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Visual cortical surface area varies two- to threefold between human
individuals, is highly heritable, and has been correlated with visual
acuity and visual perception. However, it is still largely unknown
what specific genetic and environmental factors contribute to
normal variation in the area of visual cortex. To identify SNPs as-
sociated with the proportional surface area of visual cortex, we
performed a genome-wide association study followed by replica-
tion in two independent cohorts.We identified one SNP (rs6116869)
that replicated in both cohorts and had genome-wide significant
association (Pcombined = 3.2 × 10−8). Furthermore, a metaanalysis of
imputed SNPs in this genomic region identified a more significantly
associated SNP (rs238295; P = 6.5 × 10−9) that was in strong linkage
disequilibrium with rs6116869. These SNPs are located within 4 kb
of the 5′ UTR of GPCPD1, glycerophosphocholine phosphodiester-
ase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is
more highly expressed in occipital cortex compared with the re-
mainder of cortex than 99.9% of genes genome-wide. Based on
these findings, we conclude that this common genetic variation
contributes to the proportional area of human visual cortex. We
suggest that identifying genes that contribute to normal cortical
architecture provides a first step to understanding genetic mecha-
nisms that underlie visual perception.
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Primates, including humans, rely on vision to navigate their
environment, find food, and avoid predators. Visual perfor-

mance varies between primate species partly because of genetic
variation, and better vision may have provided an evolutionary
fitness advantage. For example, allelic diversity of visual pigments
in the eye evolved convergently in apes, Old World monkeys, and
howler monkeys (1) and enabled red–green color discrimination,
enhancing these primates’ ability to identify sources of food (2).
Visual performance also varies within primate species, such as

between human individuals (3), and this performance may be
correlated with the number of neurons available to process visual
information. Indeed, two studies of healthy human subjects
found that increased surface area of primary visual cortex (V1)
and thus, more neurons in V1 (4) were associated with increased
Vernier acuity (5) and decreased susceptibility to two optical
illusions (6). It is striking that visual cortical surface area is as-
sociated with optical illusion strength, because this result implies

that the number of neurons in V1 can explain human variation in
the conscious perception of seemingly physically identical stimuli.
Individuals have highly variable portions of their brains de-

voted to visual processing, because the surface areas of visual
cortical regions (e.g., V1, V2, and V3 in the occipital lobe) are
correlated and vary two- to threefold in humans (7, 8). This
variation is significantly greater than variation in total cortical
area, and therefore, both the absolute area and proportion of the
cortical sheet allocated to processing vision varies between
individuals. Moreover, a recent human twin study showed strong
genetic correlations between the area of V1 and the remainder
of occipital cortex but not other cortical lobes (9), suggesting that
occipital visual areas share common genetic influences. How-
ever, it is still largely unknown what specific genetic and envi-
ronmental factors contribute to normal variation in the absolute
and proportional size of occipital cortex. To address this ques-
tion, we performed a genome-wide association study (GWAS) to
identify SNPs associated with the proportional surface area of
occipital cortex in two independent human cohorts.
Human twin studies have shown a significant genetic compo-

nent to cortical volume (10–12) and surface area (>80% heri-
table) (13–16), and the occipital proportion of cortex is also quite
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heritable (25–50%) (11, 13). These studies reveal that genes have
both global and regional effects on cortical surface area, which
also seems to be true in mice. For example, the work by Airey
et al. (17) reported that two strains of inbred mice with different
genetic backgrounds have different proportions of cortex allo-
cated to primary visual and somatosensory cortex, and these
strains can be reliably discriminated based on these regional as
well as global measures of cortical surface area.
Furthermore, specific homeobox transcription factors (e.g.,

