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The spectral bound, sðαAþ βVÞ, of a combination of a resolvent
positive linear operator A and an operator of multiplication V ,
was shown by Kato to be convex in β ∈ R. Kato's result is shown
here to imply, through an elementary “dual convexity” lemma, that
sðαAþ βVÞ is also convex in α > 0, and notably, ∂sðαAþ βVÞ∕
∂α ≤ sðAÞ. Diffusions typically have sðAÞ ≤ 0, so that for diffusions
with spatially heterogeneous growth or decay rates, greater mix-
ing reduces growth. Models of the evolution of dispersal in parti-
cular have found this result when A is a Laplacian or second-order
elliptic operator, or a nonlocal diffusion operator, implying selec-
tion for reduced dispersal. These cases are shown here to be part
of a single, broadly general, “reduction” phenomenon.

perturbation theory ∣ positive semigroup ∣ reduction principle ∣
non-self-adjoint ∣ Schrödinger operator

The main result to be shown here is that the growth bound,
ωðαAþ V Þ, of a positive semigroup generated by αAþ V

changes with positive scalar α at a rate less than or equal to ωðAÞ,
where A is also a generator, and V is an operator of multiplica-
tion. Movement of a reactant in a heterogeneous environment is
often of this form, where V represents the local growth or decay
rate, and α represents the rate of mixing. Lossless mixing means
ωðAÞ ¼ 0, while lossy mixing means ωðAÞ < 0, so this result im-
plies that greater mixing reduces the reactant’s asymptotic growth
rate, or increases its asymptotic decay rate. Decreased growth or
increased decay are familiar results when A is a diffusion opera-
tor, so what is new here is the generality shown for this phenom-
enon. At the root of this result is a theorem by Kingman on the
“superconvexity” of the spectral radius of nonnegative matrices
(1). The logical route progresses from Kingman through Cohen
(2) to Kato (3). The historical route begins in population genetics.

In early theoretical work to understand the evolution of genet-
ic systems, Feldman, colleagues, and others kept finding a com-
mon result from each model they examined (4–14)—be they
models for the evolution of recombination, or of mutation, or
of dispersal. Evolution favored reduced levels of these processes
in populations near equilibrium under constant environments,
and this result was called the Reduction Principle (11).

These results were found for finite-dimensional models. But
the same reduction result has also been found in models for
the evolution of unconditional dispersal in continuous space, in
which matrices are replaced by linear operators. This finding
raises the questions of whether this common result, discovered
in such a diversity of models, reflects a single mathematical phe-
nomenon. Here, the question is answered affirmatively.

The mathematical underpinnings of the reduction principle
for finite-dimensional models were discovered by Sam Karlin
(15, 16) [although he did not realize it, and he had earlier pro-
posed an alternate to the reduction principle—the mean fitness
principle (17), which was found to have counterexamples (18)].
Karlin wanted to understand the effect of population subdivision
on the maintenance of genetic variation. Genetic variation is
preserved if an allele has a positive growth rate when it is rare,
protecting it from extinction. The dynamics of a rare allele are
approximately linear, and of the form

xðtþ 1Þ ¼ ½ð1 − αÞIþ αP�DxðtÞ; [1]

where xðtÞ is a vector of the rare allele’s frequency at time t among
different population subdivisions, α is the rate of dispersal be-
tween subdivisions, P is the stochastic matrix representing the
pattern of dispersal, andD is a diagonal matrix of the growth rates
of the allele in each subdivision. The allele is protected from
extinction if its asymptotic growth rate when rare is greater than
1. This asymptotic growth rate is the spectral radius,

rðAÞ≔ supfjλj: λ ∈ σðAÞg; [2]

where σðAÞ is the set of eigenvalues of matrix A.
Karlin discovered that for MðαÞ≔½ð1 − αÞIþ αP�, the spectral

radius, rðMðαÞDÞ, is a decreasing function of the dispersal rate α,
for arbitrary strongly connected dispersal pattern:

Theorem 1. (Karlin's Theorem 5.2) [(16), pp. 194–196] Let P be
an arbitrary nonnegative irreducible stochastic matrix. Consider
the family of matrices

MðαÞ ¼ ð1 − αÞIþ αP; 0 < α < 1.

