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Determining the Gaussian Curvature Modulus of Lipid Membranes
in Simulations
Mingyang Hu, John J. Briguglio, and Markus Deserno*
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
ABSTRACT The Gaussian curvature modulus k of lipid bilayers likely contributes more than 100 kcal/mol to every cellular
fission or fusion event. This huge impact on membrane remodeling energetics might be a factor that codetermines the complex
lipid composition of biomembranes through tuning of k. Yet, its value has been measured only for a handful of simple lipids, and
no simulation has so far determined it better than a factor of two, rendering a systematic investigation of such enticing specu-
lations impossible. Here we propose a highly accurate method to determine k in computer simulations. It relies on the interplay
between curvature stress and edge tension of partially curved axisymmetric membrane disks and requires determining their
closing probability. For a simplified lipid model we obtain k and its relation to the normal bending modulus k for membranes
differing both in stiffness and spontaneous lipid curvature. The elastic ratio k=k can be determined with a few percent statistical
accuracy. Its value agrees with the scarce experimental data, and its change with spontaneous lipid curvature is compatible with
theoretical expectations, thereby granting additional information on monolayer properties. We also show that an alternative
determination of these elastic parameters based on moments of the lateral stress profile gives markedly different and unphysical
values.
INTRODUCTION
Lipid bilayer membranes are quasi-two-dimensional fluid
sheets that, in aqueous solution, assemble spontaneously
from their lipid constituents. Because thermal energy can
hardly stretch but easily bend them, their important soft
modes are curvature deformations. Hence, on length scales
barely exceeding their thickness (~4 nm), such membranes
follow a quadratic curvature-elastic continuum theory
(1–3). Within the well-established mathematical framework
developed by Helfrich (2), the energy of a membrane patch
P, amended by a contribution due to its boundary vP (4), is
expressible as

E½P� ¼
Z
P

dA

�
1

2
kðK � K0Þ2þkKG

�
þ#

vP

ds g: (1)

Here, K ¼ c1 þ c2 is the total curvature (the sum of the two
local principal curvatures c1 and c2) and KG ¼ c1c2 is the
Gaussian curvature (5,6). We also have four material param-
eters: The bending modulus k, the Gaussian curvature
modulus k, the spontaneous curvature K0, and the edge
tension g (the excess free energy of an open edge). The
bending modulus k can be experimentally obtained by
flicker spectroscopy (7–12), the low-tension stress-strain
relation (13), x-ray scattering (14–17), or neutron spin-
echo measurements (18–20) (albeit with some caveats
(21)). An alternative method not based on fluctuations relies
on pulling thin membrane tethers (22–24). In simulations,
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both monitoring undulations (25–34) and measuring tensile
forces in tethers (35,36) have been successfully employed.
The edge tension can be extracted—both in experiments
(37–40) as well as in simulations (28–32)—mainly by
studying pores. In simulations, one can even stabilize
a straight open edge through periodic boundary conditions
(41–44). Finally, if the two bilayer leaflets are identical,
K0 ¼ 0 by symmetry, and we will henceforth also restrict
it to this frequent special case.

We are left with the Gaussian curvature modulus k. It is so
difficult to measure (Table 1 lists the few available results
from the literature) due to the famous Gauss-Bonnet
theorem (5,6), which states that the surface integral over
the Gaussian curvature KG depends only on the topology
and the boundary of the membrane patch P in question,
meaning one needs to change either one to get an experi-
mental signal that is sensitive to k. This statement can be
viewed as both a blessing and a curse. A blessing, because
if neither topology nor boundary change, the value of k is
strictly irrelevant: the term kKG can be eliminated from
Eq. 1 right from the start. A curse, because in the remaining
situations in which topology or boundary changes matter,
we have no simpler way to obtain k other than precisely
via such situations, which tend to involve hard-to-control
processes—both in experiments and in simulations.

