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Abstract

The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is
now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology
in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of
activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-
incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used
99mTc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in
longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-
PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results
show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data
(activity expressed as %ID/g or %ID/cc) leads to ‘noisy’, and sometimes incoherent, results. This variability is due to the
fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data
with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be
determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically.
Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this
normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical
studies in biotherapy.
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Introduction

The sodium iodide symporter (NIS) is an integral membrane

glycoprotein that mediates the uptake and concentration of iodide

into cells. This protein is mainly expressed in the thyroid and

stomach [1], although expression has been detected at other

anatomical locations [2,3]. In gene and cell therapies, ectopic NIS

expression, associated with relevant radioisotopes such as 123I2,
124I2 or 99mTcO4

2, has been used extensively in rodent models to

monitor the efficacy of gene transfer using various imaging

modalities (PET and SPECT) [1,4]. With this technology, it is

possible to evaluate the patterns of gene expression allowed by

different gene delivery vectors [5,6,7,8,9,10,11,12] or to assess the

specificities of particular promoters [13,14,15,16]. More recently,

this methodology has been used to monitor the fates of cells with

therapeutic potential which have been genetically-modified to

express NIS [17,18,19,20,21]. In addition, it is possible to combine

the imaging and therapeutic potentials of NIS to optimise

radionuclide administration in cancer gene therapy [22,23]. The

status of NIS as a relevant reporter gene for SPECT imaging in

cancer gene therapy has been validated recently in phase 1 clinical

trials using conditionally replicating adenovirus [24,25], although

vector design and dose are critical to the successful visualisation of

transgene expression [26].

The question of whether NIS imaging can provide quantitative

information regarding transgene expression levels has been

addressed in different experimental models: PET imaging of liver

transduction using a 124I2 radiotracer [27], SPECT imaging of

tumour transduction using 123I2 or 99mTcO4
2 radiotracers

[28,29,30] and SPECT imaging of cardiac gene therapy using a
123I2 radiotracer [21] were used to validate the methodology.

Altogether, these studies demonstrated a good correlation between

radiotracer accumulation and NIS gene and protein expression

levels, as well as between radiotracer uptake measured by imaging

and direct counting of the radioactivity associated with biopsies.

There is, however, no consensus on how to present the data. Some
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authors have expressed their results as %ID/g (percentage of

injected dose per gram of tissue) [21,27,28], while others have

presented their data as a ratio of radiotracer accumulation in the

transduced organ versus that in non-transduced tissues, taken as

background [29]. The latter has the advantage of accounting for

background values and is therefore less likely to be susceptible to

individual experimental artefacts or variations. This point is

particularly important as, unlike other reporter gene systems

developed for PET or SPECT imaging, the amount of radiotracer

localised in NIS-expressing tissues varies depending on its blood

concentration. In addition, when 131I2 is used to treat differen-

tiated thyroid carcinomas in humans, it is known that uptake to

the target tissue, and thus treatment success, is more dependent on

the blood concentration than on administered activity [31,32].

There is, thus, a theoretical risk of artefactual variability.

Considering that the monitoring of gene expression and transfer

using NIS has been validated in patients [24,25], and that the

images obtained are used to evaluate the feasibility of 131I

radioiodine therapy through dosimetric determinations [25], a full

assessment of the methodology is required, particularly in the

context of the assessment of activities in individual subjects in

longitudinal studies, where data cannot be smoothed by a

statistical analysis.

In the present work, we examined this issue using SPECT/CT

and 99mTcO4
2 as radiotracer in kinetics spanning more than sixty

days after NIS gene transfer. More specifically, we determined

whether quantitative data presented as %ID/g or %ID/cc provide

a correct assessment of ectopic NIS transgene expression or

whether blood-normalised-uptake (BNU) corrections are necessary

to obtain a coherent dataset.

Results

SPECT/CT imaging and immunohistochemistry of NIS
expression upon systemic injection of Ad-CMV-rNIS

To visualise gene transfer, Ad-CMV-rNIS doses varying from

56108 to 16109 PFU were injected systemically to Balb/c mice.

