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Haploinsufficiency of ARID1B, a Member
of the SWI/SNF-A Chromatin-Remodeling Complex,
Is a Frequent Cause of Intellectual Disability

Juliane Hoyer,1,8 Arif B. Ekici,1,8 Sabine Endele,1,8 Bernt Popp,1 Christiane Zweier,1 Antje Wiesener,1

Eva Wohlleber,2 Andreas Dufke,3 Eva Rossier,3 Corinna Petsch,1 Markus Zweier,1 Ina Göhring,1

Alexander M. Zink,2 Gudrun Rappold,4 Evelin Schröck,5 Dagmar Wieczorek,6 Olaf Riess,3

Hartmut Engels,2 Anita Rauch,1,7 and André Reis1,*

Intellectual disability (ID) is a clinically and genetically heterogeneous common condition that remains etiologically unresolved in the

majority of cases. Although several hundred diseased genes have been identified in X-linked, autosomal-recessive, or syndromic types of

ID, the establishment of an etiological basis remains a difficult task in unspecific, sporadic cases. Just recently, de novo mutations in

SYNGAP1, STXBP1, MEF2C, and GRIN2B were reported as relatively common causes of ID in such individuals. On the basis of a patient

with severe ID and a 2.5 Mb microdeletion including ARID1B in chromosomal region 6q25, we performed mutational analysis in 887

unselected patients with unexplained ID. In this cohort, we found eight (0.9%) additional de novo nonsense or frameshift mutations

predicted to cause haploinsufficiency. Our findings indicate that haploinsufficiency of ARID1B, a member of the SWI/SNF-A

chromatin-remodeling complex, is a common cause of ID, and they add to the growing evidence that chromatin-remodeling defects

are an important contributor to neurodevelopmental disorders.
Intellectual disability (ID) is a severely incapacitating

condition that imposes a significant burden on affected

individuals and their families. The incidence is estimated

at 2%–3%, and severe forms (intelligence quotient

[IQ] < 50) account for about 0.5% of all newborns. It is

now accepted, at least in developed countries, that the

vast majority of cases are of genetic origin.1 Some 10% of

affected boys are estimated to have an X-linked condition,

and in about 80% of X-linked families, the underlying

genetic defect has now been uncovered through

systematic sequencing of all X-chromosomal coding

segments.1,2 Autosomal-recessive forms are amenable to

positional cloning in consanguineous families, and this

strategy has recently led to the identification of an impor-

tant number of genes harboring recessive mutations.3,4

Investigating sporadic cases from nonconsanguineous

couples is more difficult, but the discovery of several

genes involved has been enabled by either synaptic

candidate-gene approaches or the de novo occurrence of

copy-number variants (CNVs) or chromosomal transloca-

tions.5–8 Whole-exome sequencing in 10 and 20 trios

confirmed the power of this technique to identify ID-asso-

ciated genes, and several studies proposed that many

sporadic cases might arise from de novo mutations.9,10

Despite important advances in identifying the underlying

genes, some 50% of all cases and the vast majority of

unspecific patients remain undiagnosed.11 This is probably

a result of the enormous locus heterogeneity because most
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genes with autosomal-dominant mutations only account

for a few cases each.

The GermanMental Retardation Network (MRNET) aims

to systematically uncover the genetic basis of ID. Over

several years, we recruited from eight different medical-

genetics centers a large study group of affected individuals

mostly of German origin. The study was approved by all

institutional review boards of the participating institu-

tions, and written informed consent was obtained from

all participants or their legal guardians. We screened

1,986 of the individuals with array-based molecular karyo-

typing by using high-resolution platforms. In one male

infant, we identified a 2.5 Mb deletion containing five

genes in chromosomal region 6q25.3 (Figure 1) by using

the high-resolution Genome-Wide Human SNP Array 6.0

(Affymetrix, Santa Clara, California) and the Affymetrix

Genotyping Console Software (version 3.0.2). Segregation

analysis of both parents revealed a de novo origin of the

deletion. The familial relationship was confirmed. Because

the phenotype of our patient resembled that of the

patients with larger deletions,12 we hypothesized that

one of the five deleted genes would show haploinsuffi-

ciency and would represent a phenocritical gene respon-

sible for the ID.