EMX2 and PAX6) have been identified that are expressed in
gradients across the surface of the mouse brain during neural
development and control the anterior–posterior distribution of
cortical areas (18, 19). Cortex-specific overexpression of EMX2
in mice resulted in an expansion of occipital areas and a corre-
sponding reduction in sensory and motor areas that led to dys-
functional tactile and motor behaviors (20). Similarly, EMX2 and
PAX6 may be expressed in gradients during neural development
in human subjects (21), and individuals with protein coding
mutations in PAX6 (22, 23) exhibit cortical malformations. In
addition, EMX2 mutations have been associated with schi-
zencephaly, a rare cortical developmental disorder (24, 25), al-
though these mutations likely explain a small fraction of this
disease burden (26, 27). Finally, mutations in the laminin gene
LAMC3 have been associated with cortical malformations solely
within the occipital lobe (28), providing additional evidence for
genetic control over regional cortical development.
Genetic variants may also mediate more subtle variation in

human cortical structure. For example, two candidate gene studies
recently identified SNPs in microcephaly genes (29) and MECP2
(30) that explained a small but statistically significant amount of
variation in total cortical surface area between human individuals
and were replicated in independent study populations.
In this study, we extend the analysis of the datasets used in

those studies in two ways. First, we performed an unbiased
GWAS rather than selecting candidate genes to identify genetic
loci that contribute to normal variation in human cortical
structure. Second, we analyzed the scaling of occipital cortical
surface area with total cortical area because of the evidence from
mice and human twin studies that this scaling relationship may
be under independent genetic control from overall brain size.

Results
In a sample of 421 human subjects with Norwegian ancestry from
the Thematic Organized Psychoses (TOP) study, we found that
occipital cortical surface area is highly correlated with total
cortical area (r = 0.85, P = 3.1 × 10−118). The occipital cortex
occupied, on average, 12.1% of total cortical surface area re-
gardless of brain size, and the occipital fraction of cortex ranged
from 11.1% to 14.8% in all subjects. We hypothesized that this
variation was partly because of genetic differences between
subjects. Therefore, we tested SNPs genome-wide for their effect
on the scaling relationship between occipital and total cortical
surface area. Specifically, we tested each SNP in a GWAS for the
strength of the interaction between the SNP minor allele account
and total cortical surface area in predicting occipital cortical
surface area, while controlling for sex, age, and diagnosis. This
interaction effect would reflect the degree to which the SNP
accentuated the influence of overall cortical surface area on oc-
cipital cortical surface area (i.e., modified the scaling relationship
between total and occipital cortical surface area).
One SNP (rs6116869; minor allele frequency = 0.36) showed

strong interaction association (P= 7.75 × 10−8, β= 0.0285, SE =
0.0052, n = 413) with occipital cortical surface area, although
this SNP did not quite reach genome-wide significance (P < 5 ×
10−8). A quantile–quantile plot of −log10 (P values) from the
GWAS revealed moderate genomic inflation (λGC = 1.25), and
this inflation suggested that the original SNP P value may have
been artificially low. Thus, we sought a more accurate estimate of

the P value in two ways: (i) accounting for genetic relatedness
between subjects and (ii) permutation testing. In addition, we
tested the SNP for association in two independent replication
cohorts and interaction association with surface area across the
whole cortex. Finally, we investigated the cortical expression
pattern of GPCPD1, a nearby gene, in two human brains.
First, despite the fact that subjects were unrelated and self-

reported Norwegian ancestry, we hypothesized that subtle pop-
ulation structure or cryptic relatedness could have compromised
the statistical independence of subjects. A lack of independence
would have decreased SNP variance estimates and associated P
values, resulting in genomic inflation.We approximated population
structure in our studyby using principle components analysis (PCA)
to estimate major axes of variation of genome-wide allele fre-
quencies. We repeated the GWAS and controlled for sex, age, and
diagnosis as well as population structure along the first four axes
from the PCA, which has been shown to help correct for population
stratification (31). We found that genomic inflation was slightly
reduced (λGC= 1.23), and rs6116969 association was now genome-
wide significant (P = 4.95 × 10−8, β = 0.0289, SE = 0.0052). We
performed genomic control, and rs6116869 still showed markedly
stronger association (PGC = 8.79 × 10−7, β = 0.0289, SEGC =
0.0058) than other SNPs (Fig. 1 and Figs. S1 and S2).
Next, we used permutation tests to estimate the significance of