Serial SPECT/CT scans were performed, upon injection of the
99mTcO4

2 radiotracer up to 60 d after virus administration. Fig. 1

shows representative, selected coronal, transverse and sagittal

views obtained 2 d after the administration of saline buffer

(Fig. 1A) or 56108 (Fig. 1B) or 16109 PFU (Fig. 1C) Ad-CMV-

rNIS. As expected from previous studies [33,34], significant

activity was noted in the liver when the animals were injected with

16109 PFU virus, as a result of ectopic NIS expression in this

organ. Transgene expression was very significantly lower when

56108 PFU were administered (Figs. 1B versus 1C). In both cases,

the activity was detectable from 5 h post virus administration (not

shown). In addition, radiotracer accumulation was observed in the

spleen 24 h after virus administration but this uptake was only

transient and disappeared rapidly (not shown). Immunohistolog-

ical staining of liver biopsies of these animals confirmed the

dramatic difference observed by SPECT/CT in NIS expression

(Fig. 2). In the animals administered with 16109 PFU Ad-CMV-

rNIS, more than 90% of hepatocytes showed NIS-specific

immunoreactivity (Figs. 2C and 2F).

Measurement of blood and muscles activity
To determine the blood activity, and at each time-point, a 2-

mm-diameter region of interest in the left ventricular cavity of the

heart was drawn, using fused SPECT/CT images. Fig. 3 shows

Figure 1. Imaging of NIS expression by microSPECT-CT. Transverse, coronal and sagittal slices from SPECT images of Balb/c mice intravenously
injected with (A) saline buffer (n = 4), (B) 56108 PFU (n = 3) or (C) 16109 PFU Ad-CMV-rNIS (n = 3). Forty-eight hours later, mice received an
intraperitoneal injection of 100 MBq 99mTcO4- and were imaged with a microSPECT-CT camera (eXplore speCZT, General Electric). (S) stomach and (L)
liver.
doi:10.1371/journal.pone.0034086.g001

Quantification of NIS Imaging by SPECT/CT
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that the blood pertechnetate content varied greatly from one

animal to another. Despite the fact that a strictly identical protocol

was used for the whole study, the blood pertechnetate content

varied between 2 %ID/cc and more than 6%ID/cc. Importantly,

the comparison between blood content in adenovirus-injected

(56108 and 16109 PFU) animals and non-injected controls did

not change significantly, indicating that strong expression of NIS

in the liver did not significantly affect the pertechnetate content of

the blood (Fig. 3A). Regions of interests of similar sizes were drawn

in the neck muscles and quadriceps of experimental animals and

the activities were compared to blood activities. Fig. 3B shows a

good correlation between neck muscle and blood activity

(R2 = 0.90), while a poor correlation was observed between

quadriceps and blood activity (R2 = 0.030, Fig. 3C).

Correlation between 99mTcO42 uptake measured by
SPECT/CT and by post-mortem b-counting of a biopsy

To establish whether the quantitative data obtained from

SPECT/CT images are accurate, 6 animals were culled 3 days

after virus injection, liver biopsies were collected, their radioactive

content measured immediately after cull and compared with those

calculated from SPECT/CT imaging. Fig. 4A shows a good

correlation (R2 = 0.73) between activities measured by SPECT/

CT imaging (expressed in %ID/cc) and post-mortem b-counting

of biopsies. When the same comparison was performed using

blood-normalised uptakes (BNU) (Fig. 4B), the correlation was

even greater (R2 = 0.89). In separate animals administered with

either 56108 (n = 3) or 16109 PFU (n = 3) Ad-CMV-rNIS, liver

biopsies were collected to compare NIS gene expression and

radiotracer accumulation measured by SPECT (Fig. 5). Quanti-

tative RT-PCR analysis measuring NIS transcript levels showed

that liver NIS expression increased with adenovirus dose

administered (Fig. 5A) and that a good correlation (R2 = 0.83)

could be established between the relative NIS expression levels

and radiotracer uptake in the liver normalised to that of the blood,

measured by SPECT/CT (Fig. 5B). When non-normalised data

are analysed, an even greater coefficient of correlation is obtained

(R2 = 0.93). Altogether, these results demonstrate that SPECT can

provide quantitative information on the level of ectopic NIS

expression in the liver. When the dataset is analysed using

statistics, the normalisation to blood activity provides accurate

data but this normalisation is not an absolute requirement.