Using Sanger sequencing, we screened all five genes from

this region, including TFB1M (MIM 607033), NOX3 (MIM

607105), and three brain-expressed genes, TIAM2 (MIM

604709), CLDN20, and ARID1B, for point mutations in
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Figure 1. Summary of the Nine De Novo CNVs
and Point Mutations Detected in ARID1B
(A) De novo deletion in patient 1 detected
with molecular karyotyping by the Affymetrix
SNP6.0 platform. The signal reduction of 1,568
markers indicating the deletion region is detected
only in patient 1 (red dots) and is absent in both
parents.
(B) 2.5 Mb deletion (red bar) in chromosomal
region 6q25, which includes five RefSeq genes,
among them ARID1B. Two gray scales are illus-
trating two different chromosomal bands as indi-
cated in the horizontal bars. Genomic positions
are in million bp.
(C) Genomic structure of ARID1B. Vertical green
bars illustrate the exons with their respective
number above. Narrow green bars illustrate the
50 and 30 UTRs. The three known ARID1B
domains are indicated by colored lines (blue,
LXXLL; brown, ARID; and magenta, BC-Box).
The duplication in patient 2 is indicated by
a blue bar encompassing exons 5 and 6. The local-
ization of mutations in patients 3–9 is indicated
by black lines leading to the mutation identifiers.
121 individuals with moderate to severe ID without

a known genetic cause; these individuals were from the

Erlangen subgroup of the German Intellectual Disability

Network (MRNET). Microarray analyses for CNVs >200 kb

had been previously performed in 82 (68%) of the indi-

viduals, and no obvious pathogenic CNV was found. For

sequencing, we used Applied Biosystems (ABI) BigDye

Terminator chemistry and purification with Agencourt

AMPure and CleanSEQ kits (Beckman-Coulter) on an ABI

3730 sequencer with Sequencing Analysis v.3.6.1 (Applied

Biosystems) and Sequencher 4.9 (Gene Codes Corpora-

tion) software packages. Although no mutation was de-

tected in TFB1M, NOX3, TIAM2, or CLDN20, we identified

a c.3919C>T (p.Gln1307*) nonsense mutation in exon 16

of ARID1B in patient 3 and an 11 bp deletion in exon 20 of

ARID1B (NM_020732.3) in patient 4; the latter mutation

(c.6463_6473del [p.Ser2155Leufs*33]) lead to a frameshift

and a premature termination codon after 33 residues. We

used original, nonamplified DNA samples for independent

PCR and bidirectional sequencing to confirm the muta-

tions. In addition, we reanalyzed the genomic region of

ARID1B for CNVs <200 kb in this subgroup, and we de-
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tected in another patient a 180 kb duplica-

tion encompassing exons 5 and 6 (hg18

chr6: 157,299,982–157,474,352). Using

the SALSA multiple ligation probe am-

plification (MLPA) reagents EK5 (MRC-

Holland, Amsterdam, The Netherlands) and

copy-number calculation with Seqpilot

software (JSI Medical Systems, Kippenheim,

Germany), we confirmed this mutation by

MLPA with customized probes for exons 4,

5, 6, 7, and 8 (Table S3, available online).

We studied a common SNP in exon 6 by

using cDNA generated from RNA isolated
from fresh blood leukocytes with the PAXgene Blood

RNA System (PreAnalytics) in conjunction with the Super-

script Reverse Transcriptase Kit (Invitrogen) and random

hexamers. This analysis revealed that the duplication arose

on the paternal allele and led to monoallelic expression of

the wild-type allele (Figure 2A). Analysis of parental DNA

confirmed the biological relationships and revealed that

all mutations arose de novo. Given that all mutations

occurred de novo and were predicted to cause loss of

function, we hypothesized that haploinsufficiency of

ARID1B would underlie the ID in patients with 6q25.3

microdeletion syndrome.

Given the relatively high frequency of mutations identi-

fied in the first subgroup, we extended themutation screen

(consisting of exons 2–20, including flanking intronic

regions) to another 766 ID-affected individuals from the

MRNET consortium (for a detailed description of the study

group, see supplemental data). As a result of its high GC

content, we amplified exon 1 with the Fast Amplification

Kit (QIAGEN) by using a set of nested PCR fragments

with different sequencing primers (Table S4). In this group,

we further identified four nonsense mutations and one



Figure 2. Transcript Analysis for the
ARID1B Mutations in Patients 2 and 7
(A) Partial sequence electropherograms of
ARID1B exon 6 obtained from gDNA and
cDNA from patient 2 with a de novo dupli-
cation of exons 5 and 6 and his healthy
parents. Patient 2 and his father are hetero-
zygous for rs3734441 (c.2172G>A on exon
6) at the gDNA level. Note that the amount
of guanine is doubled in the patient. At the
cDNA level, the father shows biallelic
expression, whereas monoallelic expres-
sion of adenine in patient 2 indicates
that the duplication leads to a null allele.
(B and C) Synonymous variant in the last
codon of exon 17 induces exon skipping
of exon 17 in patient 7. Using primers
located in exons 16 and 18 (c16f and
c18r, respectively), indicated by arrows
for RT-PCR on RNA from peripheral blood
leukocytes, resulted in an additional aber-
rant product of 148 bp in the patient
(lane 3), whereas both parents (lanes 1
and 2) and controls (lanes 4–6) showed
only the expected 245 bp fragment (lane
7, genomic DNA control; lane 8, no