Then for any diagonal matrix D with positive terms on the diagonal,
the spectral radius

rðαÞ ¼ rðMðαÞDÞ
is decreasing as α increases (strictly provided D ≠ dI).

Karlin’s Theorem 5.2 means that greater mixing between sub-
divisions produces lower rðMðαÞDÞ, and if it goes below 1, the
allele will go extinct. While this theorem was motivated by the
issue of genetic diversity in a subdivided population, its form ap-
plies generally to situations where differential growth is combined
with mixing. D could just as well represent the investment returns
on different assets and P a pattern of portfolio rebalancing. Or D
could represent the decay rates of reactant in different parts of a
reactor, and P a pattern of stirring within the reactor. In a very
general interpretation, Theorem 5.2 means that greater mixing
reduces growth and hastens decay.

If the dispersal rate α is not an extrinsic parameter, but is a
variable which is itself controlled by a gene, then a gene which
decreases α will have a growth advantage over its competitor
alleles. The action of such modifier genes produces a process
that will reduce the rates of dispersal in a population. Therefore,
Theorem 5.2 also means that differential growth selects for reduced
mixing.

In the evolutionary context, the generality of the mixing pat-
tern P in Karlin’s Theorem 5.2 makes it applicable to other kinds
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of “mixing” besides dispersal. The pattern matrix P can just as
well refer to the pattern of mutations between genotypes, and
then α refers to the mutation rate. Or P can represent the pattern
of transmission when two loci recombine, and then α represents
the recombination rate. The early models for the evolution of
recombination and mutation that exhibited the reduction princi-
ple in fact had the same form as Eq. 1 for the dynamics of a rare
modifier allele. Once this commonality of form was recognized
(19–21), it was clear that Karlin’s theorem explained the repeated
appearance of the reduction result in the different contexts, and
generalized the result to a whole class of genetic transmission
patterns beyond the special cases that had been analyzed.

The dynamics of movement in space have been long modeled
by infinite-dimensional models, where space is continuous and
the concentrations of a quantity at each point are represented
as a function. The dynamics of change in the concentration are
modeled as diffusions, where the Laplacian or elliptic differential
operator or nonlocal integral operator takes the place of the
matrix P in the finite-dimensional case. When the substance
grows or decays at rates that are a function of its location, the
system is often referred to as a reaction diffusion. In reaction-
diffusion models for the evolution of dispersal, the reduction
principle again makes its appearance (22) (23, Lemma 5.2) (24,
Lemma 2.1) (25). In nonlocal diffusion models, again the reduc-
tion principle appears (26). This repeated occurrence points to
the possibility of an underlying mathematical unity.

Here, a broad characterization of this “reduction phenomen-
on” is established by generalizing Karlin’s theorem to linear
operators. The reduction results previously found for various
linear operators are, therefore, seen to be special cases of a
general phenomenon.

This result is actually implicit in Kato’s generalization (3) of
Cohen’s theorem (2) on the convexity of the spectral bound of
essentially nonnegative matrices with respect to the diagonal
elements of the matrix. It is educed from Kato’s theorem here
by means of an elementary “dual convexity” lemma.

Kato’s goal in ref. 3 was to generalize, from matrices to linear
operators, Cohen’s convexity result (2):

Theorem 2. (Cohen) (2) Let D be diagonal real n × nmatrix. Let A be
an essentially nonnegative n × n matrix. Then sðA þ DÞ is a convex
function of D.

Here, sðA þ DÞ is the spectral bound—the largest real part
of any eigenvalue of A þ D. A synonym for the spectral bound
used in the matrix literature is the spectral abscissa (27, 28). When
the spectral bound is an eigenvalue, it is also referred to as the
principal eigenvalue (29), dominant eigenvalue (30), dominant root
(31), Perron-Frobenius eigenvalue (32), or Perron root (33). “Essen-
tially nonnegative”means that the off-diagonal elements are non-
negative. Synonyms include “quasi-positive” (34), “Metzler,”
“Metzler-Leontief,” “ML” (32), and “cooperative” (35).

Cohen’s proof relied upon the following theorem of Kingman:

Theorem 3. (Kingman) (1) Let A be an n × n matrix whose elements,
AijðθÞ, are nonnegative functions of the real variable θ, such that they
are “superconvex,” i.e., for each i, j, either logAijðθÞ is convex in θ
[AijðθÞ is log convex], or AijðθÞ ¼ 0 for all θ. Then the spectral ra-
dius of A is also superconvex in θ.