Long-term kinetic study after adenoviral vector-mediated
gene transfer to the liver

Mice administered with either 56108 or 16109 PFU Ad-CMV-

rNIS were scanned serially. For each experimental point, ROIs of

4 mm diameter were drawn in ‘representative’ areas of the right

and left lobes of the liver and the average values were used to

calculate the %ID/cc at each time-point. The kinetics presented in

Figs. 6A and 6B show that, upon administration of 56108 PFU

Ad-CMV-rNIS, radiotracer uptake reaches its maximal level

between 48 h and 3 d after virus injection and decreases

afterwards to reach a near-basal level by day 21. By contrast,

upon injection of 16109 PFU virus, a near-maximum radiotracer

uptake is still observed in the liver 21 d after virus administration

(Figs. 6C and 6D) and the near-basal level is only reached after

60 d (Fig. 6D). Overall, these kinetics are in good agreement with

Figure 2. Immunohistochemical staining of NIS protein in adenovirus-transduced livers. Representative NIS immunostaining of liver
sections from control (panels A and D) and Ad-CMV-rNIS-injected mice (panels B and E: 56108 PFU, panels C and F: 16109 PFU). Livers taken from
one animal per condition were processed. Magnification: see bars on panels. Si: sinusoidal capillaries, H: hepatocytes.
doi:10.1371/journal.pone.0034086.g002
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previous studies [33]. This overall trend is observed in all

experimental animals but the kinetics in individual animals

showed rather incoherent results, at specific time-points (Figs. 6B,

6C, 6D). Activities in the liver increased, decreased and increased

again in a manner not compatible with reported studies of liver

transduction with a replication-deficient adenovirus [33], suggest-

ing an experimental or methodological bias. These inconsistencies

were not linked with the choice of ROI, as different ROIs

positioned differently in the liver produced a similar dataset (not

shown).

A possible explanation for the apparently incoherent liver

uptake of 99mTcO4
2 in Ad-CMV-rNIS-transduced mice (Figs. 6B,

6C, 6D) could be the variability in the 99mTcO4
2 blood content

demonstrated in Fig. 3. To address this question, and at each time-

point, the liver activity was normalised to that of the blood. The

results presented in Figs. 6E, 6F, 6G and 6H show a much more

coherent dataset than without the blood correction.

Imaging of NIS-expressing cells
HT29-NIS cells were injected in the liver of SCID mice and

pertechnetate uptake was determined by SPECT/CT imaging.

Fig. 7A shows the volume rendering of the pertechnetate uptake

by hepatic tumours, at different times after HT29-NIS adminis-

tration. The quantitative analyses were performed by drawing

Figure 3. Comparison of blood SPECT activity in control and
Ad-CMV-rNIS-injected mice. A. Balb/c mice were injected intrave-
nously with saline buffer (empty circles), 56108 PFU (black circles) or
16109 PFU (squares) Ad-CMV-rNIS. Four days later, SPECT/CT imaging
was performed. ROIs were drawn in the left ventricular cavity of the
heart. The activity was calculated and converted to %ID/cc. B and C.
Mice were scanned by SPECT/CT and the blood activity (measured as
described above) was compared with the activity in the neck muscles
(B) or in the quadriceps (C). For calculations of the activities in the
muscles, a ROI of similar size to that used for the calculation of the
blood activity was drawn and positioned on the muscles.
doi:10.1371/journal.pone.0034086.g003