Still, a number of important cases fall into this latter
category. Most obvious are fusion and fission events, which
are ubiquitous in cell biology: ER remodeling, Golgi
biogenesis, vesicular transport, endocytosis, cell division,
pathogene infection, and countless other processes evidently
involve topology changes in membranes (45). During
fusion, the topological change alone requires the energy
to increase from the initial to the final state by
doi: 10.1016/j.bpj.2012.02.013
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TABLE 1 Summary of experimental or simulational results

pertaining to the Gaussian curvature modulus

System �k=k Layer Ref.

Egg lecithin 0.83 5 0.12 Bi* (88)

DOPE-Mey 0.83 5 0.08 Mono (74)

DOPE-Me 0.90 5 0.09 Mono (78)

DOPE 0.92 5 0.11 Mono (46)

DOPC 0.84 5 0.17 Mono (46)

DOPC/Chol (1:1) 0.76 5 0.10 Mono (46)

GMO/DOPC/DOPEz 0.75 5 0.08 Mono (89)

DOPC:SM:Cholx 0.9 5 0.38 Bi (53)

DOPC:SM:Chol{ 0.31.0.63 Bi (54)

CG lipid model (90) 0.54k Mono (91)

CG lipid model (79) 0.03k Mono (92)

Note that the ‘‘Layer’’ column indicates whether the elastic ratio k=k refers

to monolayers or bilayers.

*Measured value of k is an apparent value.
yAbbreviations: DOPE-Me, monomethylated DOPE; DOPE, dioleoyl-sn-

glycero-3-phosphatidylethanolamine; DOPC, dioleoyl-sn-glycero-3-phos-

phatidylcholine; Chol, cholesterol; GMO, glycerolmonooleate; SM,

sphingomyelin.
zMixing ratio: 58:38:4.
xThe authors studied various mixing ratios. The value of k=k is not quoted in

Baumgart et al. (53), but follows if one assumes that the elastic ratio is the

same in the liquid-ordered and liquid-disordered phase.
{Mixing ratio: 30:50:20.
kThe error is difficult to estimate and probably dominated by systematics

rather than statistics.
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�4pk ~ 200–250 kBT (where kBT ¼ 0.6 kcal/mol is the
thermal energy); here we have used k z 20 kBT and
assumed k=k ~ �0.9 (from Table 1). The Gaussian curva-
ture modulus also matters in continuum theories of fission
and fusion processes, because it affects the energy of
fusion intermediates (such as catenoidal fusion pores or
stalks), and thus the height of barriers that have to be
crossed (46). In living cells, such events are of course
coupled to and driven by active processes (such as ATP
hydrolysis) (45), but equilibrium thermodynamics remains
useful by predicting the free energy differences or barriers
cells need to cope with. Because the energetics depends
on k, which can be affected not only by the lipid compo-
sition but also by adding suitable proteins (47), it is
tempting to speculate that tuning its value might conceiv-
ably be one factor influencing how cells choose the
composition of their biomembranes. However, without
efficient ways to measure k in experiment or predict it
from simulation, this hypothesis remains untestable.
Finally, the case of boundary changes also includes the
contact between phase-segregated lipid domains. Not
only can the line tension between domains induce budding
(48,49), but the difference in Gaussian curvature moduli
between the two phases affects the equilibrium shape
(50–54) through the boundary term in the Gauss-Bonnet
theorem (5,6): The associated boundary conditions change
the line tension and exert torques around the phase
boundary. This adds a further aspect to the notion of
membrane rafts (55–57).
Biophysical Journal 102(6) 1403–1410
Here we propose a method to accurately determine the
Gaussian curvature modulus k in a simulation. The key
idea is to quantify the probability with which a partially
bent circular membrane patch closes up to form
a vesicle—a process first studied by Helfrich (4), but for
a different reason: He wanted to predict the size of vesicles
formed by ultrasonication and assumed a value for the
Gaussian modulus. We turn the argument around and
measure the critical system size, hence we can infer k if
all other material parameters are known. As it turns out,
the necessary simulations are easy to perform, computation-
ally not too expensive, result in a very clean signal, and thus
permit the determination of k with high accuracy.

