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Exposure therapy for anxiety disorders relies on the principle of confronting a patient with the triggers of his fears, allowing him
to make the unexpected safety experience that his fears are unfounded and resulting in the extinction of fear responses. In the
laboratory, fear extinction is modeled by repeatedly presenting a fear-conditioned stimulus (CS) in the absence of the aversive
unconditioned stimulus (UCS) to which it had previously been associated. Classical associative learning theory considers
extinction to be driven by an aversive prediction error signal that expresses the expectation violation when not receiving an
expected UCS and establishes a prediction of CS non-occurrence. Insufficiencies of this account in explaining various
extinction-related phenomena could be resolved by assuming that extinction is an opponent appetitive-like learning process that
would be mediated by the mesostriatal dopamine (DA) system. In accordance with this idea, we find that a functional
polymorphism in the DA transporter gene, DAT1, which is predominantly expressed in the striatum, significantly affects
extinction learning rates. Carriers of the 9-repeat (9R) allele, thought to confer enhanced phasic DA release, had higher learning
rates. Further, functional magnetic resonance imaging revealed stronger hemodynamic appetitive prediction error signals in the
ventral striatum in 9R carriers. Our results provide a first hint that extinction learning might indeed be conceptualized as an
appetitive-like learning process and suggest DA as a new candidate neurotransmitter for human fear extinction. They open up
perspectives for neurobiological therapy augmentation.
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Introduction

Classical associative learning theory explains fear condition-
ing by an aversive prediction error signal dav generated when
an initially non-predictive conditioned stimulus (CS) is
unexpectedly followed by an unconditioned stimulus (UCS).
This establishes a UCS prediction, or aversive value Vav, for
the CS that grows over successive pairings.1,2 If at some point
the UCS is unexpectedly omitted, this generates a negative
(oppositely signed) aversive prediction error that will reduce
Vav. The latter mechanism is thought to underlie the extinction
of conditioned fear responses by repeated unpaired CS
presentations.1 It is the theoretical basis of exposure therapy
where a patient is repeatedly confronted with the trigger of his
fears (the CS, for example, in an agoraphobic, an open space)
and makes the experience that the predicted outcome (the
UCS) is absent or less disastrous than expected (for example,
he does not collapse).3

A frequent finding is that conditioned fear responses can
return after successful extinction, indicating that the CS–UCS
association (Vav) is not simply unlearned or erased during
extinction but rather complemented by a competing inhibitory
CS–noUCS association that may, or may not, dominate the
CS–UCS association at future CS presentations.4–6 More-
over, there is compelling evidence for a partial segregation in

the neural systems subserving conditioning and extinction.7–12

The above simple account of extinction, as being solely
mediated by the same learning system that also mediates
conditioning, cannot accommodate these observations.

Alternatively, the omission of an expected aversive UCS
could be conceptualized as an appetitive-like or reward
prediction error dapp and the consequential reduction of the
UCS prediction Vav during extinction as generation of a
reward-like safety prediction Vapp. From this perspective, part
of a solution for the above problem could be that extinction is
driven by an opponent appetitive learning system. Reward
learning has been strongly linked with the mesostriatal
dopamine (DA) system.13–15 There is evidence that dapp is
signaled by a phasic increase in the firing of DAergic neurons
that originate in the ventral tegmental area and substantia
nigra and project to the ventral striatum (VS).15 It has
therefore been hypothesized that VS DA release is involved
in putative dapp signaling during fear extinction as well.16 One
rodent study that showed that DA signaling via D1 receptors is
necessary for extinction17 further supports the potential link
between fear extinction and the reward system. One goal of
this study was therefore to test whether the VS encodes
appetitive-like prediction error signals during extinction in
humans.
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Extracellular DA levels in the striatum are prominently
regulated by neuronal DA reuptake via the DA transporter
(DAT).18 The human transporter gene DAT1 features a
frequent and functional variable number of tandem repeat
(VNTR) polymorphism in a region that encodes the
30 untranslated region.19 The 40-bp VNTR element is mainly
repeated either 9 or 10 times, with the 9-repeat (9R) form most
likely reducing DAT expression20–24 (but see Dyck et al.25)
and thus presumably enhancing extrasynaptic striatal DA
levels, in particular, during phasic DA release.18 Hence, if the
mesostriatal DA system is involved in extinction in the fashion
outlined above, one would expect the DAT1 9R allele to be
associated with relatively enhanced extinction learning as well
as with enhanced neural dapp signaling in the VS. To examine
this hypothesis, we conducted the experiment in a sample of
normal healthy volunteers that were preselected on the basis
of their DAT1 genotype. In particular, we compared 9R
carriers (genotypes 9/9 and 9/10) with non-9R carriers
(genotypes 10/10). The grouping was chosen because of
the relative scarcity of the 9R allele and to be in keeping with
previous DA binding neuroimaging studies.20,21

We also examined effects of interindividual variation in
COMT (catechol-o-methyltransferase) function. In contrast to
DAT, COMT is most strongly expressed in the prefrontal
cortex (PFC)26 where it degrades released DA, thereby
regulating extracellular PFC DA levels.27 The human COMT
gene contains a functional single-nucleotide polymorphism
that codes for a Val to Met change at position 158,28 the Met
variant of the protein being less active29 and associated with
higher prefrontal baseline synaptic DA.27 Prefrontal DA
appears to have a role in extinction in rats,30 and a recent
human study had suggested impaired extinction in COMT
Met/Met carriers.31 Hence, including COMT genotype in the
design allowed us to also explore potential contributions of
extrastriatal DA to human fear extinction. As the Val and Met
alleles are codominant,27 participants were preselected in a
way to obtain three similarly sized groups of Val/Val, Val/Met
and Met/Met carriers. This resulted in a 2 by 3 (DAT1 by
COMT) factorial between-subject design.