template control; M, size standard). Exon skipping in the patient was verified by the sequencing of amplified products and is predicted
to result in a frameshift and premature stop codon after 76 amino acids (p.Arg1338Argfs*76). In the patient’s lane, an additional third
band with a molecular size of ~310 bp represents a heteroduplex.
synonymous variant in the last base pair of exon 17; these

mutations are predicted to affect the consensus splice

donor site (Table 1 and Table S1). The skipping of exon

17 was confirmed by RT-PCR from RNA extracted from

the patients’ blood (Figures 2B and 2C) and was predicted

to cause a frameshift resulting in a premature translational

termination (p.Arg1338Argfs*76). All mutations were

shown to have occurred de novo, and the parental rela-

tionships were confirmed by a forensic set of microsatel-

lites (Promega) in all instances. Thesemutations confirmed

the initial hypothesis of the causative role of ARID1B in ID

and increased the total number of bona fide mutations to

eight (0.9%) in the entire cohort of 887 individuals. In

addition, we observed 101 unique variants not annotated

in dbSNP (build 132) (Table S1). We investigated segrega-

tion in 18 out of 23 cases with missense variants—when

parental material was available—and could show segrega-

tion from a healthy parent (10 maternal and 8 paternal)

in all instances. The remaining five variants are not located

in any known domain and were not suspicious when

investigated with various prediction programs (Table S2),

suggesting that these 23 missense variants are benign.

However, we cannot exclude somemilder effect on protein

function. Our findings thus indicate that ARID1B-haploin-

sufficiency-causing mutations, but not missense variants,

are a common cause of ID. This association is further sup-

ported by recent reports on microaberrations affecting

ARID1B. One case with a frameshift intragenic 281 kb dele-

tion affecting the ARID domain was reported in a patient

with autism,13 a complex chromosomal translocation

leading to a fusion gene of ARID1B and MRPP3 was found

in an individual with ID,14 and one translocation, four
The Ame
larger deletions (including ARID1B), and 3 intragenic

deletions were reported by Halgren et al.15 in patients

with ID.

The phenotype associated with nonsense and frameshift

mutations in ARID1B is shown in Figure 3 and summarized

in Table 1. All individuals presented with moderate to

severe psychomotor retardation, and most showed

evidence of muscular hypotonia. In many of the patients,

expressive speechwas reported to bemore severely affected

than receptive function. Although no distinct recognizable

facial gestalt could be discerned, consistent findings in

most of the patients were an abnormal head shape and

low-set, posteriorly rotated, and abnormally shaped ears.

Even though many other minor anomalies such as down-

slanting palpebral fissures, a bulbous nasal tip, a thin upper

lip, minor teeth anomalies, and brachydactyly or single

palmar creases were observed frequently, gross malforma-

tions such as congenital heart defects, structural brain

anomalies, or cleft palate were only rarely observed. The

majority of patients had short stature of postnatal onset

or body height within the lower normal range.With regard

to these aspects, the phenotype of patients with point

mutations overlaps with that observed in patients with

large genomic deletions on chromosome 6q or intragenic

deletions within ARID1B12,15 (such as in patient 1), further

confirming that haploinsufficiency of ARID1B is indeed

responsible for most of the symptoms. However, either

autism spectrum disorder or autistic traits were reported

in five patients with larger genomic or intragenic dele-

tions13,15 but were observed in only one of our patients.

Three of our five patients who underwent a cerebral

magnetic resonance imaging (MRI) scan had minor
rican Journal of Human Genetics 90, 565–572, March 9, 2012 567



Table 1. Clinical Data from Patients with ARID1B Deletions or Mutations

Nagamani
et al.12 (N ¼ 4)

Halgren
et al.15 (N ¼ 8) Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9

ARID1B defect deletion of
several genes,
including
ARID1B

one translocation,
four larger
deletions
(including
ARID1B),
and three
intragenic
deletions

deletion of five
genes (chr6:
155,364,154–
157,681,073*)

duplication
of exons 5
and 6 (chr6:
157,299,982–
157,474,352*)

c.3919C>T
(p.Gln1307*)

c.6463_
6473del
(p.Ser2155
Leufs*33)

c.3304C>T
(p.Arg1102*)

c.3323_
3324delAA
(p.Lys1108
Argfs*9)

c.4110G>A
(p.Arg1338
Argfs*76)

c.4038T>A
(p.Tyr1346*)

c.1114 dupC
(p.Arg372
Profs*163)

