmth in the rainy season or
differences in fuel moisture.

Minute-by-minute corrected continuous cookhouse PM2.5 show three distinct daily peaks,
the largest during the mid-day cooking period and two smaller ones before and after this
period; this pattern applied to both rainy and dry months and did not vary systematically
over the three days of measurement in each home (Supplementary Figure 2). The time
pattern of PM in Banjul households had a similar pattern, whereas Basse households seemed
to have two broader peaks in the middle of the day (Supplementary Figure 2). When
separated by fuel, households using firewood shared the time pattern of all households,
whereas those using charcoal had a single sharp peak in the middle of the day
(Supplementary Figure 2).

Integrated cookhouse PM2.5 and CO concentrations had a correlation coefficient of 0.87
(n=213 measurements) (Figure 1). The correlation coefficients in different measurement
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seasons and at different study sites ranged from 0.79 to 0.92. When data were restricted to
the range of CO concentrations that represent children’s personal exposure (0–21 ppm), the
correlation was slightly lower at 0.83 (n=208 measurements). However below the 75th

percentile of child CO exposure (1.3 ppm), the cookhouse PM2.5-CO correlation dropped to
0.51 (n=41 measurements) (Supplementary Figure 3).

The PM2.5-CO correlation differed by fuel type: 0.83 (n=95) and 0.94 (n=89) for collected
and purchased firewood respectively, but only 0.35 (n=20) for charcoal. The PM2.5-CO
correlation was lower in homes that cooked outside (under a roof, or in open air; r = 0.55–
0.57) than inside (in the main house, or inside a separate cookhouse; r = 0.86) (Figure 1).
The correlation coefficient between 22-h cookhouse PM2.5 and CO concentrations in
kitchens using open fires in Guatemala was 0.50 (n=9) [11]. In China, where coal is
commonly used, the correlation between 24-h PM4 and CO ranged from 0.29 to 0.48 across
provinces and measurement locations [29]. The two pollutants also had low correlation in
Kenya [3], although measurement methods were different.

There was a non-linear relationship between cookhouse PM2.5 and CO, demonstrated by the
significance of the natural spline terms (Table 2). Including covariates in the PM2.5-CO
model explained an additional 9% of the PM2.5 variance, even after adjusting for the number
of explanatory variables (adjusted R2=0.66 without covariates and adjusted R2=0.75 with
covariates) (Table 2). The coefficients of fuel, measurement season, and study site in the
model were significant at p = 0.05 (Table 2). The multivariate relationship shows that for
any CO concentration, PM concentration was lower for charcoal users than for wood users
(Figure 2), and for measurements in the rainy season than those in the dry season. The low
PM concentrations for charcoal, as compared to its CO emissions, are consistent with a
study in Kenya [3]. Possible reasons for the difference in the PM-CO relationship in Basse
compared to Banjul include differences in other sources or in the cooking and fire tending
habits and techniques.

Annual PM2.5 exposure using CO as proxy
As reported in detail elsewhere [12], mean annual (weighted average of rainy and dry
seasons) CO exposure for the 1,266 children was 0.96 ± 0.50 ppm. The corresponding
annual PM exposure, estimated by applying the cookhouse PM2.5-CO relationship, was 135
± 38 μg/m3 (Supplementary Figure 4). Indirect exposures ranged from 50 to 410 μg/m3,
with 25% of children having exposures above 151 μg/m3 and 5% having exposures above
199 μg/m3 (Supplementary Figure 4). Mean annual exposure was 144 μg/m3 for children in
households using firewood (purchased or collected) and 85 μg/m3 for those using charcoal
(Figure 2). Children living in Basse had higher exposure than those in Banjul (146 μg/m3

and 127 μg/m3, respectively), possibly due to the nearly exclusive use of firewood in Basse.
When rainy and dry seasons were considered separately, there was little difference in
exposure (138 vs. 133 μg/m3). Using a similar approach, children in households who used
open fires in the highlands of Guatemala had mean exposures of 160–200 μg/m3 [13]. The
higher exposures in Guatemala, where CO exposure was also higher [10, 28–29], may be
because the fire is burned for longer periods of time for heating and temascal wood-fired
sauna, and because children spend more time indoors than in The Gambia which has mild-
hot weather (average monthly temperature ranges from 24–29°C).

