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Abstract
Over the past decade, large multicenter trials have unequivocally demonstrated that decreasing
low density lipoprotein (LDL) cholesterol can reduce both primary and secondary cardiovascular
events in patients at risk. However, even in the context of maximal LDL lowering, there remains
considerable residual cardiovascular risk. Some of this risk can be attributed to variability in high
density lipoprotein (HDL) cholesterol. As such, there is tremendous interest in defining
determinants of HDL homeostasis.

Risk prediction models are being constructed based upon (1) clinical contributors, (2) known
molecular determinants, and (3) the genetic architecture underlying HDL cholesterol levels. To
date, however, no single resource has combined these factors within the context of a practice-
based dataset. Recently, a number of academic medical centers have begun constructing DNA
biobanks linked to secure encrypted versions of their respective electronic medical record. As
these biobanks combine resources, the clinical community is in a position to characterize lipid-
related treatment outcome on an unprecedented scale.

Lipoprotein homeostasis is a complex process [1,2]. Free fatty acids (FFA) and triglycerides
(TG) absorbed from within the gastrointestinal lumen are shuttled to the liver in
chylomicrons. FFA and TG are then combined with apolipoproteins, phospholipids, free
cholesterol and cholesterol esters (CE), to form low density lipoproteins (LDL) and very low
density lipoproteins (VLDL). These particles are inter-converted by lipoprotein lipase
(LPL), and variability in LPL activity is associated with derangements in lipid homeostasis
[3]. While VLDL and LDL are atherogenic, association between these large lipoproteins and
cardiovascular disease (CVD) is modified by a number of additional lipid-dependent and
lipid-independent risk factors [4]. Thus, all lipoproteins are not uniformly atherogenic.

High density lipoprotein (HDL) particles have direct anti-atherogenic properties in
transgenic mouse models [5]. Although HDL particles may serve as a source of cholesterol
esters for the more atherogenic LDL and VLDL, the HDL particles themselves may actually
attenuate the development of cardiovascular disease in humans [6]. Nonetheless, the role of
HDL in atherogenesis remains a matter of ongoing controversy [7]. HDL particles exhibit a
wide degree of structural variability, and these particles participate in a variety of processes
which can be either pro-atherogenic or anti-atherogenic. As such, there is tremendous
interest in characterization and pharmacological optimization of the molecular and cellular
mechanisms underlying HDL homeostasis.
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Determinants of HDL Composition
Nascent HDL particles are initially composed of free cholesterol and apolipoprotein,
ApoA-1. These early particles are discoidal and they occupy a pre-β position on non-
denaturing electrophoretic profiles. Within peripheral tissues, lecithin cholesterol
acyltransferase (LCAT) esterifies free cholesterol, and the resulting cholesterol esters are
incorporated into maturing HDL particles through the activity of ATP-binding cassette
protein transporters (e.g., ABCA1 and ABCG1) [1]. The result is a larger, spherical HDL
particle that migrates in the α position on non-denaturing electrophoretic profiles.

Although these more mature HDL particles are rich in CE and phospholipid, the CE
concentration of their lipid core varies considerably as they move throughout the circulation.
These are dynamic particles. Cholesterol ester transfer proteins (CETP) also circulate in the
plasma, bound to lipoproteins, and they redistribute both CE and TG between HDL and
larger Apo-B containing lipoproteins (e.g., LDL). Thus, CETP is capable of moving CE
back into VLDL and LDL, depending upon the ratio of LDL and HDL in the circulation.
The net effect on HDL is depletion of CE and enrichment of TG [8].

Conversely, scavenger receptor Class B-1 (SRB1) moves CE forward into the liver and
steroidogenic tissues (adrenals, ovaries, testes). Like CETP, the net effect is reduction of CE
within the HDL particles. SRB1 multimers form within the plasma membranes of target
cells (e.g., hepatocytes), possibly requiring the presence of HDL particles to facilitate their
assembly [9]. Each SRB1 monomer has two membrane spanning regions. While the
extracellular loop of SRB1 has moderate affinity for many apolipoproteins (i.e., functioning
as a scavenger protein), SRB1 can only mobilize CE in the presence of ApoA-1. SRB1 is
also capable of extracting phospholipids and TG. Thus, SRB1 generates HDL particles
which also migrate in the α position on non-denaturing electrophoretic profiles [8].