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo

Sex 2 F, 2 M 6 F, 2 M F F M M F F F M M

Age at last
follow-up
examination

10–33 months 3–46 years 3 years,
3 months

4 years,
11 months

3 years,
5 months

7 years,
3 months

12 years,
8 months

4 years 6 years,
3 months

17 years 20 years

Birth parameters
(weight, length,
OFC)

3 % 3rd ct
2 % 5th ct
3 < 3rd ct

3/7 % 10th ct
5/6 % 10th ct
5 % 10th ct

50th ct
3rd�10th ct
50th�75th ct

25th ct
50th ct
25th ct

50th ct
25th ct
25th ct

50th ct
50th ct
50th ct

25th ct
25th ct
50th ct

3rd�10th ct
50th ct
3rd�10th ct

50th�75th ct
>97th ct
75th ct

10th�50th ct
50th ct
10th�50th ct

10th ct
50th ct
50th ct

Length and/or
height and OFC

2/4 < 3rd ct
4/4 < 3rd ct

7/7 % 5th ct
1/5 < 3rd ct

10th ct
10th�25th ct

3rd�10th ct
<3rd ct

3rd�10th ct
50th ct

<3rd ct
25th�50th ct

<3rd ct
25th –50th ct

10th�25th ct
75th ct

25th�50th ct
75th ct

50th ct
>97th ct

<3rd ct
<3rd ct

Developmental
delay

4/4 8/8 severe moderate severe moderate
IQ ¼ 50
(tested)

severe mild to
moderate

moderate
to severe

moderate moderate

Speech 1/4 spoke
two words
at 33 months

8/8 were
severely
impaired
or absent

– first words at
3–4 years and
sentences at
4 years,
11 months

single
words

– first words
at >5 years
and two-word
sentences
at 12 years

at age of
24 months,
corresponding
to age of
17 months

single words short sentences
and sufficient
working
vocabulary

delayed

Age of walking 1/4 at
23 months

1/1 at
30 months

28 months 24 months 20 months þ 27 months 24 months 24 months 18 months 20 months

Muscular
hypotonia

2/4 7/7 þ þ þ þ þ þ þ – –

MRI scan
anomaly

2/3
(2 with ACC)

4/5 with
ACC
or HCC

retrocerebellar
cyst

delayed
myelination

NA – – NA asymmetric
calvaria

NA –

Seizures 1/4 3/7 – – – – þ** – þ** þ –

Hearing loss 4/4 ? – – – – þ (unilateral) – – – –

Heart
malformation

1/4 (ASD) ? – þ – þ (ASD) – – – – –

5
6
8
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Table 1. Continued

Nagamani
et al.12 (N ¼ 4)

Halgren
et al.15 (N ¼ 8) Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient Patient 7 Patient 8 Patient 9

Cleft palate 0/4 with cleft
palate and
2/4 with palatal
anomalies

? – – and high
palate

– þ þ – – and high
palate

– –

Abnormal
shape of head

3/4 with
plagiocephaly

5/5 with low
hairline

plagiocephaly
and frontal
bossing

plagiocephaly
and frontal
bossing

prominent
forehead

– brachycephaly
and low
forehead

frontal
bossing

low forehead – brachycephaly

Low-set and/or
posteriorly
rotated ears

4/4 2/2 þ þ þ – þ þ þ þ þ

Abnormally
shaped ears

2/4 ? þ þ þ þ þ – þ – þ

Downslanting
palpebral
fissures

2/4 ? þ – þ þ þ – – – –

Strabism þ 2 þ þ – þ – – – – –

Bulbous nasal tip 3/3 3/3 þ þ – þ þ/– þ/� þ – –

Thin upper lip 2/4 3/4 – þ þ þ þ þ – – þ

Teeth anomalies ? ? – small and
pointed

pointed small first teeth small
and widely
spaced

– small malocclusion
and delayed
second dentition

NA

Retro/
micrognathia

2/3 ? þ þ – – – þ - þ –

Hand and feet
anomalies

1/4 with
clinodactyly
and 0/4 with
single palmar
crease

? – single palmar
creases and
brachydactyly V

brachydactyly single palmar
creases, sandal
gaps, and
hypoplastic
nails

sandal gaps,
clinodactyly V,
and hypoplastic
toe nails V

long toe – – single palmar
creases,
clinodactyly V,
deep set thumbs,
and Hallux
valgus