Kato generalized Cohen’s result to linear operators by first
generalizing Kingman’s theorem. Before presenting Kato’s theo-
rem, some terminology needs to be introduced:

X represents an ordered Banach space or its complexification.
Xþ represents the proper, closed, positive cone of X , assumed

to be generating and normal (see ref. 3).

BðXÞ represents the set of all bounded linear operators
A: X → X .

A is a positive operator if AXþ ⊂ Xþ.
The resolvent of A is Rðξ;AÞ≔ðξ − AÞ−1, the operator inverse of

ξ − A, ξ ∈ C.
The resolvent set ρðAÞ ⊂ C are those values of ξ for which

ξ − A is invertible.
The spectrum of A ∈ BðXÞ, σðAÞ, is the complement of the

resolvent set, ρðAÞ.
The spectral bound of closed linear operator A, not necessarily

bounded, is

sðAÞ≔
�
supfReðλÞ: λ ∈ σðAÞg if σðAÞ ≠ ∅
−∞ if σðAÞ ¼ ∅ :

The type (growth bound) of an infinitesimal generator, A, of a
strongly continuous (C0) semigroup, fetA: t > 0g, is

ωðAÞ≔lim
t→∞

1

t
log∥etA∥ ¼ log rðeAÞ:

Generally, −∞ ≤ sðAÞ ≤ ωðAÞ < ∞, but conditions for
sðAÞ ¼ ωðAÞ or sðAÞ < ωðAÞ are part of a more involved theory
for the asymptotic growth of semigroups (see refs. 36–38).

Definition 1:Operator A is resolvent positive if there is ξ0 such that
ðξ0;∞Þ ⊂ ρðAÞ and Rðξ;AÞ is positive for all ξ > ξ0 (39).

The relationship of the resolvent positive property to other
familiar operator properties includes the following list of key
results:

1. If A generates a C0-semigroup Tt, then Tt is positive for all t ≥
0 if and only if A is resolvent positive (ref. 38, p. 188).

2. If A is a resolvent positive operator defined densely on
X ¼ CðSÞ, the Banach space of continuous complex-valued
functions on compact space S, then A generates a positive
C0-semigroup [(38), Theorem 3.11.9].

3. If A is resolvent positive and its domain, DðAÞ ⊂ X , is dense in
X , then for every f ∈ DðA2Þ, there exists a unique solution,
uðtÞ ∈ DðAÞ for all t ≥ 0, u ∈ C1ð½0;∞Þ;XÞ, to the Cauchy
problem (39, Theorem 7.1)

∂u
∂t

¼ AuðtÞ ðt ≥ 0Þ; uð0Þ ¼ f :

4. If A is resolvent positive then: sðAÞ < ∞; if σðAÞ is nonempty;
i.e., −∞ < sðAÞ, then sðAÞ ∈ σðAÞ; if ξ ∈ R ∩ ρðAÞ yields
Rðξ;AÞ ≥ 0 then ξ > sðAÞ (3) (38, Proposition 3.11.2).

5. Differential operators higher than second order are never
resolvent positive (40, Corollary 2.3) (41).

6. Well-known examples of resolvent positive operators include
the following (for details see the sample references):

Schrödinger operators − 1
2
Δþ V on LpðRNÞ, where

Δ ¼ ∑N
i¼1 ∂2∕∂x2i is the Laplace operator, and V is an operator

of multiplication with constraints depending on p (see
refs. 42–44).

Second-order elliptic operators on LpðΩÞ,

A ¼ ∑
N

j;k¼1

∂
∂xk

�
ajk

∂
∂xj

�
þ∑

N

j¼1

bj
∂
∂xj

þ ∂
∂xj

ðcj:Þ þ a0;

where Ω ⊂ RN is open, coefficients are measurable and
bounded, ellipticity conditions apply to ajkðxÞ, and appropriate
additional conditions hold for the coefficients, domain and
boundary (45), also e.g., (3, 46, 47).
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Linear integral operators A on X ¼ CðΩ̄Þ defined by

ðAf ÞðxÞ≔
Z
Ω
Kðx;yÞf ðyÞdyþ bðxÞf ðxÞ;

where K ∈ CðΩ̄ × Ω̄;RþÞ, Ω ⊂ RN is bounded, and Kðx;yÞ > 0,
bðxÞ are measurable functions for x, y ∈ Ω̄ (26, 48, 49). A resol-
vent positive combination of integral and differential operator
is analyzed in ref. 50.