Participants and methods

Participants. A total of 69 healthy male right-handed
Caucasian participants with DAT1 and COMT genotypes
9R-Val/Val (n¼ 13), 9R-Val/Met (n¼ 10), 9R-Met/Met
(n¼ 10), non-9R-Val/Val (n¼ 14), non-9R-Val/Met (n¼ 12)
and non-9R-Met/Met (n¼ 10) were examined. As
participants were drawn from a bigger population to
achieve a stratified and matched population, calculations of
Hardy–Weinberg equilibrium (HWE) were only appropriate
for the basic population (n¼ 450). Genotype distributions
were as follows DAT1 9/9: n¼ 28; 9/10: n¼ 148;
10/10: n¼ 252 (HWE w2¼ 0.97), COMT Val/Val: n¼ 80;
Val/Met: n¼ 237; Met/Met: n¼ 118 (HWE w2¼ 4.18), and
thus above the HWE threshold of P¼ 0.01. Details on
participant selection, sample characteristics and genotyping
can be found in the Supplementary Methods and
Supplementary Table 1. A different analysis of an
overlapping sample has been reported before.32

Experiment. Participants performed a simple uninstructed
fear conditioning, extinction and reacquisition task, which has
been described in detail elsewhere.32 Briefly, participants
were first habituated to the CSs, the task and the scanner
noise by presenting each CS four times before the actual
experiment. In the subsequent acquisition phase (Acq),
participants saw 18 pseudorandomized 5-s presentations of
each of two geometric symbols (a circle, a triangle), one of
which (CSþ ) was paired in 80% of cases with a painful
electric stimulus (UCS) applied to the back of the right
hand. The other symbol served as a control stimulus (CS�)
for non-associative effects and was never paired with
the UCS. Assignment of symbols as CSþ or CS� was
counterbalanced across participants. In the extinction phase
(Ext), both stimuli were again presented 18 times each, but in
the absence of the UCS. The subsequent reacquisition
phase (RAcq) was identical to the acquisition phase. The
intertrial interval was jittered between 9–14 s, with an
average of 11.5 s. We intermittently asked participants to
give explicit ratings of their CS-evoked stress/fear/tension (at
baseline, that is, after the habituation phase, and every 12
trials (six CSþ and six CS� trials) thereafter, resulting in
three CSþ and three CS� ratings per phase). Throughout
the experiment, the participants had to perform a speeded
decision task on the geometric symbols (see Supplementary
Methods). UCS intensity was individually adjusted before the
experiment to achieve maximum tolerable pain.

Data acquisition and preprocessing. Acquisition and
preprocessing of skin conductance and functional magnetic
resonance imaging (fMRI) data followed standard
procedures (see Supplementary Methods).

Data analysis
Fear ratings. All ratings were normalized by subtracting the
baseline ratings given at the onset of the experiment (after
habituation) such that positive ratings reflected an increase in
fear relative to baseline and negative ratings a relative
decrease in fear. In four participants, ratings were not
acquired or lost because of technical problems. The
remaining sample size for analysis of ratings was n¼ 65.

Rescorla–Wagner model. The Rescorla–Wagner (RW)
model is a simple and established associative learning
model that formalizes the laws of learning outlined in the
introduction. If learning is about enabling an organism to
predict relevant future events from present stimuli, then
classical conditioning should result in the organism being
able to predict a UCS from the presentation of the CS. That
is, the CS should activate a UCS expectation (or CS–UCS
association or UCS prediction) that reflects the probability
and magnitude of the UCS. This ‘associative strength’ or
affective value of the CS is expressed in the V term of the
RW equation below and will increase over the course of
conditioning. It is thought to determine conditioned
responding. Every violation of this expectation (for
example, because a UCS occurs unexpectedly, as initially
in the beginning of conditioning when the UCS prediction is
still 0, or because an expected UCS does not occur, as in
initial extinction) must result in an adjustment of the
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expectation, that is, learning. Therefore, the update of V in
the RW model is directly proportional to a prediction error
term d that reflects the difference between actual and
predicted reinforcement (that is, the expectation violation).1

This class of models is known to be relevant for learning
about punishments and rewards, and has been successfully
used to predict learning-related neural activation.33–39

Specifically, the RW model updates V at trial tþ 1
according to

Vtþ1 ¼ Vt þ aðR � VtÞ;

with a being the constant learning rate (0–1), R being a fixed
value assigned to the reinforcement/UCS and (R�Vt)
corresponding to the prediction error d that is generated at
the time of reinforcement.

