
EMF1 and PRC2 Cooperate to Repress Key Regulators of
Arabidopsis Development
Sang Yeol Kim, Jungeun Lee, Leor Eshed-Williams¤, Daniel Zilberman*, Z. Renee Sung*

Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America

Abstract

EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function
mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which
encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor
Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like
proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology
with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of
action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings.
The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak
finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1
binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and
with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some
genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the
H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse
mechanisms and plays a novel role in the PcG mechanism.
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Introduction

Polycomb group (PcG) proteins are epigenetic repressors

implicated in various developmental and cellular processes [1,2].

PcG proteins function in multi-subunit protein complexes:

Polycomb Repressor Complex 1 (PRC1) and PRC2 [3], the core

components of which are conserved from Drosophila to humans.

PRC2 marks the target gene by trimethylating histone H3 at lysine

27 (H3K27me3) through the E(z) SET domain [4,5,6,7,8]. PRC1,

which binds the H3K27me3 methyl marks and docks on

nucleosomes modified by PRC2, inhibits transcription and blocks

remodeling of the target nucleosomes, resulting in gene silencing

[9,10,11]. Genome-wide studies confirmed co-localization of

PRC1 and PRC2 on target genes. However, there are also

genomic sites bound by one, but not the other, PRC [12] and

transcriptional networks differentially regulated by PRC1 and

PRC2 [13]. PcG action is counteracted by Trithorax Group (trxG)

protein complexes [14]. Together, PcG and trxG complexes

maintain repressive and active states of chromatin, respectively

[14].

Protein-protein interaction and gel filtration studies have

identified three Arabidopsis PRC2-like complexes [15,16,17].

Two components, FERTILIZATION INDEPENDENT ENDO-

SPERM (FIE) [18], and MULTICOPY SUPPRESSOR OF

IRA1 (MSI1) [19], are present in all three putative PRC2s [17].

Small gene families of homologs of Drosophila Su(z)12, i.e.,

EMBRYONIC FLOWER2 (EMF2) [20], FERTILIZATION

INDEPENDENT SEED2 (FIS2) and VERNALIZATION2

(VRN2) [21], and of E(z), i.e., MEDEA (MEA) [22], CURLY

LEAF (CLF) [23], and SWINGER (SWN) [15], generate variation

in Arabidopsis complex composition for targeted PRC2 regulation

of multiple pathways.

The EMF2/FIS2/VRN2 homologs have diverse, and some-

times redundant, roles [24,25,26]. The VRN2-containing PRC2,

VRN2-PRC2, is required for vernalization-induced flowering

through the repression of FLOWERING LOCUS C (FLC) [21].

Impairments in FIS2-PRC2 function cause endosperm over-

proliferation and seed abortion [26]. Impairments in the EMF2-

PRC2 do not affect seed development, but the plants have a

shortened vegetative phase or skip it altogether [18,20,23,27].

Hence, EMF2-PRC2 is considered responsible for vegetative

development.

EMF1, another Arabidopsis gene required for vegetative

development, encodes a plant-specific protein containing sequence

motifs found in transcriptional regulators [28]. EMF1 mutant

plants and plants impaired in components of EMF2-PRC2 have

similar phenotypes. Weak emf1 mutants are emf2-like, while strong

emf1 mutants have a more severe phenotype than emf2 and the

transgenic lines impaired in FIE [18,27,29,30]. Tissue-specific

removal of EMF1 activity from leaf primordia allows vegetative
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growth, but leads to early flowering plants with curly leaves similar

to clf mutants [31]. The early flowering phenotype of plants

impaired in EMF1 or EMF2-PRC2 components was attributed to

the ectopic expression of flower organ identity or flower MADS box

genes such as AGAMOUS (AG), APETALA1 (AP1), AP3 and

PISTILATA (PI) [32,33,34]. However, these plants have pleiotro-

pic phenotypes and the expression of many genes other than the

flower MADS box genes is affected [33,34,35]. This suggests that

EMF1 and EMF2-PRC2 regulate additional developmental

processes.

EMF1 interacts with AG, PI, and AP3 chromatin and displays

characteristics similar to the Drosophila PRC1 component,

Posterior sex combs (Psc) [36]. It is also required for Arabidopsis

RING-finger protein-mediated Histone 2A lysine 119

(H2AK119) ubiquitination [37]. Mammalian PRC1 contains

the RING-finger proteins from an E3 ubiquitin ligase complex

that monoubiquitinates H2AK119 [38]. Functional characteriza-

tion of Arabidopsis RING-finger proteins provided biochemical,

molecular, and biological evidence that they have a PRC1 role in

maintaining differentiated cell fates [37,39,40]. Another Arabi-

dopsis PRC1-like component, the LIKE HETEROCHROMA-

TIN PROTEIN1 (LHP1), recognizes H3K27me3 and interacts

with many H3K27 trimethylated target genes [41,42]. The

RING-finger proteins interact with both LHP1 and EMF1; and

EMF1 is required for the H2AK119 ubiquitination activity of the

RING-finger proteins [37]. However, EMF1 also interacts with

the PRC2 component, MSI1, in vitro [36] as well as with multiple

other proteins [43]. The role of EMF1 in the PcG mechanism

remains unclear.

To better understand the full impact of EMF1 on

Arabidopsis growth and development and the mechanisms of

EMF1-mediated gene repression, we performed genome-wide

mapping of EMF1 binding and analyzed the H3K27me3 and

expression patterns of EMF1 target genes in emf1 and PRC2

mutants. Our results demonstrate direct epigenetic regulation

of key genes controlling developmental programs and specify-

ing cell differentiation processes via their interaction with

EMF1. Based on the requirement of EMF1 for H3K27me3 and

H2AK119 ubiquitination on different target genes, we discuss

the roles of EMF1 in the PcG mechanism and propose a novel

role for EMF1– acting as a linker between the two PcG

complexes for genes that depend on EMF1 for both histone

modifications.