Kato’s generalization of Cohen’s theorem is as follows:

Theorem 4. (Generalized Cohen’s Theorem) (3) Consider X ¼ CðSÞ
(continuous functions on a compact Hausdorff space S) or
X ¼ LpðSÞ, 1 ≤ p < ∞, on a measure space S, or more generally,
let X be the intersection of two Lp-spaces with different p’s and
different weight functions. Let A: X → X be a linear operator which
is resolvent positive. Let V be an operator of multiplication on X
represented by a real-valued function v, where v ∈ CðSÞ for
X ¼ CðSÞ, or v ∈ L∞ðSÞ for the other cases. Then sðAþ V Þ is a
convex function of V . If in particular A is a generator of a C0 semi-
group, then both sðAþ V Þ and ωðAþ V Þ are convex in V .

Kato’s theorem is further generalized to Banach lattices by
Arendt and Batty (51) as follows:

Theorem 5. (Generalized Kato’s Theorem) [(51), Theorem 3.5] Let A
be the generator of a positive semigroup on a Banach lattice X , and
letZðXÞ≔fT ∈ LðXÞ: ∃c ≥ 0;jTxj ≤ cjxjðx ∈ XÞg refer to the “cen-
ter” of X . Then the functions V ↦ sðAþ V Þ and V ↦ ωðAþ V Þ
from ZðXÞ into ½−∞;∞Þ are convex.

Results

Theorem 6. (Generalized Karlin’s Theorem) Let A be a resolvent
positive linear operator, and V be an operator of multiplication,
under the same assumptions as Theorem 4 (or let A and V be as
in Theorem 5). Then for α > 0 :

1. sðαAþ V Þ is convex in α;
2. For each α > 0, either

sððαþ dÞAþ V Þ < sðαAþ V Þ þ d sðAÞ ∀ d > 0, or
sððαþ dÞAþ V Þ ¼ sðαAþ V Þ þ d sðAÞ ∀ d > 0;
3. In particular, when sðAÞ ¼ 0 then sðαAþ V Þ is nonincreasing

in α (the reduction phenomenon), and when sðAÞ < 0 then
sðαAþ V Þ is strictly decreasing in α;

4. For each α > 0,

d
dα

sðαAþ V Þ ≤ sðAÞ; [3]

except possibly at a countable number of points α, where the
one-sided derivatives exist but differ:

d
dα−

sðαAþ V Þ < d
dαþ

sðαAþ V Þ ≤ sðAÞ: [4]

If A is a generator of a C0-semigroup, then the above relations on
sðαAþ V Þ also apply to the type ωðαAþ V Þ.
Proof: We consider the general form

ϕðα;βÞ≔sðαAþ βV Þ or ωðαAþ βV Þ; [5]

where α > 0, β ∈ R. Kato (3) explicitly shows that ϕð1;βÞ is convex
in β (which he points out is equivalent to varying V ). Kato's result
is shown to imply the properties claimed for sðαAþ V Þ ¼ ϕðα;1Þ
with respect to variation in α, by Lemma 1, to follow.

Lemma 1. (Dual Convexity) Let x ∈ D1 ¼ ð0;∞Þ and y ∈ D2 ¼
½0;∞Þ. Let f : D1 ×D2 → R have the following properties:

f ðαx;αyÞ ¼ α f ðx;yÞ; for α > 0; and [6]

f ðx;yÞ is convex in y: [7]

Then:

1. f ðx;yÞ is convex in x;
2. For each x ∈ D1, either

(a) f ðxþ d;yÞ < f ðx;yÞ þ d f ð1;0Þ ∀ d ∈ D1; or
(b) f ðxþ d;yÞ ¼ f ðx;yÞ þ d f ð1;0Þ ∀ d ∈ D1.

For y ≠ 0, if f ðx;yÞ is strictly convex in y, then f ðx;yÞ is strictly con-
vex in x, and f ðxþ d;yÞ < f ðx;yÞ þ d f ð1;0Þ.