We used this rule to model how participants change their
aversive CSþ and CS� values Vav depending on their
associated reinforcement pattern. A flow chart showing the
separate analysis steps is provided in the Supplementary
Methods. We first range corrected each participants’ CSþ
and CS� fear rating data (see Supplementary Figure 1a for
sample average) according to

xi; corr;CSþor CS� ¼ ðxi;CSþor CS� �minÞ=ðmax�minÞ;

with xi,CSþ orCS� (i¼ 1,y,10) being the successive (CSþ
or CS�) fear ratings, min being the sample-wide minimum
of all ratings (�58) and max being the sample-wide maximum
of all ratings (100). This resulted in individual rating time
courses in which ratings ranged from 0 to 1 but retained
interindividual differences in how participants used the rating
scale. The (CSþ and CS�) baseline ratings x1,CSþ orCS�
(after habituation and before conditioning), which were 0 by
definition in each participant (see above), became 0.36
(¼ x1,corr,CSþ orCS�).

After complete learning, the aversiveness R of the UCS is
reflected in the aversiveness of the CSþ , that is, in the last
CSþ fear rating after acquisition (x4,corr,CSþ ). With a partial
reinforcement schedule of 80%, a participant’s R in paired
CSþ trials can thus be approximated as x4,corr,CSþ /0.8.40 R
in CS� trials (0% reinforcement) was set at each participant’s
x4,corr,CS� rating. The same value of R was used for unpaired
CSþ trials. See the Supplementary Methods for a more
detailed explanation. As mentioned above, UCS (pain)
intensity in this experiment was individually calibrated to each
participant’s subjectively tolerable maximum to eliminate
interindividual differences in UCS processing. Concordantly,
the calculated individual R-values for paired CSþ trials were
not affected by genotype (DAT1: F(1,64)¼ 1.24, P¼ 0.298;
COMT: F(2,64)¼ 0.74, P¼ 0.438; and interaction:
F(2,64)¼ 0.06, P¼ 0.978). We nevertheless used individual
R-values to factor out any potential interindividual differences
in learning that might in fact merely result from differences in
UCS processing.

Vav,CSþ and Vav,CS� were modeled separately and set at
0.36 (¼ x1,corr,CSþ orCS�; see above) before learning. On the
basis of the idea of dissociable neural systems for fear
acquisition and extinction (and possibly reacquisition as well),
we used three free parameters aAcq, aExt and aRAcq (one for
each of the three experimental phases), which were adjusted
to minimize the distance between the change in Vav,CSþ and

Vav,CS� and the change in fear ratings xcorr,CSþ and xcorr,CS�
using a least-square approach. We did not use CSþ4CS�
difference scores, and Vav,CSþ and Vav,CS�were estimated at
the same time within the same model. Vav,CSþ and Vav,CS�
time courses averaged across the entire sample are shown
in Figure 1a. Average least sums of squares were similar
between genotypes (DAT1: F(1,64)¼ 0.55, P¼ 0.461;
COMT: F(2,64)¼ 0.13, P¼ 0.878; and interaction:
F(2,64)¼ 0.49, P¼ 0.613). Model fits were substantially
worse when assuming one identical learning rate across all
three phases of the experiment (data not shown).

Note that the original RW formula assumes different
learning rates for reinforced and non-reinforced CS trials,
but this differentiation is not critical for most of the model’s
predictions1 and has not been made in neuroimaging
studies.33–39 Allowing different learning rates for reinforced
and non-reinforced CS trials yielded worse fits (data not
shown).

Imaging data. Analysis of imaging data was restricted to
those 65 participants from which fear ratings were also
available. In the comparison of DAT1 9R with non-9R
carriers, group sizes were n¼ 32 and n¼ 33, respectively.
To prepare the analysis, we used the sample-averaged
learning rates aAcq¼ 0.16, aExt¼ 0.21 and aRAcq¼ 0.19 to
derive individual trial-by-trial Vav and dav estimates from the
above modeling of the rating data, separately for acquisition,
extinction and reacquisition. Averaging of learning rates was
necessary to reduce noise in the data that resulted from a
limited number of data points for fitting (10 ratings), and thus
to obtain robust estimates. An exemplary individual dav time
course is shown in Figure 1b. We emphasize that our
estimated average learning rates are comparable to those
used in previous neuroimaging studies.34

This information was fed into the imaging data analysis that
used a standard approach for fMRI, involving a general linear
model (multiple regression) at the single-subject level and a
random-effects analysis at the group level within the SPM5
software (www.fil.ion.ucl.ac.uk/spm).41 For each participant,
regressors were defined that modeled the time course of the
experimental events. Onsets of CSs, irrespective of whether
they were a CSþ or a CS�, were modeled as categorical
‘events’, that is, one series of delta functions. This regressor
was parametrically modulated in a trial-by-trial fashion by the
individual’s sequence of Vav estimates. Another categorical
event regressor modeled CS (both CSþ and CS�) offsets
and was parametrically modulated by the individual’s
sequence of dav estimates. This was done for acquisition,
extinction and reacquisition separately. CSþ and CS� trials
were not differentiated in this analysis, as the concept of
predictions and prediction errors is a purely quantitative one
that does not make qualitative distinctions between types of
stimuli. We therefore assumed identical neural substrates for
predictions and prediction errors, whether associated with a
CSþ or a CS�. Additional categorical regressors modeled
UCSs (events), key presses (events), and the occurrence of
fear ratings (14-s box car). Each regressor was convolved
with a canonical hemodynamic response function. Using
these regressors in a general linear model of brain activation
at each voxel yields parameter estimates of the contribution of