We note that an alternative strategy that has been used in
the past to gain information about curvature moduli is to
compare differently curved surfaces (planes, cylinders,
spheres), and extract the moduli (or how they change
upon modifying the surface) by expanding the free energy
in terms of surface curvature. This path has been followed
in theory (58–62), experiment (63), and simulation (62)
for a number of different systems, but it has so far not
been successfully applied to lipid (mono- or bi-) layers.
THEORY

Let us outline the theoretical framework. Consider a flat
circular bilayer patch of area A. It has no bending energy,
but an edge energy proportional to its circumference. If
this patch assumes the shape of a spherical cap of mean
curvature c, the line energy decreases, but now bending
energy arises. From Eq. 1 and simple geometry one finds
the excess energy DE of such a curved patch (4,64),

DEðx; xÞ
4pð2kþ kÞ ¼ D~Eðx; xÞ ¼ x þ x

h ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
� 1

i
; (2)

where we scaled DE by the bending energy of a complete
spherical vesicle and defined

x ¼ ðRcÞ2; x ¼ gR

2kþ k
; and R ¼

ffiffiffiffiffiffi
A

4p

r
: (3)

The reaction coordinate x varies from x ¼ 0 (flat patch) to
x ¼ 1 (closed vesicle of radius R). The functional form of
this excess energy depends on the parameter x (see inset
in Fig. 1): At x ¼ 1, the closed vesicle has the same energy
as the flat disk, and for smaller x the flat disk is stable. For
1 < x < 2, the closed vesicle is more stable, but an initially
flat disk must surmount an energy barrier located at x*¼ 1 –
(x/2)2 of height D~E

� ¼ (1 – x/2)2 to close up. For x > 2, no
barrier is left and a flat disk is always unstable against vesic-
ulation. The transition energetics is thus fully determined by
the parameter x, which itself depends on A, g, k, and k. Of
these, all except k can be predetermined by simple means.
Hence, if we choose a suitable area A and measure the func-
tional form of the barrier, we can deduce k.



FIGURE 1 Closing probability of a precurved bilayer patch as a function

of x (the parameters correspond to system 1). Averages were extracted from

500 independent simulations, with error bars following from Bernoulli

statistics. (Solid line) Fit to Eq. 4, which yields x ¼ 1.503 5 0.003, with

mean and error determined by Monte Carlo resampling of the raw data.

(Inset) Shape of the energy barrier D~E(x,x) from Eq. 2 as a function of x

for various values of x. Two simulation snapshots for x ¼ 0.28 and x ¼
0.56 are also shown.
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We note that even though we will encounter fairly strong
curvatures (see the Supporting Material for a more detailed
discussion), no complications due to 1), spontaneous bilayer
curvature or 2), area difference elasticity will arise.
Although it is true that the two monolayers individually
have a spontaneous curvature and their respective neutral
surfaces do not coincide with the bilayer midplane, this
does not induce an overall spontaneous curvature but instead
‘‘renormalizes’’ the bilayer Gaussian curvature modulus in
a well-known way (see Eq. 5 below). And because lipids
can move between leaflets across the open edge, no area
difference elasticity can build up.
SIMULATION

We now apply this strategy to measure the Gaussian curva-
ture modulus for a specific example system, namely, the
coarse-grained (CG) membrane model due to Cooke et al.
(31,32). We choose the CG level for two reasons: First,
elastic moduli are macroscopic membrane observables,
and we wish to see how universal their properties are (e.g.,
the elastic ratio k=k and its dependence on lipid curvature).
And second, a CG model permits us to study a wide range
of specific examples with excellent statistics, which we
will use to argue that the underlying analysis is sound.
However, because our method 1), proves so efficient and
2), makes no use of any specific property of the Cooke model
(for instance the absence of solvent), we are confident that it
will work well for other membrane models at a higher reso-
lution, at a larger but still manageable computational effort.

Briefly, in the Cooke model a lipid is represented by three
linearly connected beads, one for the head and two for the
tail. Lipids aggregate due to an effective tail-attraction,
whose range wc and depth ε can be varied (31,32). We
choose kBT/ε ¼ 1.1 and explore a range of values for wc

to scan the bending rigidity k. We also change the size of
the head bead, thus modifying the spontaneous lipid curva-
ture. Despite its simplicity, this model has been successfully
applied to a variety of biophysical and biological problems,
such as lipid sorting in curvature gradients (65), insertion
mechanisms for antimicrobial peptides (66), lipid-composi-
tion-driven protein interactions (67), and protein-driven
membrane vesiculation (68). Simulations were done with
the ESPRESSO package (69).