3. For each x ∈ D1,

∂
∂x

f ðx;yÞ ≤ f ð1;0Þ;

except possibly at a countable number of points x, where the
one-sided derivatives exist but differ:

∂
∂x−

f ðx;yÞ < ∂
∂xþ

f ðx;yÞ ≤ f ð1;0Þ:

The lemma holds if we substitute D1 ¼ ð−∞;0Þ or D2 ¼
ð−∞;0� or both.

Proof:
1. f ðx;yÞ is convex in x.

The relation f ðαx;αyÞ ¼ α f ðx;yÞ (f is homogeneous of degree
one) allows a set of rescalings that transform convexity in y into
convexity in x. It is perhaps worth noting that this relation is
actually a homomorphism, which can be put into a more fa-
miliar form by defining a product x⋆y≔f ðx;yÞ, and function
ψðxÞ≔αx, which gives ψðxÞ⋆ψðyÞ ¼ ψðx⋆yÞ.
For the case y ¼ 0, Eq. 6 gives f ðαx;0Þ ¼ αf ðx;0Þ, so f is trivially
convex in x.
For y ≠ 0, the following derivations have the constraints
y, y1, y2 ∈ D2, y, y1, y2 ≠ 0, and 0 < m < 1, so that
fy;y1;y2;m;1 −m;ð1 −mÞy1 þmy2g are nonzero and their
ratios and reciprocals are always defined, and ratios of yi
terms always positive. These constraints keep the arguments
of f within their domains throughout the rescalings.
Convexity of f ðx;yÞ in y gives

ð1 −mÞf ðx;y1Þ þmf ðx;y2Þ ≥ f ðx;ð1 −mÞy1 þmy2Þ; [8]

for m ∈ ð0;1Þ, y1 ≠ y2. Applying [6] to [8], with respective
substitutions α ¼ y1∕y, α ¼ y2∕y, and α ¼ ½ð1 −mÞy1 þmy2�∕y
in the three f terms, yields:

ð1 −mÞ y1
y
f
�
xy
y1
;y
�
þm

y2
y
f
�
xy
y2
;y
�

≥
ð1 −mÞy1 þmy2

y
f
�

xy
ð1 −mÞy1 þmy2

;y
�
: [9]

Let x1≔xy∕y1 and x2≔xy∕y2 represent the rescaled first argu-
ments for f on the left side of [9] (so x, x1, x2 ∈ D1). We
try the ansatz that x1 and x2 can be combined convexly to
yield the third rescaled argument on the right side of [9]:

xy
ð1 −mÞy1 þmy2

¼ ð1 − hÞx1 þ hx2 ¼ ð1 − hÞ xy
y1

þ h
xy
y2
:

The ansatz has solution
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h ¼ my2
ð1 −mÞy1 þmy2

; and 1 − h ¼ ð1 −mÞy1
ð1 −mÞy1 þmy2

:

Note that h ∈ ð0;1Þ is assured because y1 and y2 have the same
sign, y1 ≠ y2, and m ∈ ð0;1Þ.
Define ϕ≔½ð1 −mÞy1 þmy2�∕y. Then ϕ > 0 because y, y1, and
y2 all have the same sign. Substitution gives ð1 −mÞy1∕y ¼
ð1 − hÞϕ, and my2∕y ¼ hϕ, and [9] becomes:

ð1 − hÞϕf ðx1;yÞ þ hϕf ðx2;yÞ ≥ ϕf ðð1 − hÞx1 þ hx2;yÞ:

After dividing both sides by ϕ > 0,

ð1 − hÞf ðx1;yÞ þ hf ðx2;yÞ ≥ f ðð1 − hÞx1 þ hx2;yÞ; [10]

which is convexity in x [for each ðx1;x2;hÞ;∃ðy1;y2;mÞ]. The case
of strict convexity follows by substituting > for ≥ throughout.