Fear extinction and DAT1
KA Raczka et al

3

Translational Psychiatry

www.fil.ion.ucl.ac.uk/spm


each regressor to the fMRI signal measured in each voxel.
The convolved regressors of interest (Vav,Acq, dav,Acq, Vav,Ext,
dav,Ext, Vav,RAcq and dv,RAcq) were sufficiently decorrelated
from each other and from the UCS regressor to allow for
robust estimation (Pearson’s Rs for the correlations between
Vav,Acq and dav,Acq: 0.01; Vav,Ext and dav,Ext: �0.21; Vav,RAcq

and dav,RAcq: 0.01; Vav,Acq and UCS: �0.12; dav,Acq and UCS:
�0.43; Vav,Ext and UCS: 0; dav,Ext and UCS: 0; Vav,RAcq and
UCS: �0.12; and dav,RAcq and UCS: �0.41). Note further that
the use of a comparatively high reinforcement ratio of
80% during acquisition assured a high initial amount of
prediction error signaling during extinction in combination with
a relatively steep approach toward zero signal (see
Figure 1b). This characteristic time course was sufficiently
different in shape from the constant categorical CS offset
regressor, of which it was a parametric modulator, for it to be
able to explain additional variance. At the same time,
choosing a partial reinforcement ratio also seemed preferable
to a 100% schedule, because the latter would have generated
a very steep approach toward zero, which would leave little
room for modulation by individual-difference factors.

For the voxel-wise random-effects group analyses, the
subject-specific parameter estimate images from the para-
metric dav and Vav regressors were spatially smoothed
(FWHM 10 mm, resulting in total smoothing with an 11-mm
kernel) to account for interindividual anatomical and functional
variance, and to fulfil the requirements for later correction for
multiple comparisons following Gaussian random field theory
(see below). DAT1 and COMT genotype effects were
assessed using SPM’s ‘full factorial’ model, which allows for
correcting for possible non-sphericity of the error term (here
unequal between-group variance). Separate models were

calculated for each effect of interest (for example, Vav,Acq).
A design matrix included six regressors, one for each possible
genotype combination. The significance of linear combina-
tions of the regressors (for example, 1 1 1 �1 �1 �1 when
asking which voxels show larger effects for DAT1 9R than for
non-9R carriers in a given parameter estimate image) was
assessed using one-tailed t-tests.

Correction for multiple comparisons following Gaussian
random field theory (family-wise error method) at Po0.05 was
limited to the VS regions of interest (ROIs). Left- and right-
sided ROIs were conservatively defined as spheres of 6-mm
radius around coordinates.

The values around coordinates�27, 3,�9 and 27,�9,�9,
respectively, which were taken from the first fMRI study that
investigated neural reward prediction error coding using a
formal associative learning model.34 Where no anatomical
hypothesis existed (exploratory analyses across the entire
scan volume), an uncorrected threshold of Po0.001 was
used.

Results and discussion

Behavioral data. In the RW model of associative learning
(see Participants and methods), the prediction error dav is
weighted by a constant a, the learning rate, that determines
how much a deviation from prediction at trial t is taken into
account when formulating the prediction for the next trial
tþ 1. A high learning rate signifies rapid prediction
adjustment and thus quick learning. If extinction relies (in
part) on a different learning system than conditioning, it may
well show a different dynamic. We thus assessed learning

Figure 1 Formal modeling of fear ratings. (a) Lines show the sample average of the modeled trial-by-trial estimates of aversive conditioned stimulus values (Vav,CSþ and
Vav,CS�). Dots show sample-average range-corrected fear ratings (made after every sixth CSþ and CS� trial). 0: baseline rating after habituation. (b) An example of a
resulting individual time course of trial-by-trial aversive prediction error (dav) estimates associated with the CSþ . Black squares mark unpaired CSþ trials during acquisition
and reacquisition. CSþ trials during extinction were all unpaired. Prediction errors associated with the CS� were always 0 and are not shown for simplicity. x axis: CSþ or
CS� trials.
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separately for the three phases of the experiment, allowing
separate learning rates aAcq, aExt and aRAcq. These were
treated as free parameters, which we optimized so that the
individual Vav time courses fit changes in individual skin
conductance responses (SCRs) or fear ratings across
the entire experiment (see Supplementary Figure 1 for
sample-average SCR and rating time courses).

An attempt to model SCRs failed because of excessive
noise in the data. Modeling of fear ratings (Figure 1), followed
by three separate two-way analyses of variance (one per
phase, each with between-subject factors DAT1 and COMT,
and learning rate as the dependent variable) revealed
significantly higher learning rates in DAT1 9R carriers
compared with non-9R carriers during extinction (aExt: DAT1
main effect F(1,65)¼ 4.57, P¼ 0.037) but not during acquisi-
tion (aAcq: F(1,65)¼ 0.13, P¼ 0.725) or reacquisition (aRAcq:
F(1,65)¼ 3.27, P¼ 0.075; Figure 2). This suggests DAT1 9R
carriers have a more sensitive extinction learning system and
is consistent with the idea that striatal DA might positively
contribute to extinction learning.

