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Abstract
The current high cure rates for children diagnosed with cancer can in part be attributed to
emphasis on large cooperative group clinical trials. The significant improvement in pediatric
cancer survival over the last few decades is the result of optimized chemotherapy drug dosing,
timing, and intensity; however, further alterations in traditional chemotherapy agents are unlikely
to produce substantially better outcomes. Furthermore, there remains a subset of patients who have
a very poor prognosis due to tumor type or stage at presentation, or who have a dismal prognosis
with relapse or recurrence. As such, innovative approaches to therapy and new drugs are clearly
needed for introduction into the current pediatric oncology arsenal. A variety of biologically
targeted therapies which have shown promise in preclinical studies and early phase adult clinical
trials are now being explored in pediatric clinical trials. These novel agents hold the promise for
continuing to drive forward improvements in patient survival with potentially less toxicity than
exists with traditional chemotherapy drugs.
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INTRODUCTION
Pediatric cancer is relatively uncommon, however, it does remain the leading cause of death
from disease in persons under the age of 19.[1] Despite dramatic improvements in outcome,
some patients will either not achieve remission or relapse with refractory disease. Once a
patient relapses, conventional chemotherapy or radiation and/or bone marrow transplant are
much less effective.[2-7] Because further increases in dose intensity are neither likely
tolerable nor effective, new approaches to therapy are needed, particularly for refractory or
high risk patients.

Current multi-agent therapies are intensive and carry with them a significant risk for acute
toxicity and late effects. It is doubtful that significant gains will be achieved by continued
intensification of conventional chemotherapy regimens without paying a significant price of
morbidity to patients. This makes the development of targeted therapies with greater
efficacy and less toxicity of paramount importance.

One major focus of current investigation in pediatric oncology is to differentiate patients
with a high likelihood of relapse from those with a favorable prognosis. Yet even within
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subsets of patients with favorable prognostic factors, relapse remains problematic. New
technologies have improved our understanding of cancer biology, and expanding knowledge
of underlying molecular pathways and genomic aberrations is facilitating the development
of new therapies for pediatric cancers.[8, 9] We present a brief review of selected new
agents under investigation for pediatric malignancies, both solid tumors and hematologic
malignancies (Figure 1). The majority of agents are in early phase clinical trials and some
remain in pre-clinical exploration. The “novelty” of such agents comes from their more
selective nature in capitalizing on a feature or features unique or more predominant in
malignant cells, compared to their normal counterparts. Table 1 summarizes the drugs
discussed and the current stage of clinical development. It should be noted that the current
rate of drug development far outpaces the realistic ability for any review to be
comprehensive in nature. However, an attempt is made to focus on a number of promising
molecularly and/or mechanistically targeted agents, with the hope of characterizing
pathways which may be utilized to more effectively treat patients while minimizing
toxicities. Traditionally, the therapies for different pediatric tumor types have been
fundamentally distinct, as our understanding of the diseases takes on a more molecular basis,
analysis of the targets for therapy is increasingly likely to take on a more “cross-platform”
nature.

Tyrosine Kinase Inhibitors
Tyrosine kinase receptors are implicated in a multitude of malignancies, and are currently an
active approach in many targeted therapies. Therapeutics directed against selected pathways
of interest are all in active development and discussed below.

BCR-ABL and Src-ABL tyrosine kinase inhibitors (TKIs)
The t(9;22)(q34;q11.2) translocation, also known as the Philadelphia chromosome, is found
in fewer than 5% of pediatric ALL patients and confers a high risk of relapse and poor
outcome.[10, 11] The resulting BCR-ABL fusion transcript encodes an 8.5 kB chimeric
mRNA that translates to a constitutively active ABL tyrosine kinase resulting in increased
cell proliferation and survival, and altered cell adhesion.[12, 13] Imatinib mesylate
(STI-571, Gleevec™) is an orally available multi-targeted small molecule inhibitor that
binds the ATP-binding pocket of the BCR-ABL complex, stabilizing it in the inactive
form[14] and is often cited as the first molecularly targeted agent to “make it” to mass
market. Its use has been applied to chronic myelogenous leukemia (CML), Philadelphia
chromosome positive (Ph+) ALL, and gastrointestinal stromal tumors (GIST), with limited
sustained effect as a single agent in the latter two. The most recent Children's Oncology
Group clinical trial for Ph+ ALL which incorporated imatinib into a backbone of
conventional chemotherapy is demonstrating substantial improvement in early EFS.[15]
Despite good initial response, resistance to imatinib is an increasing concern. To circumvent
this, two other orally available ABL TKIs, dasatinib (BMS-354825, Sprycel®) and nilotinib
(AMN107, Tasigna®), were developed and are in advanced development. Both dasatinib
and nilotinib have documented activity against many imatinib-resistant mutations, although
neither has significant activity against the most refractory T315I mutation. Third generation
ABL inhibitors are in early development which demonstrate activity against T315I.