2. Either f ðxþ d;yÞ < f ðx;yÞ þ d f ð1;0Þ ∀ d ∈ D1, or f ðxþ d;yÞ ¼
f ðx;yÞ þ d f ð1;0Þ ∀ d ∈ D1.
If y ¼ 0, then case 2b in Lemma 1 holds by [6]:

f ðxþ d;0Þ ¼ ðxþ dÞf ð1;0Þ ¼ f ðx;0Þ þ d f ð1;0Þ:

For y ≠ 0, the strategy will be to show first that
f ðxþ d;yÞ ≤ f ðx;yÞ þ d f ð1;0Þ. Next, it is shown that if
f ðxþ d;yÞ < f ðx;yÞ þ d f ð1;0Þ for any d ∈ D1, then it is true
for all d ∈ D1.
The steps are shown here only for x, d ∈ D1 ¼ ð0;∞Þ, but they
are readily applied to D1 ¼ ð−∞;0Þ. By [6], for x, d > 0, the
following are equivalent:

f ðxþ d;yÞ ≤ f ðx;yÞ þ d f ð1;0Þ; [11]

ðxþ dÞf
�
1;

y
xþ d

�
≤ xf

�
1;
y
x

�
þ d f ð1;0Þ; and

f
�
1;

y
xþ d

�
≤ x

xþ d
f
�
1;
y
x

�
þ d
xþ d

f ð1;0Þ: [12]

Because 0 < d∕ðxþ dÞ, x∕ðxþ dÞ < 1, the second arguments
for f in [12] are related by convex combination,

y
xþ d

¼ x
xþ d

y
x
þ
�
1 −

x
xþ d

�
� 0;

so [12] is just a statement of the convexity of f ðx;yÞ in y, as
hypothesized. Strict convexity of f ðx;yÞ in y replaces ≤ with
< throughout [11] and [12], yielding case 2a in Lemma 1.
Now, with x > 0, suppose that for some d1 > 0,

f ðxþ d1;yÞ < f ðx;yÞ þ d1f ð1;0Þ: [13]

We shall see that convexity then prevents f ðxþ d;yÞ from ever
returning to the line f ðx;yÞ þ d f ð1;0Þ for d > 0.
We consider five points:

0 < x < xþ d0 < xþ d1 < xþ d2 < xþ d3: [14]

For readability, write gðxÞ≡ f ðx;yÞ and F ≡ f ð1;0Þ. By convexity
[10], and hypothesis [13],

gðxþ d0Þ ≤
�
1 −

d0
d1

�
gðxÞ þ d0

d1
gðxþ d1Þ

<
�
1 −

d0
d1

�
gðxÞ þ d0

d1
ðgðxÞ þ d1FÞ ¼ gðxÞ þ d0F;

and, by [10], [13], and [11] (line 3 below),

gðxþ d2Þ ≤
d3 − d2
d3 − d1

gðxþ d1Þ þ
d2 − d1
d3 − d1

gðxþ d3Þ

<
d3 − d2
d3 − d1

ðgðxÞ þ d1FÞ þ
d2 − d1
d3 − d1

gðxþ d3Þ

≤ d3 − d2
d3 − d1

ðgðxÞ þ d1FÞ þ
d2 − d1
d3 − d1

ðgðxÞ þ d3FÞ

¼ gðxÞ þ d2F:

For the case whereD1 ¼ ð−∞;0Þ, the direction of inequalities
in [14] needs to be reversed, and all the subsequent relations
are preserved.

3. For each x ∈ D1, ∂f ðx;yÞ∕∂x ≤ f ð1;0Þ, except possibly at a
countable number of points x, where the one-sided derivatives
exist but differ: ∂f ðx;yÞ

∂x−
< ∂f ðx;yÞ

∂xþ
≤ f ð1;0Þ.

Rearrangement of [11] gives

f ðxþ d;yÞ − f ðx;yÞ
d

≤ f ð1;0Þ; so [15]

lim
d↓0

f ðxþ d;yÞ − f ðx;yÞ
d

≕ ∂f ðx;yÞ
∂xþ

≤ f ð1;0Þ: [16]

For y ¼ 0, equality holds in [15] for all d > 0. For y ≠ 0,
because f ðx;yÞ is convex in x on the open interval D1, the
left-sided and right-sided derivatives always exist, and differ
at most at a countable number of points, at which the right-
sided derivative [16] is greater than the left-sided derivative
[(52) Proposition 17, pp. 113–114].

A concavity version of the lemma may be trivially produced by
reversal of the convexity inequalities.

Remark 1: It would be clearly desirable to characterize the condi-
tions for strict convexity in Kato’s theorem, so that by Lemma 1,
one would obtain strict convexity in Theorem 6, item 1, and strict
monotonicity in items 3 and 4. Item 2 is the best that can be
offered in the way of strict inequality without strict convexity. But
the problem is more technical and is deferred to elsewhere.