Results

Genome-wide EMF1 binding map in Arabidopsis
seedlings

We have previously shown that EMF1 regulates the flower

MADS box genes AG, AP3, and PI via direct interaction with their

chromatin [34,36]. The large number of mis-regulated genes in

emf1 mutants [33,34] indicates that EMF1 regulates many other

genes directly or indirectly. To identify all EMF1 target genes in

Arabidopsis seedlings, we performed Chromatin Immunoprecip-

itation (ChIP) followed by microarray analysis (ChIP-chip), using a

transgenic Arabidopsis with a functional transgene – EMF1 tagged

with 3FLAG and expressed under its own promoter (EMF1::EMF1-

3FLAG) that can rescue emf1 mutants [36]. A high-resolution

genome-wide map of EMF1 binding sites in Arabidopsis seedlings

was generated by affinity purifying 3FLAG tagged EMF1-bound

chromatin and hybridizing the associated DNA to customized

NimbleGen High Density 2 tiling microarrays (HD2, 2.1M array)

representing the entire Arabidopsis genome of 28,244 genes

without gaps.

Utilizing the ChIPOTLe peak finding algorithm we identified

8,541 binding sites (p,1026) distributed throughout all 5

chromosomes, enriched in the euchromatic regions and under-

represented in the pericentromeric region (Figure 1A; Figure S1A).

6,317 of the EMF1 binding sites are located in the transcribed

region of the annotated sequences (2200 bp to the 39 end) of

5,533 genes. The remaining sites are in intergenic regions

(Figure 1B; Table S1). The 5,533 include AG, AP3 and PI

(Figure 1C), the known EMF1 target genes that are up-regulated

in emf1 mutants, as well as 7 other flower MADS box genes and

CRABS CLAW (CRC) (Figure S1B). This is consistent with EMF1

repression of the flower organ program in Arabidopsis seedlings.

Other EMF1 target genes identified by ChIP-PCR by Kim et al.,

[34], namely, LONG VEGETATIVE1 (LOV1), FLC, and ABSCISIC

ACID INSENSITIVE3 (ABI3), are EMF1 binding genes in our

study. As negative controls, FLOWERING LOCUS T (FT) and

PHERES1 (PHE1), which did not interact with EMF1 in ChIP-

PCR experiments, are not enriched with EMF1 binding sites

(Figure 1C). We confirmed the ChIP-chip results by ChIP-PCR on

an additional 9 randomly selected genes with various enrichment

level of EMF1 binding (Figure S2). Thus binding sites identified by

ChIP-chip likely represent in vivo EMF1-target genes interaction.

EMF1 binding correlates with H3K27me3, which depends
on PRC2 and partially on EMF1

Because of the functional similarity between EMF1 and PRC2,

we compared the EMF1 binding pattern and the H3K27me3

modification profile across the whole Arabidopsis seedling

genome. To minimize variability due to sample and microarray

differences, we mapped EMF1 binding targets, determined the

H3K27me3 profile, and measured mRNA levels (see below) with

the same NimbleGen HD2 arrays. The ChIPOTle peak finding

program identified 11,067 H3K27me3 enriched peaks (p,10235),

which correspond to 7,751 genes that showed 85% overlap with

an earlier study (Table S2; [42]). As reported previously,

H3K27me3 peaks tend to be broad, often covering the entire

transcriptional unit (Figure 2A and 2B; Figure S1B), hence we

used a very strict statistical cutoff for peak identification.

Globally, EMF1 binding and H3K27me3 modification

profiles are well correlated (Figure 2A). Both are found

throughout euchromatin regions and are underrepresented in

the centromeres of all 5 chromosomes. At the genic level, the

EMF1 binding pattern resembles the H3K27me3 profile,

covering the transcription unit with the strongest signal around

Author Summary

Polycomb group (PcG) proteins are epigenetic repressors
maintaining developmental states in eukaryotic organisms.
Plant PcG proteins are expected to be general epigenetic
repressors; however, their overall impact on growth and
differentiation and their mechanism of repression are still
unclear. Here we identified several thousand target genes
of the EMBRYONIC FLOWER 1 (EMF1) protein, which shares
no sequence homology with known PcG proteins. EMF1
regulates developmental phase transitions as well as
specifies cell fates during vegetative development. Tri-
methylation of histone 3 lysine 27 (H3K27me3) and
ubiqutination of lysine 119 of histone H2A are carried
out by different PcG protein complexes. EMF1 is required
for both histone modifications on genes specifying stem
cell fate in plants, thus revealing a novel role of EMF1 in
linking the PcG protein complexes. Our results have
important implications for the evolution of PcG regulatory
mechanisms.

EMF1-Mediated Epigenetic Regulation
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the transcriptional start site (TSS, Figure 1C). The EMF1 signal

gradually declines towards the 39 end in some genes and does

not extend as far into the 39 non coding region as H3K27me3

modification does, see, for example, SEEDSTICK (STK),

ARGONAUTE5 (AGO5), AP1, and SEPALATA1 (SEP1)

(Figure 2B; Figure S1B).

To better understand the relationship between EMF1 and

PRC2, we mapped the H3K27me3 sites in emf1, emf2, and fie

Figure 1. Genome-wide EMF1 binding map. (A) Chromosomal distribution of EMF1 binding sites. EMF1 binding regions per 100 kb on the 5
Arabidopsis chromosomes. Chr and 5MB represent chromosome and 5 megabase, respectively. Y-axis represents log2-ratio of the input signals for the
immunoprecipitated DNA (IP/input). (B) EMF1 binding sites in genic and intergenic regions. (C) EMF1 binding pattern on Arabidopsis genes.
Consistent with ChIP-PCR results [34,36], PI, AG, AP3, ABI3, LOV1, and FLC chromatin is enriched with EMF1-3FLAG signal, but not FT and PHE1. Black
box represents gene body and arrow indicates transcription start site (TSS) and transcriptional direction.
doi:10.1371/journal.pgen.1002512.g001