Figure 4. Comparison of the 99mTcO4
2 uptake determined by

ex-vivo b–counting of liver biopsies and measured by SPECT/
CT. Balb/c mice were injected intravenously with either 56108 (circles)
or 109 PFU (squares) Ad-CMV-rNIS. Four days later, 100 MBq 99mTcO4

2

were injected intraperitoneally and SPECT imaging was performed.
Blood and liver activities were measured. After imaging, the radioac-
tivity in the liver of each individual mouse was measured ex vivo. Values
were expressed as (A) a percentage of the injected dose per volume
(%ID/cc) or (B) normalised to blood activity.
doi:10.1371/journal.pone.0034086.g004
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regions of interest around the tumours and taking into account the

top 50% of the activity in the tumour. On one mouse, the

representation of data as %ID/cc showed a first phase of tumour

growth up to day 25 and then a sudden 5-fold increase in the

capability of the tumour to capture pertechnetate on day 32

(square on Fig. 7B). This sudden jump is inconsistent with the

visual comparison of the images at days 25 and 32 (Fig. 7A).

Normalisation of tumour to blood activities (square on Fig. 7C)

produced a dataset consistent with the volume-rendering images

presented in Fig. 7A. A very similar smoothing effect of the blood

normalisation was observed on a second animal (presented as

circles in Fig. 7B and C). The non-normalised data indicate a

stagnation in tumour growth between days 37 and 46 after

tumour-cells inoculation, while normalisation to blood activity

shows a constant increase in tumour size, more consistent with the

growth, in vivo, of HT29 tumour cells.The smoothing effect of

normalisation was observed on a total of 5 different mice (not

shown).

Discussion

In the present study, we highlight a problem which is likely to be

encountered when data obtained from gene expression imaging

analysis using the NIS reporter system are presented simply as a

percentage of the injected dose, or even as %ID/cc. Variation in

pertechnetate uptake levels by NIS expressing cells (either upon

administration of a gene-delivery vector or after ex-vivo genetic

engineering) can lead to inconsistencies with the subjective, visual

observation of the images, and false interpretations. The impact of

this problem can be reduced, or even removed, when data

obtained on a cohort of animals are pooled and analysed

statistically (see dataset and comments of Figure 5). However,

when the imaging dataset obtained from individual animals are

observed separately (in long-term kinetics, for example), the

‘statistical smoothing’ does not occur and great variability, and

even experimental inconsistencies, may be reported inadvertently.

These ‘noisy data’ may be attributed to the chaotic nature of the

phenomenon observed, while they are in fact largely due to a

methodological bias.

This problem is due to the fact that, upon administration of the

radiotracer, and despite following rigorously a standard operating

procedure, the concentration of the radiotracer in the blood varies

greatly from one individual to another and even within the same

individual when imaging is performed serially over a period of a

few days/weeks. Our analysis on more than twenty different

experimental points shows that a three-fold variation in the blood

activity can be found (Fig. 3A). Attempts to reduce this variability

by increasing or decreasing the length of time between radiotracer

administration and the beginning of the scan did not provide any

improvement (data not shown). On the contrary, our dataset tends

to suggest that reducing the time between radiotracer injection

and beginning the scan leads to an increased variability (data not

shown). The measurement of muscle activity is an option that may

be envisaged as an alternative (and sometimes more accessible

measure than blood activity) to normalise data. However, if neck

muscle activity appears to be well-correlated to blood activity

(R2 = 0.90), quadriceps activity is not (R2 = 0.30). These observa-

tions suggest that only of subset of muscles are suitable for

normalisation and that blood normalisation is the most reliable

way to normalise datasets. In addition, our data suggest that

normalisation of an ectopic expression of the NIS gene in the leg

muscle should be performed using the activity in the non-

transduced muscle.