In the simulation the function D~E(x,x) arises as a free
energy barrier, but it proves unnecessary to invoke numer-
ical free energy calculation techniques to measure it: The
system closely follows the path assumed by the theory
(i.e., it stays part of a spherical cap), so we can map
D~E(x,x) by creating intermediate states—precurved
membrane patches at different values of x—and follow their
evolution. For this simple dynamics to hold, the bilayer
patch must be small enough so that undulations and their
contribution to the free energy barrier D~E(x*,x) are negli-
gible. From Eq. 3 and x ~ O(1) we see that this equivalently
limits the length ð2kþ kÞ=g (see also the Supporting Mate-
rial). This might get problematic for bilayers with a very low
edge tension (due to, say, a high lipid curvature), but for the
cases studied by us the assumption holds. Note also that we
do not need to worry about any complications due to hydro-
dynamics, because the Cooke model is solvent-free.

Following this closing-up process many times, we sample
the probability P(x) of such precurved caps closing up,
which is a monotonically increasing function of x that
changes most rapidly in the neighborhood of x ¼ x*. We
can link this to the underlying theory by asserting that the
reaction coordinate x follows a diffusion process in the
potential from Eq. 2. The closing-up probability then coin-
cides with the so-called splitting probability, which
measures what fraction of the trajectories starting at a given
initial value of x will end up at x ¼ 1. For this an analytical
expression exists (70),

P
x;~D
ðxÞ ¼

Zx

0

dy eD
~Eðy;xÞ=~D

Z1

0

dy eD
~Eðy;xÞ=~D

; (4)

where ~D is an effective diffusion constant. Due to the simple
form of D~E the integrals can actually be done analytically,
giving us a lengthy but closed expression for P

x;~D
ðxÞ (see

the Supporting Material). This can be used to fit the
measured P(x), using x and ~D as fitting parameters. Fig. 1
illustrates this for one particular example. Notice that the
excellent fit confirms our supposition that simulation and
Biophysical Journal 102(6) 1403–1410
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theory follow the same reaction coordinate, i.e., that our
analysis is applicable.
RESULTS AND DISCUSSION

In our simulations we systematically varied system size,
bending rigidity, and spontaneous lipid curvature; all results
are collected in Table 2. Let us now discuss what we learn
from them. To begin with, note that the elastic ratio k=k
hovers in the range �0.95 5 0.1, in accord with the most
accurate experimental values from Table 1. However,
many of these data refer to monolayers, and their interpreta-
tion requires more care: whereas k ¼ 2km, the ‘‘naı̈ve’’
Gaussian modulus 2km for a bilayer is shifted because the
two monolayers generally have 1), a spontaneous (lipid)
curvature K0m and 2), a surface of inextension a distance
z0 away from the bilayer midplane. One then finds (71–75)

k ¼ 2ðkm � 2z0K0mkmÞ: (5)

A more thorough comparison thus requires extra informa-
tion. Fortunately, the accuracy of our results is high enough
to probe deeper, but before that, let us point out two more
immediate observations.

First, in Systems 1–3 and 4–6 we study different system
sizes (at two bending rigidities, tuned by changing the tail
attraction parameter wc). In each case, jk=kj appears to
very slightly decrease for bigger systems. It is conceivable
that this originates from higher order (quartic) curvature
corrections, because particularly for the small systems the
curvatures are substantial; and yet, within the error bars
the effect is hardly significant. Hence, we will ignore this
in the following and average over the three sizes.