Intravascular Remodeling
HDL particles undergo considerable remodeling within the vascular space. Nascent HDL
particles contain 2 copies of ApoA-I and very little lipid (less than 10%) [8]. These particles
acquire free and esterified cholesterol within the vascular lumen, through mechanisms
introduced above. ApoA-I is present on most HDL particles, representing approximately
70% of the protein content of the total circulating pool of HDL [8]. Apo A-II is the second
most abundant HDL protein. Other HDL proteins include inflammatory markers (e.g., serum
Amyloid A) [8].

Further intravascular remodeling is facilitated by lipolytic enzymes, which transfer
additional surface components (e.g., other apolipoproteins such Apo-E) and additional core
components (e.g., TGs) to the maturing HDL particle. At least three lipolytic enzymes
modify HDL composition [1,8]. They are endothelial lipase (LIPG), hepatic lipase (LIPC),
and lipoprotein lipase (LPL).

LPL is synthesized by adipose tissue and skeletal muscle. Its enzymatic activity favors the
lipolysis of TGs (i.e., phospholipase activity is minor). LIPC is synthesized by heptocytes,
and it has both phospholipase and TG lipase activity. Further, LIPC has greater activity
against HDL than VLDL or chylomicrons. LIPC thus converts larger HDL particles into
smaller HDL remnants [10]. As discussed later, this process is accelerated during insulin
resistance and hypertriglyceridemia [11, 12].

Conversely, LIPG is primarily a phospholipase, with relatively little TG-lipase activity. In
general, LIPG hydrolyzes the phospholipids of HDL, while LIPC hydrolyzes the TG of
HDL. Other phospholipases (e.g., soluble PLA2) are capable of hydrolyzing HDL
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phospholipids during inflammatory states. The observation that LIPG is upregulated by
cytokines may provide a link between inflammation and low HDL levels.

Reverse Cholesterol Transport
As noted, circulating levels of HDL cholesterol are determined by the dynamic equilibrium
of three processes: (1) lipoprotein biosynthesis, (2) particle remodeling in the vascular
space, and (3) particle disassembly. At present, there is tremendous interest in
pharmacological optimization of these processes, particularly with a goal toward leveraging
HDL to shuttle cholesterol out of atherosclerotic plaques and back to the liver for
hepatobiliary elimination (reverse cholesterol transport) [13].

The ATP-binding cassette transporter protein, ABCA1, may be able to export free
cholesterol from macrophages in lipid plaques, by combining free cholesterol with nascent
HDL and lipid-poor apolipoproteins [14]. Free cholesterol can also be moved out of
macrophages through alternate membrane transporters (e.g., ABCG1), but these latter
transporters appear to move macrophage cholesterol preferentially into mature cholesterol-
laden HDL particles [14, 15]. After further remodeling of the HDL particle pool by enzymes
such as CETP and LIPG, and driven by mass action, HDL particles can then shuttle
cholesterol back into hepatocytes via SRB1.

Clinical variables influencing this dynamic equilibrium are reviewed below, followed by a
discussion of ongoing efforts to quantify treatment efficacy within the world’s growing
population-based Biobanks. This unique integration of clinical data facilitates the
construction of improved risk prediction models.

Clinical Contributors to HDL Level
Lipoprotein homeostasis is strongly influenced by changes in body weight, body
composition, and physical activity [11, 16–19]. The current obesity epidemic represents a
major international health crisis [20], and the increased cardiovascular mortality associated
with weight gain is observed in all races [21]. The metabolic complications of weight gain
are often more life-threatening than obesity itself. For instance, obese individuals tend to
have lower circulating levels of HDL cholesterol [22]; and each 1 mg/dl reduction in HDL
cholesterol level is associated with a 6% increase cardiovascular risk [23].

Furthermore, obesity (i.e., increased visceral fat mass) is associated with a reduction in mean
HDL particle size, yielding a shift on density gradient ultracentrifugation toward a
decreasing concentration of the larger HDL2 subclass, and an increasing concentration of the
smaller HDL3 subclass [24]. In obese study subjects, low-HDL dyslipidemia is further
characterized by HDL3 particles that are deficient in otherwise normal anti-atherogenic
properties [25]. Thus, the shift to HDL3 as well as the development of HDL3 particle
dysfunction contributes to net cardiovascular risk [26].

Atherogenic dyslipidemia is also defined by a constellation of lipoprotein abnormalities that
include high serum TG levels, and a shift toward smaller more dense LDL particles [19, 27,
28]. LDL particles typically migrate in the β position on non-denaturing electrophoretic
profiles, and (as noted above) mature HDL particles migrate in the α position. The
distribution of each (and therefore the mean particle size) is highly inter-correlated with TG
concentration [28].