EMF1-Mediated Epigenetic Regulation
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mutant plants. Because FIE is required during seed development

and fie mutants are embryo-lethal, we used a transgenic line that

expresses FIE only during the seed development stage to recover

homozygous fie seedlings [18]. Relative to two-week old WT,

plants impaired in each of these three genes have no petioles and

rosette leaves, a short hypocotyl, and oval shaped cotyledons. emf2

Figure 2. Chromosomal distribution of EMF1 binding sites and H3K27me3 modified regions in WT and 3 mutants. (A) Top panel
shows the comparison of H3K27me3 marked (black) and EMF1 binding (red) regions per 100 kb in WT on 5 chromosomes. Lower three panels show
comparison of H3K27me3 in WT and three mutants (purple: emf1; blue: emf2; orange: fie). Arrows point at pericentromeric locations. (B) H3K27me3
and EMF1 binding patterns (EMF1_IP) on individual genes in WT and 3 mutants. STK: SEEDSTICK, AGO5: ARGONAUTE5, CUC2: CUP-SHAPED
COTYLEDON2, SUP: SUPERMAN, LOB: LATERAL ORGAN BOUNDARIES. (C) WT and mutants grown at short day condition for 15 days. (D) The percentage
of 7,751 H3K27 trimethylated genes showing reduced methylation in mutants. 44%, 54% and 84% of the H3K27me3 marked genes in WT show
reduced methylation in emf1, emf2 and fie mutants, respectively. The p-value is 10213. (E) Venn diagram showing number of genes with reduced
methylation that overlaps.
doi:10.1371/journal.pgen.1002512.g002

EMF1-Mediated Epigenetic Regulation
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and plants impaired in FIE are similar in phenotype. The emf1

allele used in this study, emf1-2, is a strong allele with a more severe

phenotype than emf2 ([32]; Figure 2C). Among the 7,751 genes

marked by H3K27me3 in WT, 44% show reduced H3K27me3 in

emf1 mutants, 54% in emf2, and 84% in fie (Figure 2A, 2B, and 2D).

This 84% H3K27me3 reduction is consistent with an earlier study

[30], in which a 75% loss in a different FIE-impaired transgenic

plant was reported. The loss of H3K27me3 in fie mutant seedlings

indicates that H3K27me3 requires a functional PRC2 complex.

The moderate decline of H3K27me3 in emf2 could be due to

partial replacement of EMF2 function by its homolog, VRN2

[15,16]. The partial requirement for EMF1 shows that

H3K27me3 is less dependent on EMF1 than on PRC2, indicating

a site-specific EMF1-dependent H3K27 trimethylation. Neverthe-

less, 75% of the genes with reduced H3K27me3 in emf1 have

reduced H3K27me3 in emf2 and fie (Figure 2E), indicating that

trimethylation on these genes requires coordinated action by

EMF1 and PRC2.

Genes highly trimethylated on H3K27 and enriched for
EMF1 binding

Because peak calling necessarily involves arbitrary cutoffs, we

supplemented the ChIPOTLe analysis that generated the

H3K27me3 peaks by an unsupervised k-means clustering algorithm

(k = 2, Figure 3A, left panel). The 28,244 Arabidopsis genes were

aligned at the annotated TSS, the average H3K27me3 signal

calculated in each 100 bp bin across the 6 kb region surrounding

the TSS, and the data sorted into two clusters, high and low

H3K27 trimethylation. High enrichment level of H3K27me3 in

the transcribed, relative to the 59 untranscribed, region is clearly

seen in the highly trimethylated gene cluster (Figure 3A, left panel).

We then arranged EMF1 binding strength to match the

H3K27me3 sorting order (Figure 3A, right panel), and found

that genes in the cluster of high H3K27me3 exhibit high

enrichment level of EMF1 binding, while the cluster with low

H3K27me3 genes show low enrichment level of EMF1 binding.

We then arranged H3K27me3 levels in the three mutants

according to the high and low H3K27me3 clusters (Figure 3B).

The H3K27me3 level is most drastically reduced in fie, less in emf2

and emf1, consistent with the ChIPOTLe analysis shown in

Figure 2B.

Since the high H3K27me3 cluster of genes shows the most

distinct pattern (Figure 3A and 3B), we plotting the average

H3K27me3 signal and the EMF1 binding pattern of this cluster of

genes across the 6 kb region surrounding the TSS in WT and in

the 3 mutants (Figure 3C). The promoter regions of this highly

trimethylated cluster of genes show minimal H3K27me3 modifi-

cation, while it is highly enriched in the transcribed region.

H3K27me3 enrichment is highest around the TSS, then declines

slightly but is maintained throughout the 3 kb of the transcribed

region. As expected, H3K27me3 enrichment is reduced in all

three mutants, nearly absent in fie and partially lost in emf2 and

emf1. Despite the reduction in the mutants, the H3K27me3

pattern across the gene remains remarkably similar to WT. The

EMF1 binding pattern of these highly methylated genes is similar

to their H3K27me3 modification pattern in that EMF1 binds

primarily the chromatin of the transcribed, rather than the

promoter, region. However, EMF1 binding in this cluster of highly

methylated genes shows a precipitous drop from the peak of

binding at the TSS in the 39 direction: the major binding is within

1 kb of the TSS (Figure 3C).

Results from the k-means clustering algorithm and the

ChIPOTle method are consistent. We then used a Perl

implementation of the ChIPOTle method to identify the

EMF1-bound genes that are trimethylated and found 58%

(3230) of the 5,533 EMF1-bound genes exhibit H3K27me3

peaks, called EMF1_K27 genes (p = 66102184; Fisher’s exact

test, see gene list in Table S2). Our subsequent analysis focused

on the EMF1_K27 genes, highly trimethylated on H3K27 and

enriched for EMF1 binding.

Developmental functions of the EMF1_K27 genes
Gene ontology (GO) analysis of the 3230 EMF1_K27 genes

revealed that EMF1 and H3K27me3 co-localize at a remarkably

high number of genes involved in transcription factor activity,

developmental pathways, and microRNA (miRNA) gene silencing

(Table 1; Table S3). Relative to the whole genome, there is a 2.5–5

fold enrichment in the genes belonging to the categories of

transcription factor activity, miRNA regulation, and genes

involved in leaf, vascular, root, meristem, and flower development.