Src family kinases have an important role in initiation and progression of many
malignancies through regulation of cellular survival, proliferation, cellular adhesion,
invasion, migration and angiogenesis.[16, 17] Dasatinib, which is much more potent than
imatinib against Abl, also inhibits Src, a non receptor tyrosine kinase, with a low nM IC50,
compared to the μM IC50 of imatinib for Src. The Src kinases Lyn, Hck, and Fgr are
thought to be required for transformation of Ph+ALL (but not CML), therefore, given its
inhibition profile, dasatinib may be an important addition to the arsenal of Ph+ALL therapy.
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Src overexpression has been studied in a variety of tumor types, including
neuroblastoma[18], osteosarcoma[19], lymphoid [20] and myeloid leukemia,[21] making it
a desirable therapeutic target for a variety of cancers. Anti-tumor activity is noted
preclinically with Src kinase inhibitors against pediatric osteosarcoma [22], Ewing
Sarcoma[23] and rhabdoid tumors.[24]

FLT-3 inhibitors
FLT3, a receptor tyrosine kinase (RTK) involved in hematopoiesis, is expressed in a variety
of malignancies, including MLL gene rearranged infant and childhood ALL. It is the most
frequently mutated gene in AML, and is aberrantly expressed in up to 90% of AML patient
samples.[25-27] Dysregulation of FLT3 may occur by one of three different mechanisms:
protein overexpression, internal tandem duplication (FLT3/ITD), and activating loop
mutations (FLT3/ALM). Mutations leading to constitutive activation of FLT3 are seen in
20-25% of children with AML, with 10-15% having FLT3/ITD and the remainder having
FLT3/ALM.[28] FLT3/ITD mutations are associated with a poorer outcome, with lower
rates of remission induction and survival. Additionally, a high ratio of mutant to wild type
FLT3 confers a poorer prognosis.[29] Several FLT3 TKIs, including lestaurtinib (CEP-701),
the most selective of the FLT3 targeted agents, as well as midostaurin (PKC412), and
sunitinib (SU11248, Sutent®), are in various stages of clinical testing for hematologic
malignancies.[30-33] Lestaurtinib, an oral FLT3 TKI has selective in vitro activity against
MLL-rearranged cells as well as synergistic activity with other chemotherapy agents in a
sequence dependent manner.[34, 35] The addition of lestaurtinib to an intensive
chemotherapy regimen is currently being evaluated in the most recent COG infant ALL trial.
Several other multi-targeted kinase inhibitors, including several Aurora kinase inhibitors
also demonstrate clinically achievable FLT-3 inhibition, but these agents are only now
entering trials, primarily in adults, to a significant degree.

FLT3 expression in cancer is not unique to leukemia; FLT3 and its ligand are expressed in
solid tumors, including neuroblastoma.[36] FLT3 inhibition decreases cell growth and
proliferation.[37] Lestaurtinib also has been evaluated in phase I study of relapsed
neuroblastoma, however the target in this disease is thought to be primarily through the
TrkB pathway.[38]

c-Kit inhibitors
c-Kit, a RTK important for tumor growth and progression, is normally expressed in
hematopoietic progenitor cells, and is expressed in 50-80% of pediatric AML, with 11%
having activating mutations.[39, 40] Three types of activating mutations are known: internal
tandem duplication (ITD) of the juxtamembrane domain, activation loop mutations at D816,
and exon 8 mutations. All confer a poor prognosis.[41-43] Imatinib has activity against c-Kit
and platelet derived growth factor receptor. Targeting c-Kit has shown some promise pre-
clinically in a spectrum of pediatric cancers including osteosarcoma, Ewing sarcoma,
neuroblastoma and Wilm's tumor.[44-47] Unfortunately, a phase II trial of imatinib in
pediatric solid tumors demonstrated little to no activity as a single agent.[48] However, it
may have some utility in combination with chemotherapy in vitro[49] or in patients who are
less heavily pretreated. Imatinib does not appear to be active against the D816 mutations
seen in AML.[50] However, other more potent agents including dasatinib and midostaurin
as well as other new compounds on the horizon may be effective in this setting.[51, 52]