While elevated TG levels and alteration in HDL cholesterol can occur in the absence of
other metabolic abnormalities, both phenotypes often accompany insulin resistance [17, 24,
29]. This association appears to be driven by two mechanisms. Insulin resistance directly
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impacts HDL particle composition by altering the expression and activity of LIPC [12]. As
introduced above, LIPC converts larger HDL particles into smaller HDL remnants [10], and
this process is clearly accelerated during insulin resistance [12] The resulting remnant HDL
particles have altered fluidity, as well as changes in ApoA-I conformation and higher
concentrations of free fatty acids. In this context, the HDL particles generated by LIPC
activity appear to be cleared faster (i.e., insulin resistance increases HDL catabolism). HDL
catabolism is further altered in insulin resistant subjects who develop hypertriglyceridemia
[8]. CETP-mediated heterotransfer of lipids (i.e., depletion of CE and enrichment of TG) is
increased during hypertriglyceridemia, further altering the stability of HDL.

In fact, hypertriglyceridemia is the most common lipid abnormality observed within clinical
syndromes of insulin resistance, and this abnormality is due in part to increased hepatic
production of VLDL [8]. Due to competition for saturable removal processes [30], elevated
TG levels become particularly evident during the postprandial period [31]. In the fasting
state, a net increase in TG/HDL ratio is felt by some investigators to be more predictive of
insulin resistance than the presence of abdominal obesity [32]. The prevalence of this
phenomenon is rapidly rising.

Biological Candidate Genes
The physiologic insulin-mediated stimulation of LPL activity within skeletal muscle and
adipose tissue is also altered in obese subjects with insulin-resistance [33, 34]. Rare subjects
with heritable LPL deficiency are known to have low circulating levels of HDL cholesterol
[35]. Other monogenic forms of low HDL dyslipidemia have also been reported (e.g.,
Tangier disease, due to variants in ABCA1, ApoA-I or LCAT) [2, 36].

Recently, one of the most interesting treatment targets for obesity-related dyslipidemia has
been the endocannabinoid (eCB) system [37]. The eCB system consists of two cannabinoid
receptors, CB1 and CB2 [38], and emerging data support the fundamental hypothesis that
dyslipidemia is partly influenced by overactive signaling at the level of CB1 [37]. This claim
is supported by multiple recent reports. In Europe, randomized placebo-controlled clinical
trials have demonstrated that use of a CB1 receptor antagonist (rimonabant, 20 mg daily) is
associated with a greater mean weight reduction than placebo after one year of therapy (−6.6
±7.2 kg versus −1.8 ±6.4 kg; p<0.001) [39]. This finding was subsequently validated in a
similar study involving North American study subjects, wherein rimonabant (20 mg daily)
was also associated with a greater mean weight reduction than placebo after one year of
therapy (−6.3 ±0.2 kg versus −1.6 ±0.2 kg; p<0.001) [40]. Both trials revealed a greater
improvement in metabolic parameters (including HDL cholesterol) than would have been
expected based upon weight loss alone [41]. In an analysis of covariance (correcting for
weight loss from baseline through standard regression methods), investigators found that
patients taking rimonabant developed an increase in HDL levels, and a decrease in TG
levels, more than twice that anticipated based upon weight loss alone [39, 40, 41].

Since an acquired (drug-induced) change in eCB/CB1 signaling clearly modifies HDL and
TG levels, it is likely that genetic variability in eCB/CB1 signaling contributes to the
development of dyslipidemia [42]. We recently tested this claim in one of the most
rigorously phenotyped family-based obesity study cohorts in the United States [43]. CNR1
gene variability was associated with high TG and low HDL levels. Studies in the original
cohort are providing insight into mechanism; the biological link between genetic variability
in eCB/CB1 signaling and dyslipidemia appears to be independent of insulin responsiveness
(based upon phenotypes derived from a frequently sampled intravenous glucose tolerance
test: Si, Sg, AIRg, and DI) [44]. Whether the eCB/CB1 signaling variants identified in this
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cohort will be causative in other populations of unrelated individuals remains unclear [45,
46].

Positional Candidate Genes
Characterization of the genetic architecture underlying clinical derangements in lipid
homeostasis has not been limited to biological candidate genes; early on, some progress was
made in the identification of positional candidate genes as well. Prior to 2004, linkage
studies (in families) reported associations between various loci and lipoprotein levels as
quantitative traits (QTs). Many of these associations were never replicated. More recently,
resources have been reallocated toward whole genome scanning, with dense scanning
platforms in large cohorts of unrelated individuals. While these efforts appear to be
providing some insight into signaling pathways previously unrecognized as impacting lipid
homeostasis, most associations represent the re-identification of previously characterized
biological candidate genes.