Indirect PM2.5 exposure using CO as proxy vs. directly-measured exposure
One of the 31 children with direct PM2.5 exposure measurement used charcoal as their main
cooking fuel; the remainder used firewood. Most of these children were from Basse (77%);
and most measurements were done in the rainy season (68%). Mean directly-measured
PM2.5 exposure was 65 ± 41 μg/m3, comparable to summer-time exposure of school-aged
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children in rural China, the only other study known to directly measure personal PM
exposure of children in the developing world [18]. The China study measured 24-hour
gravimetric PM2.5 on women (in two seasons) and on children (in one season).

Mean PM2.5 exposure of the same children calculated using their simultaneously-measured
CO exposure in the above statistical model (which also included fuel and measurement
season) was 125 ± 54 μg/m3, about twice the directly-measured level (Figure 4). Mean
difference between direct and indirect methods for 26 children with both sets of data was
−58 μg/m3; mean absolute difference was 65 μg/m3. Not only were the indirect estimates
biased, but also there was no correlation between the direct and indirect exposures (Pearson
r=0.01).

This bias and low correlation exists because the PM-CO relationship on children is different
from that of the cookhouse, with lower correlation (correlation coefficient = 0.87 for
measured cookhouse PM-CO vs. −0.04 for measured personal PM-CO) (Supplementary
Figure 5). The difference in cookhouse vs. child PM-CO relationship may occur due to a
number of reasons: First, because children may be exposed to sources of these pollutants
other than biomass smoke. Second, the PM-CO relationship may vary during the burn cycle
with the children near the fire only during specific parts of the burn cycle. Finally, the
PMCO relationship may be stronger closer to the source (near the fire/in the cookhouse) but
the two pollutants may disperse differently outside the cookhouse or with increasing
distance from the source. One of the limitations of our study and the only other study that
used CO as a proxy for PM exposure [13] was that we did not have data to characterize the
PM-CO relationship for different parts of the day and in different microenvironments where
children spend time; there is some evidence that the PM-CO relationship may be location
specific [29]. We did nonetheless include fuel, season, and study site in the relationship.
Similarly, due to the difficulty in measuring personal PM exposure, the sample size of our
validation study was too small to allow for stratifying the PM-CO relationship on children
by demographic and environmental variables.

There was a weak inverse correlation between directly-measured child PM2.5 exposure and
measured cookhouse PM2.5 (r = −0.2) (Supplementary Figure 6); the correlation between
child CO exposure and cookhouse CO both measured over the same time period was −0.03
(n=307 measurements). The weak correlation between cookhouse and child PM2.5 may be
because children with direct exposure measurement tended to be older and may therefore
have spent more time in other parts of the house, whereas our area measurements and time-
location-activity budgets were focused on the cookhouse.

Correlation of two indirect PM2.5 exposures, using time-location-activity budget vs. using
CO exposure

58 children had indirect PM2.5 exposures calculated using two methods: by applying the
cookhouse PM2.5-CO relationship to measured CO exposure and using time-location-
activity budget and continuous cookhouse PM2.5. Correlations between the two indirect
child PM2.5 exposures ranged from 0.07 to 0.14 for different scenarios described in Methods
(Supplementary Figure 7). The low correlations suggest that these two methods of indirectly
estimating exposure do not agree. Possible reasons for the low correlation include an
inaccurate indirect estimate of PM exposure using the CO exposure, and the crude time-
location-activity budget data. Detailed records of daily time-location-activity budgets and
PM concentrations with moderate-high spatial and temporal resolution, as used in previous
work [30], may increase the accuracy of the estimate of exposure from this method but may
not be feasible in large studies. Validation of children’s exposure estimated from time-
location-activity budgets with directly measured exposure could not be done in our study
because there were very few usable cookhouse measurements during direct exposure
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measurement days, however this validation is necessary before relying on time-location-
activity methods to estimate exposure in future studies.