Learning rates were unaffected by COMT genotype (all
P40.267), but there was a significant DAT1�COMT inter-
action effect on learning rates in the reacquisition phase
(aRAcq: F(2,65)¼ 4.48, P¼ 0.015). A post hoc t-test showed
that DAT1 9R carriers had significantly higher learning rates
than non-9R carriers only in the COMT Val/Met group (9R:
0.42±0.36 (mean±s.d.) versus non-9R: 0.09±0.13;
t(22)¼ 2.55, P¼ 0.025, two tailed; Supplementary Figure 2a).
This incidental finding will be discussed further below. A
standard, non-computational analysis of SCR and rating
responses for genotype effects yielded no significant results.

Taken together, behavioral analysis suggested a significant
contribution to extinction of DAT1 in the predicted direction but
found no evidence for an involvement of COMT. We note that
the cited COMT study by Lonsdorf et al.31 also reported a
negative result for SCR and that their COMT effect on startle
potentiation might as well be explained by a modulation of fear
memory consolidation rather than extinction learning itself.
The current data from human subjects therefore do not lend

strong support to the idea30 that prefrontal DA function is
important for extinction.

Imaging data: entire sample. In the entire sample,
exploratory analysis of extinction data for dav signals (the
aversive prediction error characterized by phasic relative
decreases in activation when a UCS is unexpectedly omitted,
compare with Figure 1b) yielded no significant results. The
putative appetitive-like prediction error dapp is the
mathematical inverse of dav and characterized by relative
phasic increases at CS omission. Activity conforming to dapp

was found in, among others, left, and less so right, anterior
insula, bilateral anterior lateral PFC, right ventrolateral PFC/
lateral orbitofrontal cortex and right VS (ventral putamen and/
or nucleus accumbens; x, y, z¼ 14, 8, �6; z-score¼ 3.22;
Po0.001 uncorrected; see Figure 3a; Supplementary Table 2),
areas previously associated with dapp coding in reward
studies42 and with phasic activations to UCS omission
during fear conditioning.43 The VS activation was, however,
not located within our conservatively defined (left or right) VS
ROIs (see participants and methods for definition). As for dav,
there were no suprathreshold Vav signals (the aversive CS
value that decreases across extinction, compare with
Figure 1a). By contrast, the putative reward-like safety
value of the CS, Vapp, which is the mathematical inverse of
Vav and accordingly builds up across extinction, was found to
be encoded in left orbitofrontal cortex/ventrolateral PFC,
dorsomedial and lateral PFC, temporal cortex, left caudate,
cerebellum and others (Supplementary Table 2). These
observations might suggest that extinction is indeed primarily
driven by reward-like safety learning. Results for the
acquisition and reacquisition phases are reported in
Supplementary Table 2.

Imaging data: genetic analysis. In the genetic analysis, we
focused on the comparison of DAT1 9R with non-9R groups,
as COMT genotype had not affected extinction learning rates
in the behavioral analysis. If DAT1 9R carriers weight
prediction errors during extinction more strongly (have
higher learning rates), then they can be expected to show
larger neural dav and/or dapp signals during this phase. As
predicted, 9R carriers had significantly stronger signal
increases to UCS omission than non-9R carriers,
corresponding to stronger dapp coding, in our left VS ROI
(x, y, z¼�32, 8, �6; z-score¼ 2.99; P¼ 0.03 corrected).
The activation was located in the putamen and extended into
the anterior insula (Figure 3b). This result supports our
conclusion from the behavioral analysis that DAT1 9R
carriers have a more sensitive extinction learning system
and is evidence for an involvement of the mesostriatal DA
system in extinction. Further group differences, all going in
the same direction, were observed in left anterior cingulate
sulcus and other areas (exploratory analysis at Po0.001
uncorrected; Supplementary Table 3). Group comparisons of
CS value encoding (Vav or Vapp) surprisingly showed stronger
Vapp signals in the non-9R compared with the 9R group in two
frontal areas (Po0.001 uncorrected; Supplementary Table 3).
We stress the exploratory nature of the latter comparisons
and the corresponding likelihood of false-positive results.

Figure 2 DAT1 genotype affects learning rates during extinction. Formal
modeling of fear rating data showed that 9-repeat (9R) carriers have significantly
higher learning rates during extinction than non-9R carriers. Error bars: s.e.m.
*Po0.05 (F test).
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The unexpected behavioral finding of higher reacquisition
learning rates in 9R compared with non-9R carriers specifi-
cally in the COMT Val/Met group (see above) was reflected in
relatively higher dapp signals in the right VS ROI in 9R-Val/Met
participants (x, y, z¼ 22, �8, �8; z-score¼ 2.62; P¼ 0.043
corrected; Supplementary Figure 2b). The trial-by-trial var-
iance that is captured by the parametric dapp regressor during
reacquisition mainly stems from the dapp increases to the three
unexpected UCS omissions (compare with the inverse of the
curve shown in Figure 1b, reacquisition part). A ventral striatal
DAT1 effect on this type of signal suggests that the safety or
appetitive-like mechanisms, which we propose are activated
during extinction, carry over to the reacquisition situation. The
observation that the DAT1 effect is limited to COMT Val/Met
carriers might speculatively be attributed to a situationally
dependent influence of prefrontal DA on striatal DA func-
tion.44,45 In this context, it is worth noting that epistatic DAT1
by COMT interactions in VS reward signaling have been
observed before.46 The exact nature of the effect must remain
open until further investigation.