rs6116869 association, and the permuted P value (Pperm = 6 ×
10−7) supported the genomic control P value, suggesting that
genomic control had effectively corrected for inflation. Thus, for
the remainder of the analysis, we report the conservative geno-
mic control SEs and P values.
Given the significant interaction effect between rs6116869 and

total cortical area, we expected that the slope of the linear re-
gression that related occipital to total cortical surface area would
vary based on rs6116869 genotype. Indeed, we found that each
copy of the SNP minor allele increased the slope by 28% (Fig.
2A). On average, the occipital cortex of subjects heterozygous for
rs6116869 (GT genotype; n = 184) occupied 12.7% of total
cortical surface area, and this occipital proportion was in-
dependent of total cortical area (Fig. 2B). In contrast, subjects
homozygous for the major allele (GG; n = 171) had an occipital
proportion that decreased from 13.2% to 12.6%, on average,
over the range of total cortical areas observed in our study. In-
versely, subjects homozygous for the minor allele (TT; n = 58)

Fig. 1. Genomic region showing the strongest SNP association with occip-
ital cortical area scaling. Genotyped (♢) and imputed (○) SNPs are colored
based on linkage disequilibrium (r2) with rs6116869. Combined P values for
rs6116869 and rs238295 (▿) are genome-wide significant (P < 5 × 10−8;
dotted line) based on a metaanalysis of the GWAS and two replication
studies. rs238288 is not labeled and is located in between these two SNPs.
P values are corrected for genomic inflation.
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had an occipital proportion that increased from 12.5% to 13.2%
over this same range. These 0.6% differences in the occipital
proportion of cortex based on rs6116869 genotype represented
a difference in absolute occipital cortical area of ∼11 cm2, equal
to almost one-half the area of V1 (6). Therefore, for example, in
the subset of subjects with relatively large total cortical surface
area (∼2,000 cm2), subjects with the GG genotype had an oc-
cipital cortical area of 251 cm2, whereas subjects with the TT
genotype had an occipital cortical area of 262 cm2.
We sought to replicate the rs6116869 association with occipital

cortical area in two independent cohorts. First, we used 482
subjects—healthy controls or diagnosed with mild cognitive im-
pairment (MCI)—from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset who clustered with European reference
populations based on genome-wide genotype data. rs238288 was
the closest proxy for rs6116869 that was genotyped in the ADNI
sample, and this SNP was highly correlated (r2 = 0.96 in HapMap
CEU population with northwestern European ancestry) with and
2.5 kb upstream from rs6116869. We tested rs238288 for a sig-
nificant interaction with total cortical surface area in predicting
occipital cortical surface area with the identical test used in the

GWAS (i.e., controlling for sex, age, diagnosis, and population
structure). We found modest genomic inflation (λGC = 1.19) (Fig.
S3) in the ADNI study that was comparable with the inflation
observed in the TOP study. rs238288 was significantly associated
before (one-tailed P= 0.0083, β= 0.0123, SE = 0.0051, n= 477)
and after (PGC = 0.015) genomic control.
For our second replication cohort, we selected 278 subjects

(aged 6–21 y old) from the Pediatric Imaging, Neurocognition,
and Genetics (PING) study who clustered with European ref-
erence populations based on genome-wide genotype data. We
excluded PING subjects younger than 6 y, because brain volume
increases more than fourfold after birth and then, is mostly
stable from age 6 y to adulthood (32). Likewise, cortical surface
area decreases less than 10% during adolescence between the
ages of 6 and 22 y (33), and therefore, we expected that the effect
of genetic variation on the scaling of occipital cortical area would
have occurred earlier in development and would be apparent in
this younger replication cohort. Indeed, we found that rs238288
(the closest proxy for rs6116869) provided a second replication
of the GWAS result (one-tailed P = 0.018, β = 0.0208, SE =
0.0098, n = 278). No genomic inflation was observed in this
dataset (λGC = 1.00). The combined P value for rs6116869 from
the GWAS and two replication studies was genome-wide sig-
nificant (Pcombined = 3.21 × 10−8) based on an inverse variance-
weighted z score (34).
To refine the association of this genetic locus with occipital