Vascular endothelial growth factor (VEGF) inhibitors
The role of angiogenesis, particularly in solid tumors, remains a very active area of research.
The effect of tumor vasculature on proliferation and migration is crucial for tumor expansion
and growth. Anti-angiogenesis therapy, through vascular endothelial growth factor (VEGF)
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blockade has been demonstrated to be effective in many adult tumor types, including renal
cell carcinoma, colorectal, breast and lung cancer.[53-57] Subsequently, targeting
angiogenesis, particularly via the VEGF pathway, has become an area of increasing interest
in pediatric malignancies. VEGF and its RTKs are overexpressed in acute leukemias[58, 59]
and microvessel density is increased in the bone marrow of ALL, AML, and MDS patients.
[60, 61] As a result, anti-angiogenic therapies (thalidomide; thalidomide analogs like
lenalidomide; bevacizumab, an anti-VEGF humanized monoclonal antibody; and small
molecule inhibitors such as sunitinib, vatalanib, and telatinib) are being pursued as treatment
strategies in the acute leukemias, MDS, and solid tumors.[62-65]

VEGF inhibition in pediatric solid tumors, specifically neuroblastoma, glioblastoma, Wilm's
tumor, hepatoblastoma, Ewing Sarcoma and rhabdomyosarcoma results in anti-tumor
activity in vitro.[66-70] Pediatric preclinical testing of two small molecule tyrosine kinase
inhibitors with anti-VEGF receptor activity, sunitinib and cediranib (AZD2171), showed
promising anti-angiogenic effects in many of the solid tumor xenographs treated.[71, 72]
Many new anti-VEGF agents are small molecule inhibitors that target more than one
receptor. As a result, these “dirty” or “promiscuous” inhibitors may provide improved anti-
tumor efficacy than antibodies alone through multi-target inhibition.[73] They may also
have increased toxicities that are important to delineate and address.

Insulin-like Growth Factor Receptor -1 Inhibitors
Targeting of the insulin-like growth factor 1 receptor (IGF1R) pathway is a very active area
of therapeutics currently. The binding of IGF1 and IGF2 to the IGF1R results in
autophosphorylation and subsequent activation of multiple signaling pathways including the
Ras-Raf-MAPK, PI3K/Akt pathway which both activate the mammalian target of rapamycin
(mTOR) pathway, stimulating cell growth.[74] Not only is IGF1R over-expressed in many
malignancies, there is also evidence to suggest that anti-cancer treatments including
chemotherapy and radiation also result in increased IGF1R signaling activity.[75, 76] Many
pediatric tumors have dysregulated IGF1R signaling, including rhabdomyosarcoma, Ewing
sarcoma, osteosarcoma, Wilm's tumor, desmoplastic small round cell tumor, astrocytoma,
and medulloblastoma.[77-82] Several in vitro studies have shown synergistic interactions
with chemotherapeutic agents and IGF1R inhibitors in Ewing sarcoma.[83, 84] The
development of anti-IGF1R therapies is active in adult oncology with more than a dozen
antibodies and small molecule inhibitors in development.[85, 86] The role of IFG1R in
leukemia is less well defined, although both ALL and AML cells have been shown to
express the receptor.[87, 88]

Inhibitors of Ras Activity/ Mitogen-activated protein kinase (MAPK) pathway
The Raf-MAPK-ERK pathway including its upstream activators is often constitutively
activated in tumors and is important in cell proliferation and survival; it has emerged as
another attractive target for inhibition. Raf, a serine/threonine kinase is the principal effector
of Ras and is required for phosphorylation of the mitogen associated/extracellular regulated
kinase-1 (MEK). Inhibitors of B-Raf, sorafenib (BAY 43-9006, Nexavar®) and MEK
(CI-1040/PD184352, AZD6244, PD325901) are being studied in AML and MDS, as well as
a variety of solid tumors.[89, 90] Of note, sorafenib has inhibitory activity of several other
protein kinases, include VEGFR2, PDGFRβ, Flt3, c-kit.[91] Specific targeting of the
epidermal growth factor (EGF) signaling cascade is another means of inhibiting the
downstream pathway of MAPK-ERK, although there are several other pathways, including
PI3K-Akt, protein kinase C and phospholipase pathways, associated with EGF receptor
signaling (reviewed in [92]). There has been success in this area, with antibodies (including
cetuximab, a chimeric monoclonal IgG1 antibody) and TKIs (gefitinib and erlotinib) which
are FDA approved for adult malignancies including metastatic colon carcinoma, non-small
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cell lung cancer, and pancreatic cancer. Cetuximab is also approved for use in combination
with radiation for head and neck cancer. EGFR antibodies including cetuximab,
panitumomab, and nimotuzumab are moving through pediatric cancer clinical trial
development.