EMF1 binds preferentially (p,0.05) genes involved in biotic and

abiotic stresses and in the biosynthesis of, and response to, the

major plant hormones: abscisic acid (ABA), auxin, brassinosteroids

(BR), cytokinins (CK), ethylene, gibberellic acid (GA), jasmonic

acid (JA) and salicylic acid (SA), and genes involved in biotic and

abiotic stresses.

We next examined the annotated genes with known develop-

mental functions (Figure 4; Table S4), beginning with the genes

required for flower and seed development that are up-regulated in

emf1 mutants [33,34]. We found that EMF1 binds a subset of these

H3K27me3 modified genes (Table S4). For example, EMF1 binds

3 of the 4 major seed regulated genes marked by H3K27me3,

namely, FUSCA3 (FUS3), ABA INSENSITIVE3 (ABI3) and 2

LEAFY COTYLEDON2 (LEC2) [44], as well as, a fraction of the

downstream seed maturation genes that are trimethylated, e.g., the

LATE EMBRYO ABUNDANT (LEA), OLEOSIN (OLEO), and LIPID

TRANSFER PROTEIN (LTP), and seed storage protein genes

(Table S4). It is worth noting that some genes in the same families

are bound by EMF1 but are not marked with H3K27me3 (Table

S4).

EMF1 silences the flower developmental program by interacting

with and repressing all known flower organ identity genes and

other genes specifying flower organ development, e.g., CRC,

SUPERMAN (SUP), and PETAL LOSS (PTL, [45,46]; Figure 4).

Flower organ identity genes are all type II MADS box genes [47].

We found that EMF1 preferentially interacts with type II MADS

box genes. EMF1 does not interact with the Type I MADS box

genes that are important for female gametophyte and early seed

development, e.g., PHE1 (AGL37), PHE2 (AGL38), AGL23, and

AGL61 [48,49], although they are H3K27 trimethylated in

Arabidopsis seedlings (Table 2; Table S4).

Vegetative development requires not only the repression of the

seed and flower programs but also dynamic activation and

repression of genes to specify cell fates in the meristems and to

dictate organized cell growth and differentiation. Our study of

seedling chromatin showed that EMF1 binds H3K27me3 marked

genes that specify cell fates in shoot and root apices and control

leaf polarity, e.g., SHOOT MERISTEMLESS (STM), CLAVATA3

(CLV3), and WUSHEL (WUS) (Figure 4). Shoot meristem and leaf

primordia in the shoot apex are separated by the expression of the

boundary-specific genes encoding the NAC domain transcription

factors, NO APICAL MERISTEM (NAM) and CUP SHAPED

COTYLEDONE (CUC) [50,51,52], which are negatively regulated

by the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP)

genes. NAM, CUC2, and CUC3 are all trimethylated and bound by

EMF1 (Figure 4). EMF1 interacts with 9 of the 10 H3K27

trimethylated TCP genes. TCP14 affects internode length and leaf

shape [53]. EMF1 interaction with TCP genes that affect diverse

EMF1-Mediated Epigenetic Regulation
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aspects of Arabidopsis shoot growth and architecture is consistent

with the pleiotropic effect of EMF1 impairment on Arabidopsis

shoot development that includes petiole-less cotyledons, short

hypocotyl and short inflorescence stem, due to limited cell

elongation in emf1 mutants [31].

Hormones mediate growth and differentiation after germina-

tion. H3K27me3 marks a full spectrum of genes involved in

indole-3-acetic acid synthesis, transport and signaling [54], most of

them are EMF1-bound (Figure 4; Table S4). EMF1 also interacts

with many other hormone genes marked with H3K27me3, e.g.,

CYTOKININ OXIDASE (CKKX), GA OXIDASE, and genes involved

in JA, BR, and ethylene synthesis and response (Table S4).

Temporal and spatial regulation of these EMF1_K27 genes is

critical for normal shoot and root architecture and growth

patterns.

MicroRNA (miRNA) regulation of target genes controls various

aspects of developmental transitions [55]. The juvenile to adult

transition of the vegetative shoot is coordinated by the antagonistic

activities of miR156 and miR172, through their opposite

expression pattern and the antagonistic function of their target

genes [56]. The miR319-TCP and miR164-CUC miRNA-target

nodes are involved in regulated cell proliferation during leaf

morphogenesis [55]. EMF1 interacts with about 50% of the

miRNA genes marked by H3K27me3 (Table S4). The AGO-

NOUTE (AGO) genes mediate gene silencing through small RNA-

directed RNA cleavage and translational repression [57]. EMF1

interacts with all H3K27 trimethylated AGO genes, including

AGO10/ZIWILLE (ZLL) (Table S4; Figure 4), which acts in the

siRNA and miRNA pathways and is essential for multiple

developmental processes in plants [57]. Thus EMF1 may mediate

Figure 3. H3K27me3 modification and EMF1 binding pattern in genes of high and low H3K27 trimethylation levels. (A) Heat map of
H3K27me3 and EMF1 binding patterns of the entire WT genome. All annotated sequences from the TAIR8 were aligned at the TSS and average
signals for each 100 bp bin were plotted from 3 kb upstream of the TSS to 3 kb into the gene. Average H3K27me3 signal in each 100 bp bin in WT
was calculated, and data sorted into two groups by an unsupervised k-means clustering algorithm (k = 2) and displayed as a heat map. The cluster of
genes with highly trimethylated gene body is indicated with ‘High’ and the cluster of genes with low trimethylation in the gene body is indicated
with ‘Low’. The left panel displays the H3K27me3 pattern, while the right panel displays EMF1 binding (EMF1_IP) dataset aligned according to the
two clusters of H3K27me3 genes. (B) Heat map of H3K27me3 in three mutants. The H3K27me3 dataset of emf1, emf2, and fie were aligned according
to the sorting order of H3K27me3 of WT. (C) The pattern of H3K27me3 in WT, emf1, emf2 and fie, and EMF1 binding in WT in the cluster of highly
trimethylated genes. The sequences of the genes with high H3K27me3 were aligned at TSS and average signals for each 100 bp bin were plotted
from 3 kb upstream of the TSS to 3 kb into the gene.
doi:10.1371/journal.pgen.1002512.g003

EMF1-Mediated Epigenetic Regulation
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juvenile and adult growth, as well as, lateral organ enlargement

through the regulation of AGO and miRNA genes.