cortical area scaling, we imputed SNPs for the TOP, ADNI, and
PING samples in a 300-kb window around rs6116869 and per-
formed a metaanalysis of these SNPs. We combined the genomic
controlled P values for the imputed SNPs from the three studies
(Fig. 1), and we identified the SNP (rs238295) that was most
significantly associated (Pcombined = 6.48 × 10−9). rs238295 was
highly correlated with and proximal to both rs6116869 (r2 = 0.88,
6 kb upstream) and rs238288 (r2 = 0.84, 3.5 kb upstream).
Given the finite extent of the cortex, we expected that a relative

increase in occipital cortical surface area would be associated
with a compensatory decrease in surface area in other cortical
regions. Therefore, we performed a region of interest analysis
in the TOP, ADNI, and PING samples and tested rs238295 for
association with 66 regions defined by cortical folding patterns.
For each cortical region, we calculated the genomic inflation
adjusted P value for the interaction between rs238295 and total
cortical surface area, and we combined these P values from the
three studies (Table S1). As expected, we found that rs238295 was
strongly associated with the surface area of occipital cortical
regions, including the bilateral pericalcarine area that is highly
correlated with the V1 area (7) as well as lingual and lateral oc-
cipital areas. Intriguingly, rs238295 was also significantly associ-
ated with left superior and lateral temporal cortical areas in all
three studies but in the opposite direction relative to the associ-
ation with occipital cortical area. Thus, individuals homozygous at
rs238295 with a relatively large occipital cortex had a relatively
small left temporal cortex and vice versa.
To better visualize the SNP association with different cortical

regions in the TOP cohort, we tested the interaction association
of rs6116869 with total cortical area at each location across the
cortical surface. A cortical map of −log10 (P values) broadly
supported the region of interest analysis and also highlighted
significant SNP associations with bilateral superior frontal cor-
tical regions in the TOP study (Fig. 3).
The genotyped SNP that was most significantly associated

with the occipital cortical area in the TOP sample (rs6116869)
is located ∼3 kb upstream of the protein coding gene GPCPD1,
glycerophosphocholine phosphodiesterase GDE1 homolog (Sac-
charomyces cerevisiae), and the most significant imputed SNP in
the combined analysis of both TOP and ADNI samples (rs238295)
is located 6 kb downstream in the first intron of GPCPD1. These
SNPs are at the end of a 100-kb linkage disequilibrium block

Fig. 2. Occipital cortical area scaling varies by rs6116869 genotype. (A) The
slope of occipital cortical area scaling with total cortical area increases with
the number of minor alleles. For each genotype, subjects are grouped into
seven bins with an equal number of subjects in each bin (24, 26, and 8 sub-
jects per bin for genotypes GG, GT, and TT, respectively). Binned averages ±
SEM (dark) and regression lines fit to individual (light) measures are plotted.
(B) Occipital proportion of cortex varies based on total cortical area and
genotype. Subjects are binned as in A, and occipital proportions (occipital
area divided by total cortical area) are plotted for individuals (light). Binned
averages ± SEM (dark) are indicated.
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that spans the full length of the gene, and this block includes
a DNA sequence just upstream of the promoter to 30 kb distal
to the 3′ UTR.
We explored the cortical expression pattern of GPCPD1 in

two adult brains using the Allen Human Brain Atlas (35), and we
found that this gene had 1.5-fold greater expression specifically
in occipital cortex compared with other cortical regions (Fig. S4).
This relatively higher occipital expression was supported by two
independent probes used to assess GPCPD1 expression in both
brains and more significant (P = 2.1 × 10−19) than 99.9% of genes
(all but 11 genes) genome-wide (SI Materials and Methods).