For instance, in a recent multicenter genome scanning effort involving more than 8000 study
subjects from three combined cohorts, six previously recognized loci (containing twelve
biological candidate genes) were validated with respect to their association with HDL
cholesterol [47]. Each of these six loci contained at least one of the biological candidate
genes discussed above (e.g., ABCA1, APOA1, CETP, LIPC, LIPG, and LPL). In addition to
these six previously recognized loci, the investigators also identified a novel gene associated
with HDL, GALNT2 (encoding an enzyme involved in the post-translational glycosylation
of proteins) [47]. Each copy of the minor allele for GALNT2 was associated with a 1.6 mg/
dl decrease in HDL. Further, GALNT2 was also idenitifed as one of five new loci associated
with TG levels in the same study population [47]. These results have clearly been replicated.
Willer and colleagues identified nine loci that were associated with HDL in a large
multicenter study of similar design [48]. Many of the lipolytic enzymes and transporters
outlined above were also contained within the 9 loci identified by the latter group (e.g.,
ABCA1, LPL, LIPG, CETP, LCAT, and GALNT2). However, since these loci collectively
explain ≤5% of the HDL trait variance in these populations, much remains to be learned
about the basic biology of dyslipidemia.

Large consortia are therefore being constructed to facilitate the identification of additional
loci through meta-analyses leveraging genome wide data in populations and treatment trials
[49]. To date, nearly 100 variants influencing lipid homeostasis have been reported. A small
subset of these loci appear to be independently associated with cardiovascular disease [50].

Therapeutic Interventions
Statins

The large majority of cholesterol within cells is derived through de novo synthesis. Free
cholesterol is built from simple 2-carbon fragments through a relatively linear biosynthetic
pathway [51], and the rate limiting enzyme in cholesterol biosynthesis is HMG-CoA
reductase. Large, multicenter trials have demonstrated that attenuation of endogenous
cholesterol biosynthesis through the use of HMG-CoA reductase inhibitors (statins) can
reduce the likelihood of both primary and secondary cardiovascular events in patients at risk
[52–56]. At present, there are six commercially available drugs within this class: lovastatin
(approved by the FDA in 1987), simvastatin (1988), pravastatin (1991), fluvastatin (1994),
atorvastatin (1997), and rosuvastatin (2003) [57]. Each of these drugs is highly efficacious
(representing 30–50% risk reduction depending upon dose and upon clinical context).
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While statins are known to interact with a variety of cellular processes, each drug in this
class appears to derive its primary therapeutic effect by attenuating endogenous lipoprotein
synthesis and up-regulating the expression of membrane bound LDL cholesterol receptors
[58]. Although these agents markedly reduce circulating levels of LDL cholesterol, their
effect on HDL has been modest [59]: HDL levels increase 5–10% on statins [60, 61].
Further, the shape of the dose response relationship between statins and HDL cholesterol
varies from drug to drug [61]. While simvastatin appears to raise HDL consistently at all
common doses, the response to atorvastatin may be biphasic (diminished at higher doses)
[61]. This observation may reflect a differential effect of inhibiting cholesterol biosynthesis
on the remodeling of lipoproteins.

Ezetimibe
Under normal physiologic conditions, 20% of cholesterol stores are derived from dietary
sources (i.e., exogenous uptake). Within the gastrointestinal tract, cholesterol uptake is
facilitated by Niemann-Pick C1 Like 1 (NPC1L1), a protein found in the brush border
membrane of enterocytes [62]. Ezetimibe lowers cholesterol levels through inhibition of
cholesterol uptake in the small intestine, at the level of NPC1L1 [63]. Ezetimibe has been
used clinically since 2002.

Following absorption, more than 90% of this drug undergoes enterohepatic circulation (i.e.,
passes through the portal circulation to the liver, then the majority of the drug re-enters the
small intestine via the bile, where it blocks further cholesterol uptake) [63]. In the liver,
ezetimibe undergoes glucuronidation. Primary Phase II enzymes are UGT1A1, UGT1A3,
and UGT2B15 [64], and the resulting bioactive glucuronidated derivatives keep cycling and
re-blocking cholesterol uptake [65, 66]. Thus, ezetimibe monotherapy can reduce LDL
levels 20% [67–72]. When combined with a statin, LDL reduction is typically 25–50% [72,
73]. The effect of ezetimibe on HDL is relatively small, and its overall clinical benefit
remains controversial [74]. As discussed in a later section of this review, the ARBITER
trials have been constructed to clarify this controversy [75].