In summary, to promote vegetative development and to

regulate cell differentiation during shoot and root organogenesis,

EMF1 binds genes required for other developmental phases and

genes specifying cell identities. These are primarily genes

trimethylated by EMF2-PRC2 on their H3K27.

EMF1-dependent and -independent EMF1_K27 genes
differ in function and average transcription score

We examined H3K27me3 of the EMF1_K27 genes in emf1

mutants and found two groups of genes. Group I genes–the

EMF1-dependent H3K27me3 genes – comprising 57% of the

EMF1_K27 genes (1845/3230), are not H3K27me3 enriched in

emf1 mutants. Group II genes– EMF1-independent H3K27me3

genes– comprising 43% of EMF1_K27 genes’ are trimethylated in

emf1 mutants (Figure 5A; Table S2).

To determine whether the H3K27me3 of EMF1-bound genes is

mediated by PRC2, we examined trimethylation in fie and emf2

mutants. Most EMF1-bound genes showed reduced methylation

in fie –96% of Group I and 76% of Group II genes (Figure 5A).

Therefore, both Group I and Group II genes are indeed

methylated by PRC2. 83% of Group I and 23% of the Group

II genes showed reduced methylation in emf2. Methylation may be

less affected in emf2 than in fie because of EMF2 and VRN2

redundancy, while FIE participates in both EMF2- and VRN2-

PRC2.

Group I and Group II genes differ in their average RNA

abundance/transcription score in WT, and in their

dependency on EMF1 and PRC2 for repression. (Figure 5B)

Transcriptome analysis of WT and the 3 mutant seedlings was

carried out using the same NimbleGen HD2 tiling arrays and

samples employed for H3K27me3 analysis. The average

transcription score, defined as the average transcript level of all

the genes in a given category, of the WT and mutant samples were

obtained for the 7,751 highly trimethylated (K27), the EMF1_K27,

the Group I and the Group II genes (Figure 5B). In WT seedlings,

Group I genes have a lower average transcription score than Group

II genes. Moreover, the average transcription score of Group I

genes is increased in emf1 mutants by 47%, in emf2 by 39% and in fie

by 45%. Up-regulation of Group I genes in all three mutants

demonstrates their repression by EMF1 binding and H3K27

trimethylation. This phenomenon is observed, to a lesser extent, in

the larger group of 7,751 K27 and 3,230 EMF1_K27 genes. Group

II genes, which, on average, encode genes of higher mRNA

abundance than Group I, showed limited up-regulation in the 3

mutants.

The Group I and Group II genes differ somewhat in their

functions. Genes involved in developmental and transcription

processes and encoding transcription factors and proteins located

in the nucleus are highly overrepresented in Group I, while genes

involved in cell organization/biogenesis, kinase activity, and

cytoplasmic and chloroplast functions are underrepresented

(Figure 5C). In Arabidopsis, genes involved in developmental

processes comprise about 8.18% (2,310/28,244) of the genome.

During seedling growth, genes needed for seedling development

are active. Genes responsible for other stages of development are

probably silenced by trimethylation at their H3K27. 6.33% of

K27 genes, 9.47% of EMF1_K27 genes, and 12.1%, of the Group

I genes are involved in developmental processes (Figure 5C; Table

S5). The same trend, increasing representation from the K27 to

EMF1_K27 to Group I genes, is seen with genes involved in

transcription processes and encoding proteins located in the

nucleus, but not genes involved in cell organization processes and

encoding proteins located in cytosol or the chloroplast. Only 6% of

Group II genes are involved in developmental processes. Using the

EMF1_K27 MADS box gene targets as an example, Group I genes

contain many more MADS box genes, particularly the Type II

MADS box genes; while Group II has fewer MADS box genes and all

of them are Type I (Table 2; Table S4).

Genes of known developmental functions are repressed

by EMF1 and PRC2. Analysis of the NimbleGen transcriptome

data performed in this study revealed that many of the genes with

important developmental function mentioned in the previous

section are up-regulated in emf1 mutants. Examples for the Group

I genes are the flower organ identity genes and the seed regulatory

and maturation genes (Figure 4). Cell fate determination genes,

such as the KNAT1, KNAT4, KNAT7, HOMEO BOX21 (HB-21),

STM, WOX2, and BEL1- LIKE HOMEODOMAIN8 (BLH8),

miRNA (166A, 166E, 172D), AGO5, AGO9, and the boundary-

specifying genes, TCP1, TCP17, BRC1, CUC2, and NAM, are also

up-regulated in emf1 (Figure 4; Table S6). We detected up-

Table 1. Over-represented functional categories of EMF1-bound and H3K27 trimethylated genes.