Second, Systems 1–3, 4–6, and 7 probe three different
bending elasticities for the same lipid shape (same head-
group size b ¼ 0.95s, but different wc; see Table 2). In
TABLE 2 List of all simulated systems

No. Nlipids A[s2] Nx/Nsim b [s] wc[s] g[kBT/s]

1 900 541.7 8j500 0.95 1.6 3.043 5 0.060

2 1000 601.9 8j500 0.95 1.6 3.043 5 0.060

3 1100 662.0 11j500 0.95 1.6 3.043 5 0.060

4 900 511.2 8j500 0.95 1.7 4.558 5 0.061

5 1000 568.2 8j500 0.95 1.7 4.558 5 0.061

6 1100 624.7 8j500 0.95 1.7 4.558 5 0.061

7 900 559.6 8j250 0.95 1.55 2.478 5 0.054

8 720 416.8 8j250 0.92 1.6 3.767 5 0.054

9 740 437.0 8j250 0.935 1.6 3.495 5 0.058

10 1050 644.4 8j200 0.965 1.6 2.676 5 0.057

11 1430 895.7 8j250 0.98 1.6 2.208 5 0.045

12 1660 1070.3 8j200 1.00 1.6 1.657 5 0.048

Nlipids is the number of lipids; A is the area of patch (in units of s2, where sz 1

number of different x values investigated for each system; Nsim is the number of f

wc is the attractive range of the interaction potential in the Cooke model; g is the

by fitting the closing-up probabilities via Eq. 4; k is the bending modulus, de

modulus, inferred from x, k, g, and R ¼ ffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
.
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this case there is a clear trend that stiffer membranes have
a larger value for k=k (i.e., closer to 0). One might at first
think that increasing the tail attraction increases the lipid
spontaneous curvature K0m, but according to Eq. 5 this
effect should result in a change in the opposite direction.
Instead, we propose the following tentative explanation:
Increasing wc reduces the area per lipid and stiffens the
membrane. This not only reduces the area compressibility,
but also the degree to which it can be compressed any
further. Recall now that in simple thin plate continuum
theory one can derive k=k ¼ n – 1 (76), where n is the Pois-
son ratio of the material (which can vary in the range �1%
n % 1/2). The largest value n ¼ 1/2 corresponds to the
incompressible limit. Hence, a less compressible membrane
has a larger Poisson ratio and thus a larger value for k=k—in
line with our observation. The same physics might be
responsible for the fact that measurements on the mixed
systems DOPC/Chol and GMO/DOPC/DOPE (see Table
1) lead to elastic ratios bigger than those of the pure
systems. We hasten to add, though, that this argument is
difficult to make more quantitative, because membranes
are not really homogeneous and isotropic continuum elas-
tics (they have important nonisotropic internal structure
(77)), so it seems best to leave these observations at
a cautious semiquantitative level.

Third, in Systems 1–3, 8, 9, 10, 11, and 12 we vary the
headgroup size of the lipid, b/s ˛ {0.92, 0.935, 0.95,
0.965, 0.98, 1.0}, and thereby the spontaneous lipid curva-
ture K0m. Over this range, k changes by merely 4%, while
at the same time the elastic ratio changes by ~17%, as shown
in Fig. 2. A straight line fit gives k=k ¼ (0.69 5 1.49) –
(1.71 5 1.56)b/s (with strongly anticorrelated errors deter-
mined from Monte Carlo resampling the data). A simple
geometric model suggests that the spontaneous lipid curva-
ture can be written as K0m ¼ a/Rx a(b/bt – 1)/2s, where bt
is the size of the tail bead (see inset in Fig. 2). The prefactor
x k[kBT] �k[ kBT] �k=k