The problem of radiotracer availability in the field of gene

expression imaging has already been highlighted by others using,

for example, a mutant Herpes simplex virus-1 thymidine kinase as a

reporter gene [35], but it is further emphasised by the specificity of

NIS-imaging: the radiotracer is not trapped inside the NIS-

expressing cells, its intra-cellular concentration being directly

dependent on its extracellular concentration. As a result, any

variation in the tracer plasma/blood concentration is likely to have

a dramatic effect on the quantitative data. This variability has also

been highlighted in humans in another context in which NIS-

mediated uptake of radio-iodide is a key factor: the radioiodine

ablation of remnant thyroid tissue [31,32,36]. Hanscheid et al.

[31] compared the thyroid remnant uptake after thyroid hormone

withdrawal and after administration of recombinant human TSH.

The difference in uptake between the two conditions disappeared

Figure 5. SPECT-imaging and quantitative RT-PCR analysis. (A)
Quantitative RT-PCR analysis of NIS expression in the liver of
adenovirus-injected mice. Total RNA was extracted from livers of mice
intravenously injected with either 56108 (circles) or 16109 (squares)
PFU Ad-CMV-rNIS, treated with DNase and reverse transcribed. Primers
for murine GAPDH RNAs were used for normalisation and the lowest
value was set as 1 arbitrary unit. DCt values were calculated by
subtracting the Ct of the GAPDH housekeeping gene from the Ct of the
targeted gene, measured in the same RNA preparation, and the lowest
value was set as 1 arbitrary unit. (B) Comparison of the activity of
adenovirus-transfected liver with the relative level of NIS mRNA. Balb/c
mice were injected intravenously with either 56108 (circles) or
16109 PFU (squares) Ad-CMV-rNIS. Four days later, 100 MBq 99mTcO4

2

were injected intraperitoneally and images were acquired on a SPECT/
CT camera. ROIs were drawn in left and right liver lobes and the average
activity was normalised to blood activity.
doi:10.1371/journal.pone.0034086.g005
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PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e34086



when the target activity was normalised to the residence time in

the blood in individual patients. This phenomenon is mainly

related to the different rate of renal clearance in the two situa-

tions. For a given transfer coefficient, the target tissue uptake

depends almost linearly on the blood activity, which is inversely

proportional to the rate of renal clearance. Similarly, Verbug

et al. [32] showed that absorbed dose in the blood is a better

predictor of ablation success than administered activity. This is

explained by the impact of renal clearance. If the clearance is

lower, the target tissue will have a considerably higher amount of

circulating iodide at its disposal, resulting in an increased efficiency

of the treatment. In this latter, retrospective study involving 449

Figure 6. Monitoring of NIS gene transfer in the liver after systemic Ad-CMV-rNIS administration. Balb/c mice were injected
intravenously with either 56108 (A, E, B, F) (n = 2) or 16109 PFU (n = 2) (C, D, G, H) Ad-CMV-rNIS. At different time-points after adenoviral
administration, 100 MBq 99mTcO4

2 were injected intraperitoneally and SPECT/CT imaging was performed. ROIs were drawn in left and right liver
lobes. The average activity was calculated and converted to percent of the injected dose per centimetre cubed (%ID/cc) (column 1, A–D). These
values were normalised with the blood (column 2, E–H) activities. In each graph, the data obtained on individual animals were plotted.
doi:10.1371/journal.pone.0034086.g006

Quantification of NIS Imaging by SPECT/CT
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patients, the injected dose of 131I required to reach the critical

blood dose of 350 mGy varied from 1 GBq to 7 GBq, with the vast

majority of patients reaching this blood dose with an injected dose

varying from 2 GBq to 5 GBq [32]. This dataset demonstrates that

the variability in blood iodide or pertechnetate concentration is a

phenomenon shared by mice and humans and that the mode of

administration (intraperitoneal in our study in mice versus oral in

humans) has no effect on this variability. In mice, the anaesthesia is

probably amplifying this variability by affecting differentially the

hemodynamic parameters of the experimental animals [37,38].