Discussion
We performed a GWAS of occipital cortical area scaling with
total cortical surface area in human individuals, and we identi-
fied one SNP (rs6116869) that showed strong association (P =
8.8 × 10−7) and replicated in two independent cohorts with a
combined P value that was genome-wide significant (Pcombined =
3.2 × 10−8). A metaanalysis of nearby SNPs identified rs238295,
in strong linkage disequilibrium with rs6116869, as the most
significantly associated SNP (Pcombined = 6.5 × 10−9). Further-
more, rs238295 was associated with the scaling of left temporal
cortical area in opposition to the scaling of occipital cortical
area. These SNPs are located near the 5′ UTR of GPCPD1,
a gene that is more highly expressed in the occipital cortex
compared with other cortical regions in the adult human brain
than virtually any other gene.
In humans, components of the visual system—retina, optic

nerve, and visual thalamus and cortex (V1, V2, and V3)—scale
in size together (7, 8). Moreover, mammalian brain size explains
more than 95% of the variation in size of individual brain
components, including neocortex, presumably because of evolu-
tionarily conserved constraints on neural development (36).
However, there is also evidence for mosaic brain evolution, when
sets of functionally or anatomically linked brain structures have
evolved independently of brain size (37). For example, although
visual thalamus and V1 are highly correlated in size in primates,
including humans, these visual structures are significantly smaller
than would be expected for a nonhuman primate with a brain of
human size (38). The mosaic evolution of primary visual cortical
surface area among primates suggests that this region was under
independent genetic control from the remainder of cortex on
the evolutionary lineage leading to modern humans. Genetic

variation between primate species that explains differences in the
relative sizes of visual cortex may contribute to the two- to
threefold variation in surface area of visual cortical regions ob-
served between human individuals.
We found that the proportional area of occipital cortex varied

by 33% between individuals (range = 0.11–0.15), and this phe-
notype showed the same pattern of association with rs238295 as
the absolute occipital cortical area. Likewise, the work by
Schwarzkopf et al. (6) found that illusion strength was signifi-
cantly correlated with both the absolute and proportional sizes of
primary visual cortex. If a larger fraction of the cortex is allo-
cated to visual processing, then less cortical area and likely, fewer
neurons (4, 39) are available to process information in other
cortical regions. We found that left superior and lateral temporal
cortical surface area was significantly decreased in individuals
with relatively large visual cortical area. If this slight reduction in
cortical area is associated with decreased information processing
capacity, then one could potentially measure subtle changes in
auditory processing, including language, which is associated with
the left superior temporal gyrus (40). However, more studies are
needed to confirm the microstructural basis for MRI measure-
ments of cortical surface area in healthy adults. In addition,
studies must distinguish whether absolute or relative cortical
surface area is under more direct genetic control and which
measure has more functional relevance.
We observed moderate genomic inflation in both the TOP and

ADNI studies, although there were no clear outlier measure-
ments of occipital cortical area in either cohort, and residuals
from the linear models did not deviate significantly from nor-
mality in the TOP (P = 0.63) or ADNI (P = 0.44) studies using
a sensitive Shapiro–Wilk test. Although we could attribute only
a small part of this inflation to population stratification, subtle
population structure or cryptic relatedness may have contributed
to the genomic inflation. In any case, the consistency between the
P values obtained with permutation testing and genomic control
suggested that the genomic control P values that we reported
were conservative.
The most highly associated SNPs in this study are located near

the 5′ UTR of GPCPD1; a linkage disequilibrium block extends
over the full length of the gene, and therefore, it is likely that the
functional variant is located within this gene. This genetic
proximity suggests a role for GPCPD1 in the scaling of occipital
cortex; the next closest protein-coding gene (PROKR2) is over
300 kb away, and previous GWASs have found functional genes
near SNPs. For example, a GWAS of height in over 100,000
individuals identified 21 loci containing a known skeletal growth
gene, and over one-half of those genes were closest to the as-
sociated SNP (41). However, we cannot exclude the possibility
that the SNPs that we have found are associated with a more
distal gene.
The DNA sequence of GPCPD1 is highly conserved from