Ras proteins are small molecular weight GTP-binding proteins that act downstream of RTKs
and upstream of the Raf-MAPK-ERK pathway. They are involved in multiple RTK
signaling cascades. Activating mutations of RAS have been shown to occur in
approximately 20% of pediatric AML, although the clinical significance of these mutations
is unclear.[28, 39, 93] Mutations leading to RAS activation may play an important role in
the pathogenesis of juvenile myelomonocytic leukemia (JMML) and MDS.[94] They have
also been found in rhabdomyosarcoma.[95] The gene for neurofibromatosis encodes a
protein, neurofibromin which negatively regulates Ras. Tumors in NF-1 patients, JMML and
malignant peripheral nerve sheath tumors, have documented hyperactive Ras.[96]

In order to function properly, Ras must be plasma membrane bound via a series of post-
translational modifications leading to the attachment of a farnesyl group to the protein. The
enzyme farnesyl transferase is required for this process. The farnesyl protein transferase
inhibitors (FTIs) tipifarnib (Zarnestra™, R115777) and lonafarnib (Sarasar®, SCH 66336)
were developed to target Ras, although their anti-tumor effect is likely also due to inhibition
of other farnesylated proteins, such as the Rho family GTPases. FTIs showed early promise
in the treatment of JMML, AML, and MDS,[97-100] although their more recent
development has lagged.

Purine nucleoside analogues
Nucleoside analogues, Cladribine (2-CDA, Leustatin®), fludarabine (Fludara®), and
clofarabine (Clolar®) are used commonly in patients who have relapsed. Purine nucleoside
analogues are similar in structure to adenosine or guanosine, but their mechanisms of action
differ. Cladribine, fludarabine, and clofarabine (a second-generation purine nucleoside
analog designed as a “hybrid” molecule) require intracellular phosphorylation for
cytotoxicity, through the inhibition DNA polymerases and/or ribonucleotide reductase,
leading to apoptosis.[101, 102]

Purine nucleoside phosphorylase (PNP) inhibitors such as nelarabine (compound 506U78,
Arranon®) and forodesine (BCX-1777, Fodosine™) are directed therapies for T-lineage
disease. PNP phosphorylates 2’-deoxyguanosine (dGuo) to the guanine nucleobase and 2’-
deoxyribose-1-phosphate. The rare genetic deficiency of PNP results in lymphopenia and
altered T-cell immunity prompting the rational development of drug-induced PNP inhibition
for the treatment of T-cell malignancies.[103, 104]

Nelarabine, a 6-prodrug of ara-G, is rapidly demethylated to the active form of ara-G. Ara-G
is then intracellularly phosphorylated to ara-G triphosphate, where its accumulation leads
ultimately to apoptosis. [102] Nelarabine is 10-fold more soluble, thus is more attractive
clinically than ara-G.[105, 106]

Forodesine, another PNP inhibitor that has shown promise in refractory ALL, blocks
intracellular deoxyguanine cleavage to guanine resulting in deoxyguanosine triphosphate
accumulation leading to apoptosis.[102, 103] While both agents were initially developed for
T-cell disease, forodesine also has demonstrated activity against B-lineage ALL.[107, 108]

Proteasome inhibitors
The proteasome-ubiquitin pathway controls critical cell functions including transcription,
apoptosis, and cell cycle progression by degrading important regulatory proteins. Malignant
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cells are more sensitive to proteasome blockade, a result of altering the recycling of
regulatory proteins.[109] Proteasome inhibition also reduces chemoresistance and increases
apoptosis by blocking chemotherapy-induced NF-κB pathway activation.[110] Bortezomib
(PS-341, Velcade®) is a highly selective, reversible proteasome inhibitor with activity in B-
cell leukemia.[111] It also has been shown to effect neuroblastoma cell growth both in vitro
and in xenograft models.[112, 113] Ewing sarcoma and osteosarcoma cell lines have shown
sensitivity to proteosome inhibitors as demonstrated by increased apoptosis.[114, 115]
Preclinical evaluation of bortezomib against a panel of pediatric tumors in vitro showed
uniform sensitivity. However, when applied to a selection of tumors in vivo, several ALL
lines showed the greatest response.[116] It is FDA approved for use in multiple myeloma
and mantle cell lymphoma, and is being investigated in combination with a variety of
conventional chemotherapy and targeted agents in both adults and children presently. A
phase 1 COG study of bortezomib in pediatric leukemia and solid tumors has been
completed.[117, 118] Second generation proteasome inhibitors salinosporamide[110, 119,
120], CEP18770[121, 122], carfilzomib[123] are being actively developed. Salinosporamide
demonstrates a synergistic interaction with bortezomib suggesting a role for different
mechanisms of action.[124-126]