Supplementary Table 4 reports a genetic analysis of the VS
ROIs from all experimental phases and contrasts for DAT1,
COMT and DAT1 by COMT effects.

Conclusion. To summarize, our combined behavioral and
imaging data hint toward signaling of UCS omission during
extinction by phasic DA release in the VS, in analogy to the
role of the mesostriatal DA system in reward learning.15 They
support a conceptualization of extinction as a reward-like
safety learning process.16 More globally, such a
conceptualization can be integrated within a perspective of
opponent aversive and appetitive systems.47,48

Several limitations of the current study should be noted.
First, there are still controversies with respect to the actual
impact of DAT1 genotype on in vivo DAT function and striatal
DA clearance (see introduction), and the prevailing hypoth-
esis of stronger phasic DA signals in 9R carriers still has to be
substantiated. Second, our approach is correlative, that is, we
did not experimentally manipulate striatal DA signaling.
Pharmacological manipulations in rodents have shown gen-
erally higher levels of conditioned freezing during extinction
with DA antagonists given systemically16,49,50 or directly in the
amygdala51 or nucleus accumbens.16 A systemic DA agonist
reduced conditioned freezing during extinction.50 Although
these results could be taken to support a facilitatory role for
DA in extinction learning, it should be noted that DAergic

manipulations also affect locomotion and baseline freezing,
and it is therefore difficult to rule out that the enhanced
conditioned freezing observed under DA antagonists might be
explained by their motor side effects.16,49–51 Further, these
studies have analyzed average freezing across the entire
extinction session, a measure that might also be confounded
by potential general fear-potentiating drug effects. It might
therefore be advantageous to instead focus on rates of decay
of freezing as a primary outcome measure for extinction in
animals. In humans, where conditioned responding is
normally not read out from motor behavior, pharmacological
experiments might suffer from other confounds such as
potential drug effects on arousal.36 Such experiments will
therefore have to carefully control for non-specific effects but
might nevertheless be a valuable source of evidence. Third,
showing a contribution of the mesostriatal DA system does not
necessarily prove that extinction is appetitive, as the DA
system is not exclusively involved in reward learning. Here, a
direct demonstration of the appetitive nature of extinguished
CSs would be beneficial. Another potentially interesting
approach would be a direct formal comparison of extinction
with a reward-learning task within the same sample. Fourth,
our data do not exclude that non-appetitive, that is, aversive
learning mechanisms also contribute to extinction. Fifth,
although conditioning and extinction are generally considered
relevant paradigms for the study of pathological anxiety and
its therapy,3 it must be stressed that they cannot provide
explanations for every aspect of anxiety and we can, in
particular, not exclude that other mechanisms have a role in
therapeutic fear relief. Sixth, our sample included mainly
university students and exclusively comprised males. The
latter selection criterion was introduced following reports of
considerable gender and cycle effects on extinction52 and was
intended to reduce variance, thus allowing us to limit sample
size. Reproduction in other samples is therefore required.
Seventh, where we reported results from exploratory whole-
brain analyses, these are not corrected for multiple compar-
isons, as emphasized earlier. Again, reproduction will be
paramount.

It is worth noting that we did not find evidence for a role for
DA in fear acquisition, in line with one genetic study examining
COMT genotype effects on conditioning.31 By contrast, a
recent pharmacological fMRI study36 had reported enhanced
aversive prediction errors dav in the caudate nucleus and the
substantia nigra/ventral tegmental area during conditioning in
participants under amphetamine compared with participants

Figure 3 Ventral striatal (VS) prediction error signaling during extinction. (a) Appetitive prediction error (dapp) signal in right VS in the entire sample. (b) Stronger dapp signal
in DAT1 9-repeat (9R) compared with non-9R carriers in left VS. Activations superimposed on a canonical structural image. Display threshold: Po0.01 uncorrected. Bar
graphs show average dapp parameter estimates in extinction, as well as, for comparison, in acquisition and reacquisition in the peak voxel indicated by the hair cross. Error
bars: s.e.m.
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under haloperidol. As amphetamine participants also reported
to feel less tired, drowsy and slowed, these results might also
reflect a general attentional effect. It should, however, also be
noted that the absence of DAT1 or COMT effects on our and
other peoples’ measures of conditioning does not exclude a
contribution of DA to fear acquisition. Further research will be
necessary to settle this question.