It is reasonable, nevertheless, to conjecture that the properties
which produce strict convexity in the matrix case (ref. 53, Theo-
rem 4.1) (ref. 54, Theorem 1.1) extend to their Banach space
versions: i.e., for a > 0, when resolvent positive operator A is
irreducible (ref. 55, p. 250) (ref. 51, p. 41), then sðαAþ βV Þ is
strictly convex in β if and only if V is not a constant scalar.

The conjectured sharpening of Theorem 6 to strict inequality
would have application to continuous-space models for the evo-
lution of dispersal, and show populations to be invadable by
less-dispersing organisms when they experience spatially hetero-
geneous growth rates (a “selection potential” as defined in
ref. 20). This invasibility result is a key element of the Reduction
Principle, and is first stated generally for finite matrix models in
refs. 19, pp. 118, 126, 137, 195, 199 and 20, Results 2, 3. The
invasibility result's primary implication is that for a population
to be non-invadable, it must experience no spatial heterogeneity
of growth rates where it has positive measure, and this points to-
ward ideal free distributions (defined to be those which spatially
equalize the growth rates when this is possible), as the evolutio-
narily stable states. For reviews and recent developments, see
refs. 56–60.

A Third Proof of Karlin’s Theorem 5.2. Karlin’s proof is based on the
Donsker-Varadhan variational formula for the spectral radius
(62). Kirkland, et al. (56) recently discovered another proof using
entirely structural methods. A third distinct proof of Karlin’s
theorem is seen as follows by application of Lemma 1 to Cohen’s

3708 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1113833109 Altenberg



theorem, combined with Friedland’s equality condition [(53),
Theorem 4.1] (see also refs. 53 and 62 for other proof methods).

The expression in Karlin’s Theorem 5.2 can be put into the
form used in Theorem 6:

MðαÞD ¼ ½ð1 − αÞIþ αP�D ¼ αðP − IÞDþ D ¼ αA þ βD;

where A ¼ ðP − IÞD, α ∈ ð0;1Þ, and β ¼ 1. Because MðαÞD is a
nonnegative matrix when α ∈ ð0;1Þ, by Perron-Frobenius theory
its spectral bound sðMðαÞDÞ equals its spectral radius rðMðαÞDÞ.

Cohen’s theorem gives that sðαA þ βDÞ is convex in β, and thus
by Lemma 1, sðαA þ βDÞ is convex in α > 0 and

∂sðαA þ βDÞ
∂α

≤ sðAÞ ¼ sððP − IÞDÞ ¼ 0; [17]

the right identity seen because e⊤ðP − IÞD ¼ ðe⊤ − e⊤ÞD ¼ 0,
where e is the vector of ones, and e⊤ is its transpose.

Strict convexity in β is shown by Friedland (ref. 53, Theorem
4.1) to occur when P is irreducible and D ≠ cI, for any c > 0.
Strict convexity in β implies, by Lemma 1, that rðMðαÞDÞ ¼
sðMðαÞDÞ is strictly convex and decreasing in α.

Remark 2:The core of Kirkland, et al.’s (56) proof of Theorem 1 is
their Lemma 4.1, which can be expressed as

e⊤AðuðAÞ ∘ vðAÞÞ ≥ uðAÞ⊤AvðAÞ ¼ sðAÞ;

with equality only when e⊤A ¼ sðAÞe⊤, where uðAÞ⊤ and vðAÞ are
the left and right eigenvectors of A associated with the Perron
root sðAÞ, and u ∘ v is the Schur-Hadamard (elementwise)
product.

Kirkland, et al.’s (55) result, except for the equality condition,
is a special case of ref. 63 Theorem 3.2.5 that x⊤Ay ≥ sðAÞ for any
x;y ≥ 0:x ∘ y ¼ uðAÞ ∘ vðAÞ. To obtain the equality condition re-
quires an approach Kirkland, et al.’s (55) distinct proof provides.

Remark 3: Schreiber and Lloyd-Smith [(64) Appendix B, Lemma
1] followed the reverse path and extended Kirkland, et al’s result
on sðMðαÞDÞ to the form sðαA þ DÞ, where A is essentially non-
negative and D any diagonal matrix.