mTOR inhibitors
The mammalian target of rapamycin (mTOR) is important in cell proliferation and cell cycle
progression.[127] Rapamycin (sirolimus, Rapamune®), a macrolide antibiotic, is commonly
used as an immunosuppressant following allograft and stem cell transplantation. Rapamycin,
everolimus (RAD001), and temsirolimus (CC-I779, a water soluble ester of rapamycin) also
decrease cellular proliferation through inhibition of mRNA translation to proteins required
for cell cycle progression from G1 to S phase, as well as decreasing angiogenesis.[128-130]
Rapamycin and temsirolimus affect cellular growth in B-cell leukemia, both in vitro and in
xenograft models.[131, 132] As mTOR inhibitors block activation of many signaling
molecules involved in oncogenesis, they have also shown activity in solid malignancies,
including rhabdomyosarcoma, neuroblastoma, osteosarcoma, and medulloblastoma.
[133-136] In xenograft models of pediatric tumors, responses have been seen in ALL as well
as osteosarcoma, rhabdoid tumor and rhabdomyosarcoma.[137] suggesting that these agents
may have potential in the clinical setting.

Histone Deacetylase (HDAC) inhibitors
Histone deacetylase inhibitors regulate transcription and protein function of genes through
the control of histone acetylation. The acetylation of histones results in a relaxed chromatin
structure, promoting transcriptional activation of genes (reviewed in [138]). HDAC
inhibition likely leads to alteration in transcription regulation of genes important in cell
cycle regulation and regulation of apoptosis, including p21WAF1/CIP1, p53, RB, bcl2, bcl6,
bcl-xl, and mcl-1[138]. Several HDAC inhibitors, including valproic acid,
suberanilohydroxamic acid (SAHA, vorinostat, Zolinza™), entinostat (formerly MS-275,
now SNDX-275), and depsipeptide (Romidepsin), are under broad investigation in
malignancies particularly hematologic, both alone and in combination[139, 140], although
their use has been limited in pediatric malignancies.

DNA methyltransferase inhibitors
DNA methylation in promoter regions of genes is another control mechanism for gene
transcription. When cytosine methylation occurs, promoters and gene transcription are
suppressed. DNA hypermethylation in promoters regions and consequent inactivation of
tumor suppressor genes, including p15INK4B, p16INK4, p14ARF, and p21WAF1/CIP1, is
thought to play a role in the pathogenesis of many tumors, including AML, Ewing sarcoma,
osteosarcoma, neuroblastoma and rhabdomyosarcoma.[141-144] DNA methylation
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inhibitors bind cytosine to prevent DNA methylation resulting in increased or restoration of
normal gene transcription. Several methyltransferase inhibitors, including 5-azacytidine
(Vidaza®), decitabine (5-aza-2-deoxycitadine, Dacogen®), and zebularine, are being
studied in the adult acute leukemias, particularly in combination with HDAC inhibitors.
[145-147]

Antibody therapies
Another strategy employed in current drug development is the targeting of proteins
expressed in cancer cells but with limited expression in normal cells. Antibodies targeted to
these proteins may be used alone, or can then be conjugated to radioactive or cytotoxic
agents.

Gemtuzumab ozogamicin
CD33 is a transmembrane receptor expressed on the surface of myeloid and monocytic
lineage cells, as well as AML cells. Gemtuzumab ozogamicin (Mylotarg®) is a humanized
anti-CD33 antibody conjugated to a derivative of the cytotoxic antibiotic calicheamicin.
Upon binding to CD33 on the surface of an AML cell, the antibody is internalized and the
calicheamicin molecule is released through hydrolysis, leading to DNA damage and
apoptosis. [148] This antibody is actively being evaluated in pediatric AML trials.

Anti-CD-22 targeted therapies
CD22 is normally expressed on the surface of mature B-cells and serves as a negative
modulator of B-cell activation via B-cell antigen receptors, though its function is not fully
understood. It is also expressed in more than 90% of B-precursor ALL cases[149], making it
an attractive and specific target against CD22 positive malignancies. Epratuzumab
(IMMU-103) and BL22 are monoclonal antibodies directed against CD22. BL22 is a
monoclonal antibody fused to a portion of Pseudomonas exotoxin A.[150] Once bound,
these antibodies are rapidly internalized and in vitro studies show increased cell death via
antibody-dependent cellular cytotoxicity.[151, 152] Epratuzumab is currently being studied
in the COG relapsed pediatric ALL trial. Because of the rapid internalization, these agents
are also an attractive carrier molecule for cytotoxic drugs, such as inotuzumab ozogamicin, a
humanized anti-CD-22(CMC-544) conjugated with calicheamin[153], or with radiation,
such as the anti-CD20 antibodies linked to 90yittrium ibritumomab tiuxitan (Zevalin™) or
I131 linked tositumomab (Bexxar™). A COG Phase I trial has been completed with
ibritumomab tiuxitan.[154]