Other
abnormalities

2/4 with retinal
anomalies;
1/4 with
genitourinary
anomaly

5/7 with AuSD
or autistic traits,
4 with myopia/
hypermetropia,
1 with cataracts,
4 with
hypertrichosis,
and 5 with
feeding
problems

clitoris
hypertrophy
and long
philtrum

ataxic gait,
sparse hair,
sacral dimple,
and three
hemangiomas

allergy,
recurrent
infections,
autistic
features,
and
aggression

cryptorchism
and myopia

allergy,
myopia,
megaureter,
wide mouth,
dry hair, and
hypothyreosis

hypertric osis
and myo ia

hypertrichosis myopia, skin
hypopigmentation,
and hypertelorism

unilateral
myopia, blocked
nasolacrimal duct,
dermoid cyst,
atlanto/occipital
abnormalities,
discreet rhizomelic
shortening of arms
and legs, scoliosis,
and cryptorchism

The following abbreviations are used: N, number of patients; F, female; M, male; ct, percentile; OFC, occipital-frontal circumference; IQ, intelligence quotient MRI, magnetic resonance imaging;þ, present; –, absent; NA, not
analyzed; ACC, agenesis of corpus callosum; HCC, hypoplastic corpus callosum; ASD, atrial septum defect; AuSD, autism spectrum disorder; post., poster rly; *, hg18; and **, occurrence of singular seizure.
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Figure 3. Facial Appearance of Patients with Deletions or Mutations in ARID1B
Note consistently low-set, posteriorly rotated, and abnormally shaped ears and other frequent dysmorphisms such as frontal bossing,
downslanting palpebral fissures, a bulbous nasal tip, and a thin upper lip.
(A and B) Patient 1 at age 3 years, 3 months.
(C and D) Patient 2 at age 4 years, 11 months.
(E and F) Patient 3 at age 3 years, 5 months.
(G) Patient 4 at age 5 months.
(H and I) Patient 4 at age 7 years, 3 months.
(J) Patient 5 at age 4 years, 11 months.
(K and L) Patient 5 at age 12 years, 8 months.
(M and N) Patient 6 at age 6 years, 3 months.
(O and P) Patient 7 at age 3 years, 10 months.
(Q and R) Patient 8 at age 17 years.
unspecific anomalies such as retrocerebellar cysts, delayed

myelination, and asymmetric calvaria, but none showed

a hypoplastic or aplastic corpus callosum, which was

considered a hallmark of the ARID1B deficiency by Halgren

et al.15 (it was only reported in patients with larger dele-

tions there). In addition, hearing loss was alsomore consis-

tently observed in patients with larger deletions12 than in

our patients with point mutations in ARID1B. These two

aspects might therefore be more related to the contribu-

tion of additional genes affected by chromosomal aberra-

tions than to haploinsufficiency of ARID1B itself.

ARID1B is highly expressed in the brain and in embry-

onic stem cells and encodes AT-rich interactive domain-

containing protein 1B, also known as BAF250b, the largest

subunit of the mammalian SWI/SNF-A chromatin-remod-

eling complex. This complex facilitates DNA access with
570 The American Journal of Human Genetics 90, 565–572, March 9
the use of transcription factors and the transcription

machinery.16 BAF250b has a DNA-binding domain known

as ARID (AT-rich interaction domain) and is thought to

target the complex to specific genes.17 BAF250b and its

ortholog BAF250a (encoded by ARID1A [MIM 603024])

associate with E2F transcription factors and play important

roles in cell-cycle control.18 Recently, it has been shown

that BAF250b is also part of an E3-ubiquitin-ligase

complex targeting histone H2B at lysine 120 for monoubi-

quitination in vitro.16 Histone H2B ubiquitination has

been shown to be required for transcriptional activation

in vitro19 and associates with transcriptionally active

genes in vivo.20,21 BAF250b interacts with Elongin B/C

through its B/C box and with Cullin 2 (CUL2 [MIM

603135]) through both the ARID1B and B/C boxes and

assembles the complex in a manner similar to that of the
, 2012



well-characterized Von Hippel-Lindau (VHL) complex,

which targets the hypoxia inducible factor HIF1a (MIM

603348).16

We conclude that ARID1B haploinsufficient mutations

are a relatively frequent cause of moderate to severe ID,

and our findings add to the growing evidence of a role of

altered chromatin remodeling in the pathogenesis of

ID.4,22–24
Supplemental Data

Supplemental Data include a description of the study group, four

tables, and supplementary references and can be found with this

article online at http://www.cell.com/AJHG.
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