Torcetrapib
Both classes of drugs discussed above modify the availability of free cholesterol. As noted,
however, lipoproteins contain esterified cholesterol in large amounts. Since cholesterol ester
transfer protein (CETP) facilitates the movement of cholesterol esters from HDL to the more
atherogenic LDL, there has recently been tremendous interest in the potential for CETP
inhibitors to reduce vascular disease [7, 14, 76, 77]. While some studies indicate that CETP
deficiency may be cardio-protective, other studies suggest increased cardiovascular risk [78,
79]. Clinical studies conducted with CETP inhibitors have yielded equally conflicting
results. In a recent trial evaluating 15,000 patients at risk, randomized to either LDL
reduction with atorvastatin alone, or LDL reduction with atorvastatin plus HDL increase
with torcetrapib, subjects on combination therapy (atorvastatin plus torcetrapib) were
observed to have a higher frequency of angina, revascularization, myocardial infarction,
heart failure and death [7]. This finding was not anticipated.

There is growing evidence suggesting that this discrepancy (i.e., between improved lipid
panels and higher frequency of adverse cardiovascular events on torcetrapib) may have been
due to altered distribution of HDL particle subtypes, toward a more pro-inflammatory
atherogenic form of HDL. Newer CETP inhibitors appear to increase HDL and decrease TG
levels (without altering blood pressure) [80]. Through proteomics, investigators are now
gaining deeper insight into the molecular heterogeneity of HDL particles [81, 82]. In a
comparison between HDL particles obtained from control patients and patients with
coronary artery disease, lipoproteins from patients with greater disease burden had higher
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levels of many acute-phase response proteins, as well as a differential distribution of
apoplipoproteins [81, 83]. Thus, in addition to HDL cholesterol concentration, HDL particle
composition is an important determinant of risk.

Fibric acid derivatives
The relationship between HDL cholesterol concentration and HDL particle size is strongly
dependent upon TG homeostasis. As noted, fasting TG levels are an independent predictor
of HDL particle size [24]. Fibric acid derivatives lower TG levels by activating peroxisome-
proliferator activated receptors (PPAR) [84]. There are several molecular PPAR subtypes
(α,β,δ and γ), which can be activated by endogenous lipids (fatty acids, eicosanoids, and
oxidized phospholipids) [85]. Two exogenous ligands are commonly used to modulate lipid
homeostasis through PPARα. In vitro, fenofibrate acts as a full agonist at PPARα, whereas
gemfibrozil appears to be a partial agonist [85]. PPAR-α activation promotes the catabolism
of fatty acids through beta-oxidation [85]. When bound by ligand, PPAR-α heterodimerizes
with the retinoic acid receptor (RxR) and binds to PPAR response elements (PPRE) [85, 86]
in genes important to lipid metabolism and glucose homeostasis [87]. When activated,
PPAR-α induces acyl-Coenzyme A synthetase, a key enzyme in the esterification of fatty
acids (preventing the cellular efflux of fatty acids), as well as carnitine palmitoyltransferase
type 1 (CPT-1), an enzyme involved in the mitochondrial fatty acid oxidation in highly
active tissues (e.g., cardiac and skeletal muscle) [84–87]. PPARα activation thus limits the
amount of FFA available for hepatic synthesis of TG-rich lipoproteins like VLDL. The net
effect is a reduction in TG.

Fenofibrate and gemfibrozil directly impact HDL composition, through PPARα-mediated
induction of hepatic lipase (LIPC) [85]. As noted earlier, LIPC converts larger HDL
particles into smaller HDL remnants [10]. PPAR-α also regulates HDL homeostasis by
modulating expression of Apo-I, Apo-II, ABCA1 and SRB1 [85,86]. Ligand-activated
PPAR-RXR heterodimers facilitate the trans-repression of anti-inflammatory gene products
within the vascular endothelium, vascular smooth muscle, and within cells of the immune
system (e.g., CRP, COX-2) [87]. It is therefore likely that fibric acids influence the HDL
proteome in a manner not yet fully characterized.