Genome EMF1_K27 p-value Genome EMF1_K27 p-value

(%) (%) (%) (%)

Transcription factor activity 3.1 17.4 36102296 ABA response & biosynthesis 0.4 0.8 261022

Gene silencing by miRNA 0.1 0.4 661025 Auxin response & biosynthesis 0.6 1.5 361028

Leaf development 0.5 1.5 9610213 Ethylene response & biosynthesis 0.2 0.5 661023

Vascular development 0.1 0.4 161026 *GA response & biosynthesis 0.2 0.6 361025

Root development 0.2 0.5 561025 *JA response & biosynthesis 0.3 0.7 561026

Cell wall development & biosynthesis 1.5 3.2 3610211 *SA response & biosynthesis 0.2 0.4 461022

Cell morphogenesis & differentiation 0.3 1.2 8610217 *BR response and biosynthesis 0 0.2 261024

Meristem development 0.1 0.4 161029 Cytokinin response ans biosynthesis 0 0.2 261024

Flower development 0.5 2.2 2610226 Response to abiotic stress 0.8 1.6 661025

Response to biotic stress 1.6 3.3 8610211

Over-represented GO categories in the 3230 genes bound by EMF1 and trimethylated on H3K27 (EMF1_K27) are grouped by function in development (detailed in Table
S3) and shown.
*GA: gibberellic acid, JA: jasmonic acid, SA: salicylic acid, BR: brassinosteroid.
doi:10.1371/journal.pgen.1002512.t001
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regulation of the hormone synthesis gene GA20OX3 in emf1

mutants. Examining previously published GeneChip data [34], we

found additional Group I genes up-regulated (Table S6), e.g., FLC,

KAN1, KAN2, SHP1, ULT1, YUC4, WOX8, WOX11, WOX12, and

BLADE ON PETIOLE1 (BOP1). BOP1 is required for repressing

meristem activity at the cotyledon base [58] and promoting floral

meristem identity [59].

Many Group II genes also depend on EMF1 for repression.

Examples include the 6 seed maturation genes and JASMONATE-

ZIM-DOMAIN PROTEIN 1 (JAZ1, the repressor of JA signaling,

[60]) (Figure 4; Table S6). Examination of previously published

GeneChip data revealed additional Group II genes up-regulated in

emf1, including ARF21, ARF23, CLE21, EXT4, and AtGA20OX2.

CLE21 misexpression would result in a miniature shoot [61,62].

EMF1 repression of CLE21 is consistent with normal shoot growth.

We then examined whether the above EMF1 repressed genes

are regulated by PRC2. Overall, 80% of the Group I and II genes

up-regulated in emf1 are also up-regulated in fie or emf2 mutants

(Table S6), indicating that most of these genes are indeed

regulated via the PcG mechanism.

A large number of Group I and II genes did not change

expression in the mutants. This is probably due to localized

Figure 4. EMF1_K27 genes involved in Arabidopsis development. EMF1 represses most genes involved in seed and flower organ
development in the seedlings. EMF1 is involved in localized expression of genes specifying shoot meristem, leaf polarity, root development, shoot
architecture through direct interaction with the transcription factor and RNA silencing genes, and/or genes involved in hormone synthesis and action
during vegetative development. Genes up-regulated in emf1 mutants are marked red. AS: ASYMMETRIC LEAF; AUX: AUXIN RESISTANT; ARF: AUXIN
RESPONSE FACTOR; BSU1: BR SUPPRESSOR1; CLE:CLV3/ESR-RELATED; EIR1: ETHYLENE INSENSITIVE ROOT1; EXP: EXANSIN; IAA:INDOLE-3-ACETIC ACID
INDUCIBLE; KAN: KANADI; KNAT: KNOTTED-LIKE FROM ARABIODOPSIS THALIANA; LAX3: LIKE AUX3; PIN: PIFORMED; PLT: PLETHERA; SESA1: SEED STORAGE
ALBUMIN1; SPCH:SPEECHLESS; WOX: WUSHEL RELATED HOMEOBOX; YUC: YUCCA. Full names of other genes are described in the text.
doi:10.1371/journal.pgen.1002512.g004
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expression and/or low transcript level. With microarrays,

differential expression in such genes is difficult to detect in RNA

extracted from whole seedlings. A slight up-regulation of KNAT6, a

meristem-specific gene, in plants impaired in PRC2 genes [54] and

of VERNALIZATION INSENSITIVE3 (VIN3) in plants impaired in

EMF1 [63] can be detected by RT-PCR, but not microarrays.

Additionally, EMF1 may not be solely responsible for repression or

activators may be needed for expression.

EMF1 regulation of PcG and trxG genes and
autoregulation

EMF1 targets many chromatin protein genes marked by

H3K27me3 in WT seedlings, including FIS2, VRN2, MEA,

ULTRAPETALA1 (ULT1), and ULT2 [64]. ULT1 is a component

of trxG, the complex that antagonizes PcG action. EMF1 binding

apparently represses ULT1, as its transcription is up-regulated in

emf1 mutants (Table S6). EMF1 does not bind the chromatin of

EMF2 or the PRC1-like components, LHP1, AtBMI1A, AtBMI1B,

AtRING1A, and AtRING1B (Table S2; [41,65]), which are required

during postembryonic development, as is EMF1. EMF1 does bind

AtRING1C, an imprinted gene expressed in the endosperm [66].

To investigate the epigenetic regulation of EMF1, we examined

EMF1 interaction with itself. Interestingly, EMF1 binds its own

chromatin strongly. Figure 6 shows EMF1 enrichment of the

transcribed region of the EMF1 gene (p,10220). This high level of

EMF1 enrichment on EMF1 chromatin is accompanied by

H3K27 trimethylation in WT, which is reduced in emf1 mutants,

thus placing EMF1 in the category of Group I genes. Furthermore,

EMF1 is up-regulated in emf1 mutants (Figure 6), providing

evidence of EMF1 autoregulation. EMF1 transcript level is also

elevated in emf2 and fie mutants, indicating its repression via a

PcG-mediated mechanism.

EMF1 regulates highly transcribed genes without
H3K27me3

In addition to the EMF1_K27 genes, we investigated the 2303

EMF1-bound but not trimethylated (EMF1_no_K27) genes in

WT seedlings to find out their functional categories and whether

they are regulated by EMF1 and PRC2 (Table S2). GO analysis

showed that the fraction of genes involved in transcription and

developmental processes and genes encoding transcription factors

is lower in the EMF1_no_K27 than the EMF1_K27 genes, while

genes involved in cellular organization and biogenesis, cytosol, and

chloroplast are over-represented in the EMF1_no_K27 genes

(Table S5). The EMF1_no_K27 genes tend to be actively

transcribed genes with high RNA levels. Their average transcript

score is more than 4 times that of the EMF1_K27 genes –1.83 for

the EMF1_no_K27, relative to 0.42 for the EMF1_K27, genes.