mouse (89% identical) to fruit fly (48%), and the protein
includes two conserved domains used in glycogen metabolism in
mammals. This gene is widely expressed, including in adult
mouse and human brains (35, 42), but its function has only been
investigated in mouse skeletal muscle growth (43). Remarkably,
in two human brains, only 11 genes genome-wide had signifi-
cantly higher expression than GPCPD1 in occipital cortex, in-
cluding MET, SCN1B, and GPR161, which are involved in
neurodevelopmental and neurophysiological processes (44–46).
A common variant in the promoter of MET has been associated
with twofold increased risk for autism spectrum disorder (47),
and a mutation in SCN1B has been linked to generalized epi-
lepsy (48). Altered expression of GPCPD1 could possibly con-
tribute to variation in cortical surface area through its role in
energy metabolism. Primary visual cortex has two times the
density of neurons as other cortical regions (4) and therefore,
increased metabolic requirements. If genetic variation inGPCPD1

Fig. 3. P value map (−log10 P value) of rs6116869 association with cortical
area scaling at each vertex across the surface of the brain, while controlling
for age, sex, and diagnosis. Hot colors indicate increased scaling slope with
the number of SNP minor alleles among subjects in the TOP study, and cool
colors indicate decreased scaling slope with the number of SNP minor alleles
among subjects in the TOP study.
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increased the metabolic efficiency of neurons or glia, then neu-
rons could support larger axonal and dendritic arbors and thus,
potentially, a larger visual cortex. Future work will need to es-
tablish the role of GPCPD1 in human brain development, aging,
and pathology.
In summary, we predict that rs238295 (or a closely linked

functional variant) regulates expression of GPCPD1 because of
its close proximity to the 5′ UTR of this gene. The timing and
location in the brain of this differential expression as well as the
mechanism by which this gene influences visual cortical surface
area remain to be elucidated. Understanding the role of genes
that contribute to normal cortical architecture in humans is an
important step to understanding the genetic mechanisms of vi-
sual perception and ultimately, cortical pathology in a host of
heritable neuropsychiatric disorders.

Materials and Methods
TOP Subjects. Four hundred and twenty-one subjects from the TOP study were
analyzed. These subjects included 181 controls, 94 subjects with schizophrenia
spectrumdisorder, 97 subjects with bipolar spectrum disorder, and 49 subjects
diagnosedwithmajor depressive disorder or psychotic disorder not otherwise
specified; 48.7% of the subjects were women, and the subjects were aged
35 ± 10 y (range = 18–65 y).
Genotyping. DNA was genotyped on the Affymetrix 6.0 array as previously
reported (52, 53), and 597,198 SNPs passed quality control filters (SNP call
rate > 95%, minor allele frequency > 5%, Hardy–Weinberg disequilibrium
P < 1 × 10−6) and were merged with HapMap 3 reference populations. All
subjects self-reported Norwegian ancestry, and PCA of an allele-sharing
distance matrix across all subjects did not suggest any non-European an-
cestry genetic outliers.
Brain imaging. MRI scans were performed with a 1.5 T Siemens Magnetom
Sonata scanner equipped with a standard head coil. Acquisition parameters
were optimized for increased gray/white matter image contrast. More details
are in SI Materials and Methods and the work by Rimol et al. (51).