1.503 5 0.003 12.44 5 0.26 11.59 5 0.57 0.93 5 0.03

1.568 5 0.003 12.44 5 0.26 11.46 5 0.57 0.92 5 0.03

1.631 5 0.003 12.44 5 0.26 11.34 5 0.58 0.91 5 0.03

1.439 5 0.002 18.36 5 0.29 16.51 5 0.65 0.90 5 0.02

1.477 5 0.002 18.36 5 0.29 15.97 5 0.65 0.87 5 0.02

1.534 5 0.002 18.36 5 0.29 15.77 5 0.65 0.86 5 0.02

1.541 5 0.004 10.10 5 0.32 9.46 5 0.68 0.94 5 0.04

1.703 5 0.004 11.72 5 0.23 10.71 5 0.50 0.91 5 0.03

1.559 5 0.004 11.82 5 0.27 10.42 5 0.59 0.88 5 0.03

1.469 5 0.005 12.43 5 0.36 11.81 5 0.78 0.95 5 0.04

1.529 5 0.005 11.87 5 0.40 11.54 5 0.83 0.97 5 0.04

1.407 5 0.006 11.41 5 0.37 11.95 5 0.80 1.05 5 0.04

nm is the diameter of a lipid tail bead, error is much less than 1%); Nx is the

olding simulations for each value of x; b is the diameter of a lipid head bead;

edge tension; x is the parameter in the energy barrier from Eq. 2, determined

termined through simulating tethers (35); and k is the Gaussian curvature



FIGURE 2 Elastic ratio as a function of head bead size b for wc ¼ 1.6s

(Systems 1–3, 8, 9, 10, 11, and 12 from Table 2). The straight line is a fit to

the data points. (Inset) Definitions of the distance of inextension, z0; the

bead sizes b and bt; and the geometric curvature radius R0 x 2s/(b/bt � 1).

The lateral stress profile S0 (z) of the Cooke model is also indicated above

the sketched model lipid.
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a would have the value 2 if only geometry mattered, but
because this neglects the entropy of lipid tail-bending fluc-
tuations, its actual value should be smaller. We will assume
that 1 % a % 2 constitutes a meaningful range, but the
precise value of a will not matter in what follows. Inserting
this geometric model into Eq. 5 leads to

k

k
¼

�
km

km
þ az0

s

�
�
�
az0
bt

�
b

s
; (6)

supporting the linear relation observed in Fig. 2. From the
corresponding fit, we can further determine az0 and
km=km, provided we are willing to make two more assump-
tions: 1), b/bt predominantly affects K0m and not the mono-
layer elastic ratio km=km; and 2), the effective tail bead size
in the Cooke model is bt ¼ 0.95s, meaning that the sponta-
neous curvature of the standard lipid with b ¼ 0.95s is zero.
The former is supported by the observation that over the
wide temperature range 55..90�C, the value of km=km for
DOPE-Me appears to be roughly constant (78), whereas
the spontaneous curvature K0m changes by ~13% (74,78).
The latter is plausible because the head bead size b has
deliberately been taken to be 5% smaller than the nominal
tail bead size s to ensure that, after tail compression due
to cohesion, the lipids are effectively straight (recall that
heads only repel but tails attract) (31,32). If we assume
both items, we can deduce from Eq. 6 and the fit that
az0 z (1.63 5 1.48)s and km=km z �0.93 5 0.03. The
value for az0 unfortunately carries a large error bar, because
the slope of the line in Fig. 2 cannot be determined more
precisely, despite the fact that every single elastic ratio is
known at unprecedented accuracy. Because also a can
only be estimated within a factor of 2, this method is not
a practical way to find z0.
In contrast, the statistical error for km=km is remarkably
small (note that the anticorrelated errors in slope and inter-
cept cancel); however, the result still depends on our
assumption that b ¼ 0.95s is the head bead size at which
the spontaneous lipid curvature in the Cooke model vanishes
(where km=km ¼ k=k, according to Eq. 6). If we more
conservatively estimate that this special size lies somewhere
between 0.92s and 0.98s, we find the more realistic accu-
racy km=km z �0.93 5 0.05. These monolayer values
are compatible with the experimental monolayer values
measured for DOPE-ME, DOPE, and DOPC (see Table 1).

Real membranes and most simulation models are not infi-
nitely thin surfaces but are structured across their width. It
has often been pointed out that the lateral stress profile
S0(z) of the flat membrane contains information about
elastic parameters entering the Helfrich level of Eq. 1.
Specifically, if the membrane is tensionless, the first and
second moment taken over one leaflet are (71–73)

�kmK0m ¼
Zd

0

dz ðz� z0ÞS0ðzÞ; (7)

Zd

2

km ¼

0

dz ðz� z0Þ S0ðzÞ; (8)

where d is a distance sufficiently far out in the bulk that the
membrane stresses have vanished. The elastic parameters
for the complete bilayer are obtained by taking the integrals
over the entire membrane and setting z0¼ 0; Eq. 5 is thereby
rediscovered as a special consequence. Note that for
a symmetric and tensionless bilayer, the result of Eq. 7
does not depend on the value of z0 because the integral of
S0 (z) vanishes.