Alemtuzumab
Alemtuzumab (CamPath®) is a humanized monoclonal antibody against CD52. CD52 is
normally expressed on all lymphocytes as well as lymphoblasts. As with many monoclonal
antibodies, the mechanism of action of alemtuzumab is poorly understood. Apoptosis may
be induced by either antibody-dependent cellular cytotoxicity or complement-dependent
cytotoxicity. The degree of apoptosis is dependent on CD52 antigen density on the cell
surface. Alemtuzumab is used in stem cell transplantation and chronic lymphocytic
leukemia and its use is being extrapolated to acute leukemias.[155, 156]

Other Targeted Therapies
Heat Shock Protein Inhibitors—17-AAG, a geldanamycin that disrupts the chaperone
function of hsp90, has shown initial promise in the treatment of both AML and ALL,
particularly those leukemias with defined fusion proteins.[157] Hsp90 has an essential role
in promoting cell survival by stabilizing and enhancing the activity of many signaling
proteins involved in oncogenesis, including tyrosine kinases, raf and steroid hormone
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receptors.[158-161] It is thought that inhibition of function of heat shock protein 90 by 17-
AAG, and a newer water-soluble analog, 17-DMAG, leads to depletion of many intracellular
proteins, including Raf-1, AKT, and SRC kinases, as well as regulators of angiogenesis,
possibly explaining sensitivity of some AML cell lines to the drug.[162, 163] 17-AAG has
also shown promise preclinically against malignant glioma as well as neuroblastoma and
osteosarcoma.[164-166] Phase I testing of 17-AAG has been completed in children[167,
168] and newer generation HSP90 inhibitors are being evaluated now, particularly in
combination with proteasome inhibitors and a range of multi-targeted tyrosine kinase
inhibitors.[169]

γ-Secretase inhibitors—The NOTCH1 gene encodes a regulatory transmembrane
receptor essential for normal T-cell development. After post-translational modification of
Notch, γ-secretase, a membrane bound protease, cleaves Notch at the transmembrane
domain, generating intracellular Notch which enters the nucleus as a transcriptional activator
that upregulates NFκB. NFκB promotes proliferation and activates the anti-apoptotic PI3
Kinase/AKT pathways.[170] Aberrant NOTCH1 activation has been implicated in
tumorigenesis of many cancers, including T-ALL [170], via the PI3/AKT or c-MYC
pathways. Notch has also been implicated in neural development, playing a role in the
determination of fate for multipotent neural stem cells.[171] This role for Notch is thought
to explain why its expression is upregulated in neuroblastoma and the more neural
phenotype of Ewing sarcoma.[172, 173] Hes-1, a notch pathway gene, has been shown to be
important in osteosarcoma invasion and metastasis.[174] In the hematologic malignancies,
approximately 50% of T-cell ALL patients express activating mutations in NOTCH1 in the
heterodimerization domain and/or the PEST domain.[175, 176] Interestingly, NOTCH1
mutations have not been observed in B-ALL patients.[176]

Targeting γ-secretase prevents intracellular Notch formation. Patients treated with γ-
secretase inhibitors (LY-411575 and LY450139) for Alzheimer's disease, the drug's initial
intended application, experienced altered lymphopoiesis and thymocyte development,
supporting interest in use for T-cell malignancies.[177] One γ-secretase inhibitor, MK-0752
entered clinical trials for patients with refractory acute leukemias after passing initial safety
and tolerability studies in normal volunteers. However, in phase I trial for patients with
refractory acute leukemias, neurologic toxicities limited progression of these studies, and
further work is ongoing. The mechanism for such neurotoxicity in leukemia patients has
been unclear, although Notch has been implicated in neural development.[178, 179] While
evidence for the role of Notch in solid tumors is increasing, trials in solid malignancies are
just proceeding in adults with several newer generation γ-secretase inhibitors.