To overcome the quantification problems caused by the variation

in blood radiotracer concentration, we propose to normalise the

data. The ratio of the accumulation of radiotracer in the transduced

organ to that in a non-transduced organ, taken as background, has

been proposed and used [29] without any formal validation.

Alternatively, the thyroid gland could be chosen as a reference. In

the course of the present study, we assessed whether thyroid activity

could be used as an alternative reference to blood activity. For each

experimental animal, regions of interest of 1 mm diameter were

drawn around the left and right thyroid glands and the average

activity of the whole gland was calculated. The activity in the liver

was then divided by that of the thyroid gland and our data show

that, as for ‘blood activity correction’, normalisation of liver activity

by thyroid activity provides a much more coherent dataset (not

shown). However, considering the difference in organification of

pertechnetate and iodide by the thyroid [39], this organ may not be

a ‘universal standard’ in NIS-imaging normalisation. By contrast,

and considering that NIS-mediated uptake and concentration of

iodide or pertechnetate is crucially dependent on the extracellular

concentration of these anions, we advocate that, when possible, the

blood activity should be determined and used to normalise the

activity measured in the organ/region of interest that expresses NIS

ectopically. Considering that NIS-imaging has now reached the

clinical setting in the context of cancer gene therapy [24,25] and

that recent pre-clinical studies have demonstrated the potential of

the methodology in the field of cell therapy, this normalisation may

be essential in order to obtain accurate and predictive information

in future clinical studies in biotherapy.

Materials and Methods

Adenovirus and NIS-expressing cell line
The replication-incompetent adenovirus, Ad-CMV-rNIS, in

which the immediate-early promoter of CMV drives the

expression of rat NIS, has been described previously [40]. This

virus was produced and titrated at the ‘‘Plateforme de production

de vecteurs pré-cliniques du CHU de Nantes’’, using a standard

protocol. The HT-29 cell line (HTB-38, ATCC) was transfected

with pcDNA3.1-mNIS (murine NIS) using the FuGENE 6 reagent

(Roche) according to the manufacturer’s instructions. Stable clones

were selected by adding 1 mg/ml geneticin (G418) to the medium

3 d after transfection. Demonstration of NIS expression in stably

transfected clones was performed by 125I uptake, western blot

analysis and immunostaining experiments, showing a strong

localisation of the NIS protein at the plasma membrane. One

clone (HT29-NIS) was selected for in-vivo imaging experiments.

Figure 7. Non-invasive monitoring of colorectal cancer liver metastases. (A) Volume-rendering images of a mouse bearing liver HT29-NIS
tumours (white arrow). The kinetics of tumour growth were monitored by SPECT imaging at days 11, 18, 25, 32 and 39 after injection of 26106 HT29-
NIS cells in the liver. Tracer also accumulated in the stomach (S). (B–C) Time course of 99mTcO4

2 accumulation in liver metastases as determined by
serial scanning. From each SPECT/CT image acquired in (A), a three-dimensional ROI was drawn around the liver tumour using a threshold of 50% of
the maximal activity. The counts in the ROI were calculated and expressed as (B) a percentage of the injected dose (%ID) accumulated in liver tumour
nodules or (C) normalised to the blood activity. Data of two individual animals are presented.
doi:10.1371/journal.pone.0034086.g007

Quantification of NIS Imaging by SPECT/CT
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Animal studies
Animal housing and procedures were conducted according to the

guidelines of the French Agriculture Ministry and were approved by

the local ethics committee. Gene-transfer studies were performed on

female Balb/c mice obtained at 8 weeks of age from Janvier (Le

Genest Saint Isle, France). Ad-CMV-rNIS (56108 or 16109 PFU/

mouse) in sterile saline buffer (final volume, 200 ml) was adminis-

tered intravenously. Control animals were injected with 200 ml

saline buffer. For the induction of hepatic tumours, 26106 HT29-

NIS were injected under the liver capsule of anaesthetised, 7-week-

old SCID mice (Harlan, Gannat, France).