Analysis of NimbleGen transcriptome data showed about 14%

of the EMF1_no_K27 genes is up-regulated and 7% down-

regulated in emf1 mutants. A high percentage of these genes are

similarly up- and down-regulated in the emf2 and fie mutants,

indicating a coordinated regulation of these genes by EMF1 and

PRC2 (Figure S4A).

We have previously shown that many photosynthesis genes that

encode chlorophyll a/b binding proteins and photosystem I and II

proteins are down-regulated in emf1 and emf2 mutants [33,34].

Seventy two percent of these genes are EMF1-bound [34], which

are all EMF1_no_K27 genes and many are coordinately down-

regulated in all three mutants (Table S2; Figure S4A and S4B).

These results suggest that EMF1 activates their expression in the

absence of H3K27me3. Indeed, PRC1 in fly and vertebrate are in

some cases recruited to the target genes independent of PRC2 or

H3K27me3 [67,68]. Alternatively, despite EMF1-binding, dereg-

ulation of these genes in emf1, emf2, and fie mutants are a

Table 2. MADS box genes marked by H3K27m3 only and EMF1_K27 genes.

EMF1_K27 aH3K27me3 only

Group I Group II

Up-regulated in emf1 No expression change in emf1 No expression change in emf1 No expression change in emf1

Type II Type I Type II Type I Type I

MADS box genes MADS box genes MADS box genes MADS box genes MADS box genes

AG AGL50 AGL17 AGL41 PHE1/AGL37

AGL15 AGL86 AGL19 AGL49 PHE2/AGL38

AGL71 AGL92 AGL20 AGL82 AGL23

AP3 AGL96 AGL24 AGL83 AGL61

AP1 AGL57 AGL44 AGL96

STK AGL97 AGL6

PI AGL67

SEP2 AGL12

SEP1 AGL13

SEP3 AGL8

SHP2 AGL1

AGL42 CAL

AGL14

TT16

FLC

aH3K27me3 only—H3K27me3 marked genes that are not EMF1-bound.
doi:10.1371/journal.pgen.1002512.t002
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consequence of severe phenotypic aberrations in response to loss of

these central regulators of development.

Discussion

We set out to understand the function of EMF1, a plant specific

gene, and its role in PcG-mediated gene regulation. To this end we

generated genome-wide maps of EMF1 binding, and examined

H3K27me3 modification and transcription on the EMF1-bound

genes in WT, emf1, and plants impaired in PRC2 components.

Analysis of a large number of target genes allowed us to ascertain a

wide range of EMF1 functions. The data suggest that EMF1

regulates gene activity via diverse mechanisms. How the EMF1-

bound, but unmethylated, genes are regulated is unclear at this

Figure 5. Functional analysis of groups of genes based on EMF1 binding and H3K27me3. (A) H3K27me3 status of EMF1-bound genes in emf1
and PRC2 mutants. In WT, 3,230 (100%) were EMF1-bound and trimethylated on H3K27 (EMF1_K27). Among them, 1,845 or 57% of the EMF1_K27 genes,
Group I, showed reduced H3K27me3 in emf1 mutant. Among the 1,845, 1,536 (83%) and 1,783 (96%) showed reduced H3K27me3 in emf2 and fie mutants,
respectively. 17% and 4%, however, were trimethylated in fie and emf2, respectively. 1,385 or 43% of EMF1_K27 genes, Group II, remained trimethylated in
emf1. Among the 1,385 genes remained trimethylated in emf1, 24% and 83% also maintained, while 76% and 17% showed reduced, methylation in fie and
emf2, respectively. (B) Average transcriptional score of genes of H3K27 trimethylated (K27), EMF1_K27, Group I, and II in WT and 3 mutants. Each feature or
hybridization signal on the NimbleGen array is represented as log2-ratio of the genomic DNA for the amplified cDNA from the sample. After median
normalization, each feature was annotated and scored using perl scripts to produce the transcription score. Y- axis: arbitrary units representing average
transcription scores [log2 (mRNA signal intensity)] for genes in given groups. (C) Gene ontology (GO) annotation analysis. Percent representation of whole
genome (whole), trimethylated (K27), EMF1_K27, Group I, and Group II based on the 9 GO categories, 3 in each of the biological, molecular and cellular
functional category is detailed in Table S5. Y-axis: the percentages of genes in each GO category. Categories marked with ‘‘*’’ have a p-value,1023.
doi:10.1371/journal.pgen.1002512.g005
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moment. But the EMF1_K27 genes are most likely regulated via

the classical PcG mechanism. Recent findings indicate that PRCs

have multiple potential modes of action that go beyond the

classical hierarchical model of synergistic effects of PRC2 and

PRC1 [13]. In mammalian cells, opposing effects of PRC1 and

PRC2 on gene activity have been observed and PRC1 can be

recruited independently of PRC2-mediated gene silencing [69].

To further characterize the role of EMF1 in the PcG-mediated

epigenetic mechanism, we focused our investigation on the

EMF1_K27 genes, studying the requirement of EMF1 for

H3K27me3 and the impact of EMF1 and PRC2 on gene

expression.

EMF1 functions as a Polycomb Group protein
Our genome-wide study provided new lines of evidence that

support EMF1 acting via the PcG mechanism. First, EMF1

interacts mostly with euchromatic sites located on all 5

chromosomes, a pattern similar to H3K27 trimethylation. Second,

on the genic level, the EMF1 binding pattern mimics that of the

H3K27me3 in binding the transcribed, not the promoter, region

with the peak binding activity at the 59 TSS. Third, EMF1

represses the seed and flower development genes and cell fate

determination genes that are also modified by H3K27me3.

Fourth, H3K27 trimethylation on EMF1-bound genes is mostly

dependent on PRC2 and gene expression is coordinately regulated

by EMF1 and PRC2. These findings demonstrate that, for genes

that are highly enriched for EMF1 binding and H3K27me3,

EMF1 functions in the PcG mechanism.