CONCLUSIONS
A wide variety of targeted agents are being studied for the treatment of a variety of
malignancies in both adult and pediatric settings, and early results are promising. The
molecular characterization of each patient's cancer will likely be important in the
development of tailored therapy. Despite the overall cure rate in pediatric cancer, many
patients cured of their cancer with current treatment protocols will suffer some late effects.
The development of targeted agents may not only improve cure rates, but also help decrease
the usage and thereby, the side effects of standard cytotoxic chemotherapy. A significant
challenge is to determine the optimal combinations of one or several agents in conjunction
with more traditional chemotherapy that will improve cure rates and decrease short- and
long-term morbidity associated with treatment for these diseases. Because there are a host of
new agents available, it is imperative to design clinical trials that will optimize patient
utilization and resources, and increase the “signal to noise” ratio in order to develop a more
comprehensive understanding of who is likely to benefit from which targeted agents. The
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ability to identify targeted agents with efficacy in specific patient populations will hopefully
lead to continued improvements in overall patient survival in pediatric cancers and
diminished toxicities from therapy.
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Figure 1.
Summary of mechanisms of action of novel therapies directed against pediatric tumors and
leukemia. Drugs are listed in italics demonstrating their effect on targeted proteins, selected
signaling pathways, and gene transcription. RTK = receptor tyrosine kinase; VEGF =
vascular endothelial growth factor; HDAC = histone deacetylase; SAHA =
suberanilohydroxamic acid
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Table 1

Selected therapies under investigation in pediatric malignancies.

Target/Class Patient Population Drug Name: generic (brand) Route of Administration Pediatric Status

BCR-ABL TKIs Ph +ALL, Solid tumors imatinib (Gleevec™) PO •Pediatric phase I
complete
•Pediatric phase
III in Ph+ ALL
closed, early
analysis –
improved early
EFS (COG)
•Pediatric phase II
single agent trial
in solid tumors –
no activity

Ph +ALL, Solid tumors dasatinib (Sprycel®) PO •Adult phase I
complete; phase II
and III on-going
•Pediatric phase I
in imatinib
resistant Ph+ALL
and solid tumors
ongoing
•Pediatric phase II
in Ph+ ALL with
imatinib in
development

Ph +ALL, Solid tumors nilotinib (Tasigna®) PO •Adult phase I
complete; phase II
and III on-going
•Pediatric phase I
in development

VEGF pathway inhibitors Leukemias, Solid tumors bevacizumab (Avastin®) IV •Pediatric phase I
study in solid
tumors complete
•Pediatric phase I
study with
combination
chemotherapy
opening
•Pediatric phase II
study in
combination with
chemotherapy for
relapsed Ewing
Sarcoma ongoing

Solid tumors VEGF trap IV • Pediatric phase I
study in refractory
solid tumors
ongoing

Solid tumors Sunitinib (Sutent®) PO • Pediatric phase I
study in relapsed/
refractory solid
tumors ongoing

IGF1R inhibitors Solid tumors R1507 IMC A12 IV •Multiple adult
Phase 1 complete;
phase II, III
ongoing
•2 Pediatric Phase
I studies on-going
•2 Pediatric Phase
II studies
approved

Multi-target TKIs Leukemias, Solid tumors Sorafenib (Nexavar®) • Adult phase I
complete, phase
II/ III ongoing
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Target/Class Patient Population Drug Name: generic (brand) Route of Administration Pediatric Status
• Pediatric phase I
on-going

FLT3 inhibitors MLL rearranged infant
ALL, AML

lestaurtinib (CEP-701) PO •Pediatric phase I/
II complete
•Phase III in high
risk infants with
intensive
chemotherapy
ongoing
•Pediatric pilot
study in relapsed/
refractory AML
with cytarabine
and idarubicin in
development

Purine nucleoside analogues Acute Leukemias clofarabine (Clolar®) IV •Pediatric Phase I,
II study complete
•Pediatric phase I/
II study in
relapsed/
refractory acute
leukemias
combined with
cyclophosphamide
and etoposide
ongoing
•Pediatric phase I/
II study in
relapsed/
refractory
leukemia with
cytarabine
ongoing
•Pediatric phase I/
II study in
relapsed/
refractory ALL,
AML, MDS
combined with
cyclophosphamide
ongoing

T-cell ALL, T-cell
Lymphomas

nelarabine (Arranon®) IV •Pediatric phase II
study complete
•Pediatric phase
III study in newly
diagnosed T-cell
ALL in
combination with
chemotherapy
ongoing
•Pediatric phase I
study in relapsed/
refractory T-cell
ALL in
combination with
cyclophosphamide
and etoposide in
development

ALL forodesine (Fodosine™) IV •Pediatric phase II
study complete
•Pediatric phase II
and phase I/II
combination study
in development