MicroSPECT/CT studies
Although thyroxin is used in some studies to reduce or block the

uptake of iodide or perctechnetate by the thyroid, all the

experiments in this study were performed on animals not treated

with thyroxin. At various times after adenovirus administration or

tumour-cell injection, mice were injected intraperitoneally with

100 MBq 99mTc pertechnetate (99mTcO4
2) obtained from a

freshly eluted 99Mo/99mTc generator. Precisely 20 min later, mice

were imaged under Isofluran anaesthesia (Baxter, Aerane).

SPECT/CT scans were performed using a micro-SPECT-CT

(eXplore speCZT CT120, General Electric), using a previously

published protocol [9,23].

Image analyses and quantitative determinations were performed

using the ‘AMIDE’ software [41]. For quantification, three-

dimensional regions of interest (ROIs) were outlined on each left

and right liver lobe/thyroid glands (4 mm and 1 mm diameter,

respectively). For blood content determination, a 2 mm diameter

ROI was drawn in the left ventricular cavity of the heart. This

method was used to calculate blood activity in all the mice of the

study. The voxel content was calculated and converted to percent

injected dose per cubic centimetre (%ID/cc). Values were then

corrected for decay of the radioisotope, taking 6 h as the half-life

of 99mTcO4
2.

b-counting of liver biopsies
Livers were recovered after cull and weighed. Radioactivity in

the organs was measured using a Medi404-calibrated dose

calibrator (Medisystem). Values were expressed as percentage of

the injected dose per gram of tissues (%ID/g) after correcting for

activity decay to the time of image acquisition. All activity values

were expressed with reference to the beginning of SPECT imaging

20 min after pertechnetate injection.

TaqMan real-time PCR experiments
Total RNA from the livers of mice injected intravenously with

either 56108 or 16109 PFU Ad- CMV-rNIS was extracted using

Nucleospin RNAII (Machereyl-Nagel, France) and transcribed

into cDNA using the Superscript III enzyme (Invitrogen, France).

Real-time PCR was performed with the 7900HT Fast Real-Time

PCR System and carried out using TaqManH gene expression

assays (Applied Biosystem, France). Primer sets were designed by,

and purchased from, Applied Biosystems. The sequence of the

primers is not available but the primers can be purchased form

Applied Biosystem, using the following reference numbers: Rn

00583900-m1 for NIS and Mm-013518-11 for GAPDH. Cycle

parameters were 95uC for 20 s followed by 40 cycles of 95uC for

1 s and 60uC for 20 s. Relative mRNA expression levels were

determined using DCt values obtained by subtracting Ct control

(mouse GAPDH) from Ct target gene (rat NIS), measured in the

same RNA preparation.

Immunohistochemistry
After culling the animals, livers were dissected, paraffin

embedded and cut into 4-mm-thick sections. The paraffin was

then removed and the sections were rehydrated and subjected to

an antigen-retrieval treatment with a solution of citrate buffer,

pH 6, using an automate (PT Link, Dako). Immunostaining was

performed following a standard protocol (Dako EnVisionTM

FLEX using an automated immunostainer, Autostainer, Dako).

Endogenous peroxide was blocked using the EnVisionTM FLEX

Peroxidase-Blocking Reagent. After pre-treatment, slides were

incubated for 20 min at room temperature with a rabbit

polyclonal antibody against NIS (antibody 25, see [42]) at a

1:200 dilution. rNIS immunostaining was performed with a

secondary antibody anti-mouse and rabbit/HRP (Dako, DM822)

using a 3,39 –diaminobenzidine (DAB) co-substrate [42]. The

DAB-stained sections were counterstained with Harris haematox-

ylin (Sigma, Saint Quentin Fallavier, France). Image acquisition

was performed using a Nikon 80i microscope equipped with a DS-

5M-L1 digital camera.

Statistical analysis
Statistical analysis was performed using Prism (GraphPad

software). Dual comparisons were made using the student t-test

and comparisons between multiple conditions were analysed using

ANOVA. Statistical significance was set at P,0.05.
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