Remark 4:Kato (3) notes that the Donsker-Varadhan formula pro-
vides another route besides Kingman’s theorem to his generali-
zation of Cohen’s theorem (but with more restrictive conditions).
Indeed, Friedland (53) uses the Donsker-Varadhan formula to
prove Cohen’s theorem augmented by strict convexity. The dual
convexity relationship shown here between Cohen’s and Karlin’s
theorems means that both routes of proof apply as well to Karlin’s
theorem. Given these parallels, the relationship between the
theorem of Kingman and the theorem of Donsker and Varadhan
invites deeper study.

Lemma 1 combined with Cohen’s theorem can also be used to
give a new proof of an inequality of Lindqvist, the special case
considered in ref. 65, Theorem 2, pp. 260–261.

Theorem 7. (Lindqvist) [(65), Theorem 2, subcase ] Let A be an
irreducible n × n real matrix such that (i) Aij ≥ 0 for i ≠ j, and
(ii) The left and right eigenvectors of A, uðAÞ⊤ and vðAÞ, associated
with eigenvalue sðAÞ, satisfy uðAÞ⊤vðAÞ ¼ 1. Let D be an n × n real

diagonal matrix. Then

sðA þ DÞ − sðAÞ ≥ uðAÞ⊤DvðAÞ: [18]

Proof: Because A is an irreducible essentially nonnegative matrix,
sðAÞ is an eigenvalue of multiplicity 1. Consider the representa-
tion A ¼ αB − D, where B is essentially nonnegative and α > 0.
Write s≡ sðAÞ. Because A is irreducible, it has unique u≡
uðAÞ and v≡ vðAÞ given u⊤v ¼ e⊤v ¼ 1, and all the derivatives
exist (28) in the following derivation [(66), Sec. 9.1.1]:

u⊤
∂ðAvÞ
∂α

¼ u⊤
�
∂A
∂α

vþ A
∂v
∂α

�
¼ u⊤Bvþ su⊤

∂v
∂α

¼ u⊤
∂
∂α

ðsvÞ

¼ u⊤
�
∂s
∂α

vþ s
∂v
∂α

�
¼ ∂s

∂α
þ su⊤

∂v
∂α

:

Cancellation of terms su⊤∂v∕∂α gives

∂sðAÞ
∂α

¼ uðAÞ⊤ ∂A
∂α

vðAÞ ¼ uðAÞ⊤BvðAÞ ≤ sðBÞ;

the inequality derived as in Eq. 17. Scaling by α, subtracting D,
and substituting αB ¼ A þ D, we get

uðAÞ⊤ðαB − DÞvðAÞ ¼ sðAÞ ≤ sðαBÞ − uðAÞ⊤DvðAÞ
⇔ uðAÞ⊤DvðAÞ ≤ sðA þ DÞ − sðAÞ:

A Key Open Problem. In some physical systems, and in biological
applications especially, there may be multiple, independently var-
ied operators acting on a quantity [e.g., diffusion with indepen-
dent advection (ref. 67, eq. 2.9)], or the variation may not scale
the mixing process uniformly [e.g., conditional dispersal (68, 69)],
so that variation is not of the form αAþ V but rather αAþ B,
where B is a linear operator other than an operator of multiplica-
tion. Examples are known where departures from reduction oc-
cur; i.e., dsðαAþ BÞ∕dα > sðAÞ. Results for the form αAþ B have
been obtained for symmetrizable finite matrices in models of
multilocus mutation (70), and dispersal in random environments
(71). Some results for Banach space models have also been ob-
tained (67–69, 72–77).

A key open problem, then, is to find necessary or sufficient
conditions on Banach space operators, B, such that ∂sðαAþ βBÞ∕
∂α ≤ sðAÞ (which may depend on A, β/α, domain, and boundary
conditions). A sufficient condition is that sðαAþ βBÞ be convex
in β, by Lemma 1. Thus, the dual problem is to ask: for which
B is sðαAþ βBÞ convex in β? Some results towards this problem
are in ref. 78. Kato obtained Theorem 4 with operators of
multiplication, V , because the family of operators eβV is semi-
group-superconvex in β (definition in ref. 3), but this semi-
group-superconvexity approach faces the challenge that, “It is
in general difficult to find a nontrivial semigroup-superconvex
family B(h)” (3).
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