Proteasome inhibitors Leukemias, Lymphoma bortezomib (Velcade®) IV •Adult Phase I
study complete
•Pediatric phase
Ib/II study in
relapsed/
refractory AML
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Target/Class Patient Population Drug Name: generic (brand) Route of Administration Pediatric Status
with
chemotherapy in
development
•Pediatric phase I/
II combination
study in ALL in
development
•Pediatric phase II
combination in
Hodgkin's Disease
ongoing

mTOR inhibitors Leukemias, Solid tumors rapamycin (sirolimus, Rapamune®) PO •Pediatric phase
III study in ALL
patients post-bone
marrow transplant
ongoing
•Phase II
combination study
in ALL in
development
•Phase I
combination study
with
temozolamide and
irinotecan in
refractory
sarcomas in
development

Leukemias, Solid tumors temsirolimus PO • Adult Phase I, II
studies complete,
analyses pending

Leukemias, Solid tumors everolimus PO • Pediatric phase I
study in solid
tumors complete

Leukemias, Solid tumors deforolimus PO •Adult phase I
study complete
•Pediatric phase I
study in solid
tumors ongoing

Anti CD22 MoABs B-cell ALL epratuzumab (IMMU-103) IV •Pediatric phase I/
II study complete
•Pediatric phase II
combination study
in relapsed CD22
positive B-cell
ALL ongoing

B-cell ALL, Lymphoma tositumomab (Bexxar™) IV • Adult Phase I
studies in
lymphoma
complete, phase
II/III ongoing

B-cell ALL, Lymphoma Ibritumomab IV • Pediatric phase I
study in
lymphoma
complete, analysis
pending

γ-Secretase inhibitors T-cell ALL LY-411575 and LY450139 PO •Adult Phase I
complete
•Pediatric phase I
studies in
development

Anti CD52 MoAB T-cell ALL alemtuzumab (CamPath®) IV • Pediatric phase
II in relapsed/
refractory ALL
with combination
chemotherapy
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Target/Class Patient Population Drug Name: generic (brand) Route of Administration Pediatric Status
closed due to poor
accrual

angiogenesis inhibitors AML, Solid tumors thalidomide, lenalidomide PO • Pediatric phase I
studies in solid
tumors completed
or ongoing

Farnesyl transferase inhibitors Leukemias, MDS tipifarnib (Zarnestra™) PO •Pediatric phase I
study in relapsed/
refractory
leukemia
completed
•Pediatric phase I
trial in refractory
solid tumors
completed
•Phase II window
study in JMML
with combination
chemotherapy
completed
• Phase II study in
pediatric brain
tumors completed

MAPK pathway inhibitors Solid tumors AZD6244 PO • Adult phase I
complete, phase II
ongoing

Solid tumors CI-1040 PO • Adult phase I
complete, phase II
ongoing

HDAC inhibitors Leukemias valproic acid PO •Adult
combination
studies complete
and on-going
•Studies in
pediatric solid
tumors ongoing
•Pediatric phase I
combination study
with 5-
azacytadine
approved

Leukemias, Solid tumors Suberanilohydroxamic acid (SAHA)/
vorinostat (Zolinza™)

PO •Pediatric phase I
study in solid
tumors and
refractory
leukemias
ongoing
•Pediatric phase I
study in relapsed/
refractory
leukemias and
solid tumors with
cyclophosphamide
and topotecan
opening
•Pediatric phase I
combination with
cis-retinoic acid
complete
•Pediatric phase I
combination with
sorafenib in
development

depsipeptide IV • Pediatric phase I
study in relapsed/
refractory
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Target/Class Patient Population Drug Name: generic (brand) Route of Administration Pediatric Status
leukemia
complete

DNA methylation inhibitors Leukemias decitabine (Dacogen®) IV •Adult Phase I/II
studies complete,
phase III on-going
•Pediatric phase I
study completed,
analyses pending
•Pediatric phase I
combination with
MGCD0103
(HDAC inhibitor)
in development

Leukemias, MDS, Solid
Tumors

5-azacytadine IV • Pediatric phase I
trial in relapsed/
refractory
leukemias and
solid tumors in
combination with
valproic acid
approved

Anti CD33 MoABs AML gemtuzumab ozogamicin (Mylotarg®) IV •Pediatric Phase I
complete
•Pediatric phase
III study in newly
diagnosed AML
using combination
therapy ongoing

HSP90 inhibitor Leukemias, Solid tumors 17-AAG IV • Pediatric Phase I
complete

ALL = acute lymphoblastic leukemia; AML = acute myeloid leukemia; PO = oral; IV = intravenous; Ph+ = Philadelphia chromosome positive;
TKIs = tyrosine kinase inhibitors; VEGF = vascular endothelial growth factor; JMML = juvenile myelomonocytic leukemia; MAPK = mitogen-
activated protein kinase; MoABs = monoclonal antibodies; HDAC = histone deacetylase; HSP90 = heat shock protein 90
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