The stress profile can in principle be obtained in simula-
tions (34,79–85), suggesting an alternative route toward k,
but there are caveats:

1. The unique definition of a local stress is subject to ambi-
guities (87).

2. S0 (z) for CG models might be unrealistic; it certainly is
so in the Cooke model (see inset in Fig. 2).

3. The stress-tensor-route toward k has never been tested
against other approaches, simply because no accurate
alternatives were available.

We have calculated S0 (z) for the Systems 1–3 (see the
Supporting Material) and found km K0m x 3.75 kBT/s and
k x �21.7 kBT, without any assumptions on z0. The first
implies the extremely high lipid curvature K0m x 0.67/s
(given km ¼ k/2 ¼ 6.2 kBT), the second the highly unusual
(but still permissible) elastic ratio k=k x �1.7. Our esti-
mated monolayer Gaussian modulus km ¼ �0.93 km ¼
�5.8 kBT would require the very small value z0 x 0.68s.
Furthermore, for km to stay negative, z0 has to be <1.45 s,
Biophysical Journal 102(6) 1403–1410
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which is inconsistent with the common expectation that z0
locates near the hydrophobic-hydrophilic interface (zx2s

in the Cooke model). Unlike the values determined from
closing a bilayer patch, these results are neither plausible
nor in agreement with experiment. We therefore conclude
that the stress tensor route suffers from deficits.

A potential breakdown of the relation between stress
profile and material parameters is both distressing and
disappointing, because calculating k from S0 (z) would be
easier than the patch-closure approach we have described
here. And whereas the unphysical nature of S0 (z) in the
Cooke model might seem the most obvious culprit, we
emphasize that Eqs. 7 and 8 can be based entirely on
mechanical reasoning and elastic continuum theory
(71,72). As such, their validity does not depend on any
specific physical assumptions or interpretation of the actual
stress distribution. On the other hand, these equations
neglect local correlations, such as lipid packing and local
alignment of tails. These must also affect the free energy
and hence the stress distribution, and this is not captured
on a purely mechanical level. Gompper and Klein (77)
have illustrated that when one attempts to recapture such
correlations using an empirical Ginzburg-Landau theory,
corrections to Eqs. 7 and 8 appear that depend on the local
order parameter distribution and the new coupling parame-
ters. Because the latter cannot be easily measured, this
precludes a straightforward numerical test or correction. If
the discrepancy arises due to correlations along the bilayer
normal, one could argue that the coarse nature of the Cooke
model is to blame and more highly resolved bilayer models
will fare better. However, if lateral correlations also matter,
then these are not necessarily shorter ranged in a higher
resolved model, because the area per lipid is essentially
matched. In that case, there would be no reason to expect
the stress profile even of an atomistic simulation to yield
k. We will leave this question open here, but in light of
the observations we make in this article, we submit that
the validity of Eqs. 7 and 8 should not uncritically be taken
for granted.

Using a CG model, we showed that we can, with great
accuracy, measure the Gaussian curvature modulus of lipid
membranes and probe several of its generic properties.
Although the model is not precise enough to predict k for
an actual lipid, the strategy we have proposed is very effi-
cient and trivial to parallelize. We believe that it remains
feasible for more sophisticated models that require more
computational effort. For instance, the folding-up simula-
tions we did for System 1 took ~2000 CPU hours, which
takes a few days on a small cluster. We could even have
restricted our efforts to 200 simulations per starting curva-
ture (see System 10), given that the total error is dominated
by k and g. For a more finely resolved lipid model, for
instance the MARTINI model (29), we estimate that a few
months should suffice to determine k, assuming that k and
g have already been determined.
Biophysical Journal 102(6) 1403–1410
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