We indirectly estimated PM exposure using the cookhouse PM-CO relationship applied to
CO exposure for 1,266 children, which to our knowledge is the largest sample size of an
exposure assessment study in the developing world. To our knowledge, our study is also one
of the two to have directly measured children’s personal PM exposure in homes where
biomass fuels are used, and the first for children younger than 5 years of age. Our directly
measured mean PM2.5 exposure of 65 μg/m3 is many times the World Health Organization
(WHO) Ambient Air Quality Guidelines of 10 μg/m3, and is comparable to ambient
concentrations in low-SES neighborhoods in Accra, Ghana [31], and polluted cities in Asia
[32] and Delhi [33].

The lack of correlation between direct and indirect exposures and the systematic bias of the
latter in our validation study indicates that widespread use of CO as a proxy for PM
exposure requires additional research on the relationship between the two pollutants and
how this relationship varies in different pollution ranges, by fuel and environmental factors,
and by cooking behaviors. Similarly, there is a need for additional research to develop
models to better estimate PM or CO exposures on the basis of area concentrations by
understanding the role of household microenvironments and the specific sources of these
pollutants.

More than 30 years after the first set of biomass smoke exposure studies [34], and 10 years
after larger exposure studies of household air pollution levels and exposures [3, 11, 14, 16,
26–30, 35–36], the progress in our ability to accurately measure personal PM exposure in
the developing world seems limited, particularly for children. There is tremendous global
interest in clean cookstove technologies and projects to implement them [37]. Clearly past
studies that had quantified exposure to biomass smoke and its health effects were influential
in providing the evidence for these efforts. However, improving measurement technologies
and validating current modeling methods are crucial because valid and accurate exposure
measurements are needed to evaluate the effectiveness of these interventions in reducing
exposure and to conduct epidemiologic studies that quantify their health effects.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relationship between cookhouse PM2.5 and CO concentrations; sample sizes range between
204 and 213 because a few households were missing data on cooking location or fuel.
Note: Cooking location is shown for dry and rainy seasons because it varied by season in
some households.
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Figure 2.
Annual PM2.5 exposure in relation to annual CO exposure and type of fuel (n = 1,266).
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Figure 3.
Child wearing backpack fitted with PM2.5 and CO monitors.
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Figure 4.
Relationship between directly-measured PM2.5 exposure and exposure estimated indirectly
by applying cookhouse PM2.5-CO relationship to CO exposure over the same period. See
Supplementary Figure 8 for the relationship without the single child whose household fuel
was charcoal.
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Table 3

Annual usual child PM2.5 and CO exposures, estimated as described in Methods.

PM2.5 (μg/m3) CO (ppm)

Fuel Collected firewood Mean ± std 131 ± 23 0.7 ± 0.3

GM ± GSDa 129 ± 1.2 0.6 ± 1.4

n 561 561

Purchased firewood Mean ± std 157 ± 37 1.1 ± 0.5

GM ± GSDa 153 ± 1.2 1.0 ± 1.4

n 512 512

Charcoal Mean ± std 85 ± 22 1.5 ± 0.6

GM ± GSDa 83 ± 1.3 1.4 ± 1.4

n 166 166

Study site Banjul Mean ± std 127 ± 42 1.1 ± 0.5

GM ± GSDa 120 ± 1.4 1.0 ± 1.6

n 746 746

Basse Mean ± std 146 ± 27 0.7 ± 0.3

GM ± GSDa 144 ± 1.2 0.6 ± 1.4

n 520 520

a
GM=geometric mean; GSD=geometric standard deviation.
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