Fibrates are particularly effective in improving lipid parameters in patients with
dyslipidemia due to type II diabetes mellitus [88]. Fenofibrate reduces TG levels nearly 50%
in such patients [89, 90]. Modest improvements in LDL and HDL are observed as well. In
the FIELD Trial (nearly 10,000 diabetic subjects with and without known coronary artery
disease), the use of fenofibrate was associated with a reduction in myocardial infarction (HR
0.76, 95% CI 0.62–0.94; p = 0.01), as well as a reduction in the frequency of coronary artery
revascularization (HR 0.79, 95% CI 0.68–0.93; p = 0.003) [88]. Conversely, gemfibrozil
appears to lower TG levels by approximately 35% [91]. In the Helsinki Heart Study,
gemfibrozil was efficacious in reducing coronary events in 4000 men at moderate risk of
CAD followed longitudinally (34% risk reduction after 5 years, p < 0.05) [91]. On average,
LDL levels were decreased by 11% and HDL levels were increased by 11%. In sub-analyses
using overweight patients with fasting TGs > 200 mg/dl (and HDL levels < 40 mg/dl),
gemfibrozil reduced coronary risk 78% (p < 0.002) [92]. Gemfibrozil was also associated
with a 22% reduction in adverse coronary events in patients with known CAD followed
longitudinally in the VA-HIT trial [93, 94]. Nearly 25% of all patients enrolled in the VA-
HIT Trial had type II diabetes mellitus.

Niacin
Niacin is efficacious at optimizing TG levels and HDL levels [95]. Niacin improves these
lipid parameters through two mechanisms: (1) it increases sequestration of TGs in adipose
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(resulting in a reduction in the release of FFAs), and (2) it decreases synthesis of TGs in the
liver (attenuating hepatic production of VLDL). In hepatocytes, esterification of
diacylglycerols to TG is catalyzed by diacylglycerol acyl transferase-2 (DGAT2). Niacin has
been shown to non-competitively inhibit DGAT2, decreasing TG production [96]. In
adipose, activation of a G-protein-coupled receptor called HM74A (GPR109A) results in the
inhibition of hormone sensitive lipase through a mechanism dependent upon cAMP [97–99].
The net effect is attenuation of the conversion of TG into FFA, keeping TG sequestered in
the adipose. While niacin is not a physiological ligand for HM74A, it can activate the
receptor at high concentrations [97, 98]. Since the effect of niacin is concentration-
dependent, lipase activity can be inhibited almost 100% [99].

Niacin also increases HDL levels, by blocking the catabolism of these particles. Plasma
turnover studies in humans have indicated that niacin decreases the fractional catabolic rate
of HDL without altering Apo A synthesis [95, 96]. Thus, raising HDL through the use of
niacin may represent a valid clinical strategy for the reduction of cardiovascular risk. Data
reported by the ARBITER 2 Trial have indicated that niacin provides added benefit when
given in addition to statin monotherapy in the stabilization of atherosclerotic carotid artery
disease [100]. At this point, it remains unclear whether the added benefit attributed to niacin
was due to additional LDL lowering, versus optimization of HDL and/or lipoprotein particle
composition. To address this question within the context of carotid disease, the ARBITER 6-
HALTS Trial will determine if combined optimization of LDL and HDL (statins plus
niacin) is clinically superior to more aggressive LDL lowering (statin plus ezetimibe) [75].

As noted earlier, a 1 mg/dl increase in HDL cholesterol can decrease the risk for
cardiovascular disease as much as 6% [23]. There is also additional clinical benefit to be
gained by lowering TG level (even when LDL cholesterol has already been substantially
reduced). As shown in a post hoc evaluation of the PROVE IT-TIMI 22 trial [101], on-
treatment plasma TG levels <150 mg/dl were independently associated with reduced risk of
recurrent coronary events. In fact, after adjusting for non-HDL-cholesterol and other clinical
covariates, each 10 mg/dl decrease in TG level is associated with an additional 1.4%
reduction in the overall risk of developing cardiovascular disease.

Modeling Outcome
Treatment trials such as those introduced above will continue to inform our ongoing efforts
to direct pharmacological intervention based on individualized risk (i.e., the presence or
absence of modifiable cardiac risk factors). There is also growing interest in the
characterization of genetic risk determinants. The application of such determinants will be
challenging, because the genetic architecture underlying cardiac risk factors such as low
HDL dyslipidemia may be quite different from the genetic architecture underlying adverse
cardiovascular events [50]. Further, data indicate that the clinical response to
pharmacological intervention (e.g., drug-induced change in lipid levels) is attributable to yet
another set of genetic predictors [49, 102]. The identification of genetic determinants of
treatment response has, however, been somewhat limited. While markers for change in LDL
cholesterol are now being reported, the genetic predictors of change in HDL cholesterol
remain largely unsurveyed.