To conclude, our findings highlight DA as a candidate
neurotransmitter for fear extinction. This opens up interesting
perspectives for neurobiological therapy augmentation, for
instance, via adjunctive treatment with DAergic drugs.
Experimental studies using the NMDA receptor agonist D-
cycloserine to enhance the effects of exposure therapy have
demonstrated the potential for such a strategy53 (reviewed in
Grillon54). Pharmacological augmentation might be particu-
larly useful in patients resistant to standard forms of behavior
therapy. We would, however, caution against testing drugs in
patients for which possible potentiating effects on fear
expression or conditioning have not been carefully ruled out
in previous non-clinical studies. Another promising lead for
future studies would be to examine interactions with the
endogenous opioid system, which, animal studies suggest, is
another potential substrate of error signaling during fear
extinction55,56 and therefore another interesting candidate
neurotransmitter system for translational research.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements. We thank F Fassbinder for technical help and
N Bunzeck and T Lonsdorf for comments and suggestions. This work was funded by
the Deutsche Forschungsgemeinschaft (DFG Emmy Noether Grant KA1623/3-1
(KR, NG, MLM and RK); DFG Transregional Collaborative Research Centre Grant
SFB TRR 58, subproject Z2 (AR and JD)) and the UKE’s complementary funding
program (RK).

1. Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: variations in the
effectiveness of reinforcement and nonreinforcement. In: Rescorla RA, Wagner AR,
Black AH, Prokasy WF (eds). Classical Conditioning II: Current Research and Theory.
Appleton-Century-Crofts: New York, NY, 1972, pp 64–99.

2. Sutton RS, Barto AG. Reinforcement Learning: an Introduction (Adaptive Computation
and Machine Learning). MIT Press: Cambridge, Massachusetts, 1998.

3. Rothbaum BO, Davis M. Applying learning principles to the treatment of post-trauma
reactions. Ann N Y Acad Sci 2003; 1008: 112–121.

4. Pavlov IP. Conditioned reflexes: an investigation of the physiological activity of the
cerebral cortex. Oxford University Press: Oxford, 1927.

5. Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron 2002; 36:
567–584.

6. Bouton ME. Context and behavioral processes in extinction. Learn Mem 2004; 11:
485–494.

7. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al. The
endogenous cannabinoid system controls extinction of aversive memories. Nature 2002;
418: 530–534.

8. Lin CH, Yeh SH, Lu HY, Gean PW. The similarities and diversities of signal pathways
leading to consolidation of conditioning and consolidation of extinction of fear memory.
J Neurosci 2003; 23: 8310–8317.

9. Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while
accessing conditioned representations of value. Nat Neurosci 2004; 7: 1144–1152.

10. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in
adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry
2007; 12: 656–670.

11. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by
distinct neuronal circuits. Nature 2008; 454: 600–606.

12. Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD et al. Neuropeptide

S-mediated control of fear expression and extinction: role of intercalated GABAergic

neurons in the amygdala. Neuron 2008; 59: 298–310.
13. Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural

control. Nature 2004; 431: 760–767.
14. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent

prediction errors underpin reward-seeking behaviour in humans. Nature 2006;

442: 1042–1045.
15. Schultz W. Behavioral theories and the neurophysiology of reward. Ann Rev Psychol 2006;

57: 87–115.
16. Holtzman-Assif O, Laurent V, Westbrook RF. Blockade of dopamine activity in the nucleus

accumbens impairs learning extinction of conditioned fear. Learn Mem 2010; 17: 71–75.
17. El Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine

D1 receptor. Brain Res 2001; 892: 86–93.
18. Cragg SJ, Rice ME. DAncing past the DAT at a DA synapse. Trends Neurosci 2004; 27:

270–277.
19. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human

dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR.

Genomics 1992; 14: 1104–1106.
20. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype

influences in vivo dopamine transporter availability in human striatum.

Neuropsychopharmacology 2000; 22: 133–139.
21. Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB et al. Prediction of

dopamine transporter binding availability by genotype: a preliminary report. Am J

Psychiatry 2000; 157: 1700–1703.
22. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of

the human dopamine transporter (DAT1) gene affects gene expression.

Pharmacogenomics J 2001; 1: 152–156.
23. Mill J, Asherson P, Browes C, D’Souza U, Craig I. Expression of the dopamine transporter

gene is regulated by the 30 UTR VNTR: Evidence from brain and lymphocytes using

quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.
24. VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in

DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55.
25. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M et al. Increased

dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J

Nucl Med 2005; 46: 745–751.
26. Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM et al. Catechol O-

methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical

neuronal function. Neurosci 2003; 116: 127–137.
27. Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-o-methyltransferase, cognition, and

psychosis: Val158Met and beyond. Biol Psychiatry 2006; 60: 141–151.
28. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human

catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism

and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6:

243–250.
29. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of

genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and

enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.
30. Morrow BA, Elsworth JD, Rasmusson AM, Roth RH. The role of mesoprefrontal dopamine

neurons in the acquisition and expression of conditioned fear in the rat. Neurosci 1999; 92:

553–564.
31. Lonsdorf TB, Weike AI, Nikamo P, Schalling M, Hamm AO, Ohman A. Genetic gating of

human fear learning and extinction: possible implications for gene-environment interaction

in anxiety disorder. Psychol Sci 2009; 20: 198–206.
32. Raczka KA, Gartmann N, Mechias ML, Reif A, Buchel C, Deckert J et al. A neuropeptide S

receptor variant associated with overinterpretation of fear reactions: a potential

neurogenetic basis for catastrophizing. Mol Psychiatry 2010; 15: 1045, 1067–1074.
33. McClure SM, Berns GS, Montague PR. Temporal prediction errors in a passive learning

task activate human striatum. Neuron 2003; 38: 339–346.
34. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and

reward-related learning in the human brain. Neuron 2003; 38: 329–337.
35. Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ et al. Temporal

difference models describe higher-order learning in humans. Nature 2004; 429: 664–667.
36. Menon M, Jensen J, Vitcu I, Graff-Guerrero A, Crawley A, Smith MA et al. Temporal

difference modeling of the blood-oxygen level dependent response during aversive

conditioning in humans: effects of dopaminergic modulation. Biol Psychiatry 2007; 62:

765–772.
37. Seymour B, Daw N, Dayan P, Singer T, Dolan R. Differential encoding of losses and gains

in the human striatum. J Neurosci 2007; 27: 4826–4831.
38. Petrovic P, Kalisch R, Pessiglione M, Singer T, Dolan RJ. Learning affective values for

faces is expressed in amygdala and fusiform gyrus. Soc Cogn Affect Neurosci 2008; 3:

109–118.
39. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA. From fear to safety and back: reversal of

fear in the human brain. J Neurosci 2008; 28: 11517–11525.
40. Dayan P. Classical conditioning and reinforcement learning. In: Dayan P, Abbott LF (eds).

Theoretical Neuroscience. MIT Press: Cambridge, MA, 2001, pp 331.

Fear extinction and DAT1
KA Raczka et al

7

Translational Psychiatry



41. Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. Statistical Parametric
Mapping: the Analysis of Functional Brain Images. Academic Press: San Diego, CA, 2007.

42. O’Doherty JP. Reward representations and reward-related learning in the human brain:
insights from neuroimaging. Curr Opin Neurobiol 2004; 14: 769–776.

43. Spoormaker VI, Andrade KC, Schroter MS, Sturm A, Goya-Maldonado R, Samann PG
et al. The neural correlates of negative prediction error signaling in human fear
conditioning. Neuroimage 2011; 54: 2250–2256.

44. Bilder RM, Volavka J, Lachman HM, Grace AA. The catechol-O-methyltransferase
polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric
phenotypes. Neuropsychopharmacology 2004; 29: 1943–1961.

45. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms
of psychiatric disorders. Nat Rev Neurosci 2006; 7: 818–827.

46. Yacubian J, Sommer T, Schroeder K, Glascher J, Kalisch R, Leuenberger B et al. Gene-
gene interaction associated with neural reward sensitivity. Proc Natl Acad Sci USA 2007;
104: 8125–8130.

47. Solomon RL, Corbit JD. An opponent-process theory of motivation. I. Temporal dynamics
of affect. Psychol Rev 1974; 81: 119–145.

48. Dickinson A, Pearce JM. Inhibitory interactions between appetitive and aversive stimuli.
Psychol Bull 1977; 84: 690–711.

49. Mueller D, Bravo-Rivera C, Quirk GJ. Infralimbic D2 receptors are necessary for fear
extinction and extinction-related tone responses. Biol Psychiatry 2010; 68: 1055–1060.

50. Ponnusamy R, Nissim HA, Barad M. Systemic blockade of D2-like dopamine receptors
facilitates extinction of conditioned fear in mice. Learn Mem 2005; 12: 399–406.

51. Hikind N, Maroun M. Microinfusion of the D1 receptor antagonist, SCH23390 into the IL but
not the BLA impairs consolidation of extinction of auditory fear conditioning. Neurobiol
Learn Mem 2008; 90: 217–222.

52. Milad MR, Goldstein JM, Orr SP, Wedig MM, Klibanski A, Pitman RK et al. Fear
conditioning and extinction: influence of sex and menstrual cycle in healthy humans. Behav
Neurosci 2006; 120: 1196–1203.

53. Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E et al.
Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic
individuals to facilitate extinction of fear. Arch Gen Psychiatry 2004; 61: 1136–1144.

54. Grillon C. D-cycloserine facilitation of fear extinction and exposure-based therapy might
rely on lower-level, automatic mechanisms. Biol Psychiatry 2009; 66: 636–641.

55. McNally GP, Westbrook RF. Opioid receptors regulate the extinction of Pavlovian fear
conditioning. Behav Neurosci 2003; 117: 1292–1301.

56. McNally GP, Pigg M, Weidemann G. Opioid receptors in the midbrain periaqueductal gray
regulate extinction of pavlovian fear conditioning. J Neurosci 2004; 24: 6912–6919.

Translational Psychiatry is an open-access journal
published by Nature Publishing Group. This work is

licensed under the Creative Commons Attribution-Noncommercial-
No Derivative Works 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Fear extinction and DAT1
KA Raczka et al

8

Translational Psychiatry

http://www.nature.com/tp

	Empirical support for an involvement of the mesostriatal dopamine system in human fear extinction
	Introduction
	Participants and methods
	Participants
	Experiment
	Data acquisition and preprocessing
	Data analysis
	Fear ratings
	Rescorla-Wagner model
	Imaging data


	Results and discussion
	Behavioral data

	Figure 1 Formal modeling of fear ratings.
	Imaging data: entire sample
	Imaging data: genetic analysis

	Figure 2 DAT1 genotype affects learning rates during extinction.
	Conclusion

	Figure 3 Ventral striatal (VS) prediction error signaling during extinction.
	Conflict of interest
	Acknowledgements