ADNI Subjects.Data used in the preparation of this article were obtained from
the ADNI database (http://www.loni.ucla.edu/ADNI/); 482 subjects who self-
reported as white and non-Hispanic included 180 controls and 302 individ-
uals with MCI (39.2% women; aged 75.3 ± 6.6 y). We included ADNI subjects
with MCI but not Alzheimer’s disease from the replication sample in an at-
tempt to balance the increased power that resulted from having a larger sample
size with the increased noise caused by the pathological changes in cortical
surface area that have been associated with these neurological disorders.
Genotyping. DNA was genotyped with the Illumina Human610-Quad Bead-
Chip, and514,073SNPspassedquality controlfilters (SNPcall rate>95%,minor
allele frequency> 5%, Hardy–Weinberg disequilibrium P < 1 × 10−6) andwere
merged with 34 European reference populations. PCA of an allele-sharing
distance matrix was used to remove three individuals as non-European an-
cestry genetic outliers.
Imaging. MRI data were collected on 1.5-T scanners at many study centers
across the United States. The Laboratory of Neuro Imaging (LONI) website
(http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml) describes spe-
cific protocols. Raw digital imaging and communications in medicine MR
images were downloaded from the ADNI data page of the public ADNI site
at the LONI website (http://www.loni.ucla.edu/ADNI/Data/index.shtml) pub-
lished in 2007.

PING Subjects.Data used in the preparation of this article were obtained from
the PING database (http://ping.chd.ucsd.edu/); 278 subjects were included
aged 14.2 ± 4.1 y (range = 6–21 y), and 47.8% of subjects were female.
Genotyping. DNA was genotyped with the Illumina Human660W-Quad
BeadChip, and 494,082 SNPs passed quality control filters (sample call rate >
98%, SNP call rate > 95%, minor allele frequency > 5%, Hardy–Weinberg
disequilibrium P < 1 × 10−6) and were merged with Hapmap European
reference populations; 599 individuals were removed as genetic outliers
based on PCA of an allele-sharing distance matrix. Additionally, 157 of the
remaining subjects were removed, because they shared greater than 10% of
alleles identical by descent with another subject.

Imaging. T1-weighted MRI data were collected on 3-T scanners at nine study
centers across the United States. Specific MRI scanner protocols are available
at the PING study website (http://ping.chd.ucsd.edu/).

Genotype Imputation. TOP, ADNI, and PING genotypes were independently
merged with the HapMap CEU reference population, which also included
genetic variant information from the sequencing by the 1,000 Genomes
Project. MACH 1.0 was used to impute genotypes with the default settings,
and only SNPs that passed imputation quality control (R > 0.5) were included
for additional analysis.

Cortical Area Measurements. MRI scans were analyzed with software de-
veloped at the University of California at San Diego Multi-Modal Imaging
Laboratory based on the freely available FreeSurfer software package (http://
freesurfer-software.org/). Using cortical surface reconstruction and spherical
atlas mapping procedures developed in the works by Dale et al. (52) and
Fischl et al. (53), we mapped each individual’s surface reconstruction into
atlas space based on cortical folding patterns. Cortical folds are good pre-
dictors of the locations of functionally distinct regions (53). For example,
there is close agreement between anatomical extent of primary visual cortex
based on cortical folding patterns, functional MRI, and ex vivo cytoarchi-
tecture (54).

Statistics. We tested each SNP for association using PLINK (55) to fit an ad-
ditive linear model with minor allele count, sex, age, diagnosis, total cortical
surface area, and a minor allele count by total cortical area interaction term
as predictors of occipital cortical surface area. Genomic inflation (λGC) was
estimated in the standard way by dividing the median observed χ2 statistic
from the GWAS by 0.456, the approximate median of a χ2 distribution with
one degree of freedom (56).

The permuted P value of the top SNP was calculated by shuffling subject
labels (n = 108 permutations), recalculating the SNP interaction P values, and
calculating the fraction of permutations that showed a more significant
association than the P value derived from the original dataset. P values
reported for the replication datasets are one-tailed, because we tested for
an SNP effect in the same direction as in the original GWAS. In a meta-
analysis of TOP, ADNI, and PING datasets, P values were combined based on
inverse variance weighted z scores (34) calculated from the β-coefficients
and genomic inflation-adjusted SEs (SEGC). An association plot of combined
P values was created using the SNAP plot online tool from the Broad In-
stitute (57).
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