Modeling treatment-induced changes for HDL cholesterol will require large population-
based cohorts. As discussed, drug-induced changes in HDL cholesterol are somewhat
smaller in magnitude than drug-induced changes in LDL cholesterol, and the clinical
variables influencing HDL cholesterol are many. To facilitate the construction of accurate
prediction models for cardiometabolic risk, the eMERGE network (electronic Medical
Records and Genomics) has begun extracting lipid data from several of the world’s growing
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Biobank cohorts (www.gwas.net). We have begun modeling these variables in the
Marshfield Clinic Personalized Medicine Research Project (PMRP), a dynamic community-
based Biobank located in the Midwestern United States [103]. This population has a
distribution of fasting lipid levels similar to that reported by NHANES III [104]. At present,
the Marshfield Biobank contains data from nearly 20,000 adult participants; more than
10,000 individuals (54%) have impaired fasting glucose; >8000 (41%) have
hypertriglyceridemia; and >9000 (48%) have reduced levels of HDL cholesterol according
to criteria published by NCEP ATP-III [6, 105].

Using this cohort of 20,000 adults (age range 18 to 98 yrs, median 46 yrs), we previously
extracted all lipid data, censored HDL data according to relevant co-morbidities, and applied
population trends to adjust age and BMI for individual differences in the availability of HDL
over time. A repeated measures model was published for males and females [103]. To
illustrate the relative contribution of body composition, representative data are shown below
for HDL as a function of BMI in this cohort.

If individualized pharmacologic intervention is to become a common clinical reality, risk
assessment must be based upon the interaction(s) of metabolic risk determinants such as
these within a variety of subpopulations. A recent comparative effectiveness review
commissioned by the Agency for Healthcare Research and Quality (AHRQ) specifically
addressed this need by evaluating outcome in subjects with (and without) various
dyslipidemias. The findings suggest that treatment modality should be directed by co-
morbidity. While the evidence supporting combination therapy (i.e., multiple lipid-
modifying agents) versus high-dose statin therapy remains insufficient to guide clinical
decisions in the general population (AHRQ Publication No. 09-EHC024-EF, 2009), patients
with metabolic comorbidities - such as those subjects with elevated BMI in the right half of
the figure shown above - are likely to benefit from combination therapy targeted toward all
lipid components. Thus, biobanks in the eMERGE network (www.gwas.net) may have the
capability to more accurately characterize the impact of pharmacologic intervention on
outcome, for all possible permutations of common cardiometabolic risk determinants.

We have also previously shown that lipid data can be efficiently extracted and annotated at
first exposure to a relevant lipid-altering medication using electronic health records linked to
secure encrypted databases. This is illustrated below for 20 randomly sampled male subjects
from eMERGE.

This approach can be used to describe variation in drug response in large populations. For
example, we have also previously linked accurate drug exposure histories (including start
date, stop date, and dose) with clinical lipid data to construct full dose-response relationships
for HMG-CoA reductase inhibitors (statins) [106, 107]. An example is shown below, for
HDL and TG, using a test set of 100 participants exposed to atorvastatin in the PMRP
biobank. The observation that lipid levels trend in the direction anticipated clinically (i.e.,
HDL decreases while TGs increase)suggests that these algorithms can be applied to existing
electronic data across large health care networks to characterize outcome on an
unprecedented scale. The accuracy of these algorithms has been published [106].

By linking high-throughput genotyping technologies to electronic health care records within
the context of these biobanks, improved risk prediction models will eventually allow
investigators to distinguish the genetic architecture underlying specific cardiac risk factors
(e.g., baseline HDL cholesterol level) from the genetic architecture underlying response to
treatment (e.g., change in HDL cholesterol level induced by a pharmacologic intervention).
However, this effort will require cohorts of extremely large sample size [108, 109]. BioVU,
located at Vanderbilt University, is currently the largest population-based Biobank in the
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United States. At present, enrollment is approaching 80,000 unique subjects. It is anticipated
that BioVU will contain DNA and securely encrypted clinical data from more than 100,000
study subjects by the end of the current academic year. To illustrate the potential of this
resource to facilitate large scale studies of outcome related to the management of low HDL
cholesterol, the number of participants with various metabolic traits related to body
composition has been summarized below.

These phenotypes are highly inter-correlated. For example, in obese study subjects, diabetes
mellitus often represents the extreme end of a disease process known to occur along a
clinical continuum. Prediabetic states include impaired fasting glucose (IFG) and impaired
glucose tolerance (IGT). The former (IFG) is defined by fasting glucose levels above 100
mg/dl [reference 110]. Clinical derangements in lipid homeostasis often become evident in
subjects with IFG long before they develop diabetes mellitus. As shown above, there are
many different permutations of these phenotypic subsets. For example, while 8738 of the
24,299 individuals with clinical lipid data available in BioVU have IFG and high TGs, only
2076 of these individuals also have low HDL cholesterol levels. Fewer still meet all current
diagnostic criteria for the constellation of clinical abnormalities commonly referred to as the
Metabolic Syndrome (MTS), particularly if the definition includes a hemodynamic
component (hypertension), a prothrombotic component, an anti-fibrinolytic component, and
altered renal indices (e.g., proteinuria) [110].

Because all permutations of these cardiometabolic risk determinants do not carry the same
risk [2, 111], clinical intervention must be guided by a more thorough understanding of their
interactions within the community. It remains uncertain whether genetic markers will
provide added value. Although investigators within the Pharmacogenetics and
Pharmacogenomics Research Network (PGRN) have begun characterizing the genetic
determinants contributing to change in lipid levels within the context of treatment trials,
these markers will need to be tested for generalizability in population-based cohorts that can
be stratified according to the cardiometabolic risk determinants shown above.

Table 2 represents a compilation of the genetic predictors of HDL cholesterol from 3
treatment trials, before and after exposure to atorvastatin, simvastatin, or pravastatin
(adapted from Baber, et al. 2010 [reference 49]). While baseline HDL level was associated
with SNPs in several well-characterized biological candidate genes (CETP, LIPC, LPL), no
SNPs were associated with treatment-induced change in HDL (i.e., all frequentist p values
for the difference trait were >0.05, and posterior probabilities were low for HD). Conversely,
our analyses did identify an association between another well-characterized candidate gene
(GCKR) and statin-induced changes in fasting triglyceride levels (data not shown) [49].

Due to the heterogeneity of low HDL dyslipidemia as a clinical phenotype, the small
contribution of individual genetic risk determinants, and the complexity of the genetic
architecture underlying response to pharmacological intervention, the construction of
accurate risk prediction models will require the coordinated sharing of data across
institutions. Academic medical centers are utilizing electronic health records to merge
practice-based datasets on an unprecedented scale [112]. As these biobanks become linked,
the scientific community will draw nearer to personalized medicine within the context of
dyslipidemia.

Summary
Clinical data available in population-based biobanks should facilitate the construction of
accurate risk prediction models by integrating various combinations of cardiometabolic risk
determinants with a variety of adverse cardiovascular outcomes, in the context of treatment
within the community.
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As the scientific community moves rapidly toward large-scale application of genetic
epidemiology and pharmacogenetics, the world’s population-based biobanks represent a
unique resource for assessing clinical variables in directing the care of complex phenotypes
like dyslipidemia [www.gwas.net].
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FIG 1.
Fasting clinical lipid data (HDL) shown as a function of body mass index (BMI) for PMRP
Biobank participants. Reprinted with permission from Wilke et al. Preventive Cardiology,
2009 [104].
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FIG 2.
Fasting clinical lipid data (HDL) shown as a function of patient age for 20 randomly
selected PMRP Biobank participants. Reprinted with permission from Wilke et al.
Preventive Cardiology, 2009 [104].
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FIG 3.
Dose-response plots for the three most commonly prescribed doses of atorvastatin (i.e., 5 mg
daily, 10 mg daily, and 20 mg daily), generated using clinical data from a test set of 100
PMRP Biobank participants. Upper panel: TGs by atorvastatin dose. Lower panel: HDL by
atorvastatin dose.
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TABLE 1

Vanderbilt University Biobank (BioVU) - Participant Characteristics

Characteristic Men Women Total

N 29946 (41.98) 41390 (58.02) 71336 (100)

Deceased 1519 (5.07) 1137 (2.75) 2656 (3.72)

Mean age (yrs) 54.3 50.58 52.14

BMI class (kg/m2)

Healthy (<25) 3345 (18.46) 8020 (27.28) 11365 (23.92)

Overweight (25–29) 6385 (35.24) 7958 (27.07) 14343 (30.18)

Obese (30+) 8390 (46.30) 13421 (45.65) 21811 (45.90)

Class 1 (30–34) 4577 5621 10198

Class 2 (35–39) 2069 3413 5482

Class 3 (40+) 1744 4387 6131

Metabolic Trait Men Women Total

Impaired fasting glucose
(≥100 mg/dl)

6580/11034 6892/14995 13472/26029

Elevated triglycerides
(≥150 mg/dl)

6514/11515 6917/16000 13431/27515

Subthreshold HDL
(<40 mg/dl in men or
<50mg/dl in women)

2854/10742 3552/15043 6406/25785
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