Role of EMF1 in the PcG mechanism
We investigated H3K27me3 dependency on EMF1 binding and

found two groups of genes. Group I genes are richer in

transcription factors and their repression is more dependent on

EMF1 and PRC2 than Group II genes. Most importantly, Group

I genes are dependent on EMF1 for H3K27me3 modification,

while Group II genes are not. For Group I genes, which require

EMF1 for K27me3, EMF1 may act prior to, or as a member of,

PRC2 to trimethylate H3K27. For Group II genes that do not

Figure 6. PcG-mediated EMF1 autoregulation. (A) EMF1 binding and H3K27me3 marked sites on EMF1 chromatin in WT seedling, followed by
H3K27me3 modification and expression change of EMF1 in emf1, emf2 and fie. (B) Reverse transcription-PCR (RT-PCR) analysis of EMF1 expression in
emf1, emf2, and WT fourteen days after germination, using UBIQUITIN (UBQ) as the loading control.
doi:10.1371/journal.pgen.1002512.g006
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require EMF1 for H3K27me3, EMF1 may have a PRC1 function,

or may be unrelated to PcG action. Since many Group II genes

require PRC2 for H3K27me3, EMF1 is likely to act via the PcG

mechanism, functioning downstream of H3K27trimethylation, as

does PRC1.

The characteristics of the four Arabidopsis RING-finger

proteins, AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B,

are consistent with their functioning like the mammalian PRC1

uibquitin ligase, which monoubiquitinates H2AK119 [8,37].

EMF1 interacts with these proteins, and is required for these

RING-finger proteins’ monoubiquitination of H2AK119

(H2Aub), thus implicating EMF1 in PRC1 activity. The RING-

finger proteins also interact with CLF [40], the PRC2 H3K27

trimethylase, and with LHP1 [37,41,70]. The EMF1 binding

pattern is similar to that of H2Aub in mouse embryonic fibroblast

cells [71] in that both EMF1 binding and H2Aub localization are

enriched in the 1 kb 59 coding region. It is proposed that H2A

ubiquitination interferes with early transcript elongation [67].

EMF1 preferential localization in the 59 coding region is consistent

with its involvement in PRC1’s role in blocking transcription

elongation by preventing RNA polymerase movement through the

compacted nucleosomes [67].

However, EMF1 appears to partner with these RING-finger

proteins only on a select group of target genes. Most notably, the

signature EMF1 targets, the flower organ identity genes AG and

AP3, are not regulated by the 4 Arabidopsis RING-finger proteins.

However, the class I KNOX (KNOX1) genes, including STM,

KNAT1, KNAT2, and KNAT6, as well as WUS, and the seed

regulator, FUS3, are negatively regulated by both EMF1 and the

RING-finger proteins [37,40]. EMF1 is bound to all these genes in

Arabidopsis seedlings. Their ectopic expression in loss-of-function

mutants suggests that these genes are direct target genes of the

RING-finger proteins. Interestingly, their H3K27me3 shows

varying degrees of dependence on EMF1. KNOX1 and WUS are

Group I genes: H3K27 trimethylation depends on EMF1. FUS3

belongs to Group II: EMF1-independent H3K27me3 (Table S2).

EMF1 may act on Group II genes such as FUS3 by assisting the

PRC1 activity of the RING-finger protein-LHP1 complex

following H3K27 trimethylation by PRC2. For Group I genes

such as STM, EMF1 may participate in each PcG complex

separately or may act like a linker protein that assists PRC2 in

spreading H3K27me3, while helping PRC1 monoubiquitinate

H2A. EMF1 interaction with MSI1 [36] and with the RING-

finger proteins [37] is consistent with its involvement in both

PRC2 and PRC1 activities. CLF interacts with AtRING1A/1B in

yeast 2-hybrid assays [40]. Our results, together with this finding

indicate a close association of PRC2 and PRC1 in Arabidopsis.

This might be indicative of evolutionary divergence of PcG

mechanisms. In Drosophila PRC2 and PRC1 are separate

functions. Our study indicates that in Arabidopsis PcG proteins

can also participate in closely linked PRC2-PRC1 function.

EMF1 enhances the PRC2 targeting of developmental
genes

EMF1 and the PRC2 proteins have a different evolutionary

history [72,73]. The PRC2 ancestral sequences existed prior to the

divergence of the animals and plants. During plant evolution, gene

duplication generated alternate PRC2 components that diversified

to control different functions. EMF1 is a plant-specific gene with

homologous sequences found only in higher plants. It might have

functioned first as a general transcriptional regulator for genes

involved in development and basic cellular and biochemical

activities. Coupling EMF1 with H3K27 trimethylation could have

led to an enhanced targeting of genes in development. The

repression of flower development, which effectively lengthens the

vegetative phase, coupled with elaborating plant architecture

through the regulation of hormone and signaling genes, may have

been instrumental in the evolution of organisms with multiple

developmental phases and diverse signaling processes. This is

suggested by the progressive increase in the representation of genes

involved in transcription and developmental processes from the

H3K27me3 modified genes to the EMF1_K27 to Group I genes

(Figure 5C; Table S5). The fact that EMF1_K27 genes are highly

enriched with H3K27me3 and EMF1 binding suggests an

emphasis on this epigenetic mechanism through robust retention

of repressive chromatin during cell differentiation. Similarly, in

mammalian cells, some genes are controlled by PRC1, indepen-

dent of PRC2, and others are coordinately controlled by PRC1

with PRC2 [13]. The vast majority of developmental regulator

genes are bound by both PRC1 and PRC2, while genes bound by

only one PRC are enriched for the membrane proteins [12].

EMF1 regulation of PcG and trxG genes, and
autoregulation

The similarity of mutant phenotypes suggests that EMF1 acts

primarily with EMF2-PRC2 to mediate developmental processes

in Arabidopsis. EMF1 also acts together with AtBMI1A/1B and

AtRING1A/1B to regulate genes maintaining cell identity. This

means that EMF1 should not silence the EMF2-PRC2 or the 4

RING-finger protein genes. Indeed, EMF1 does not target CLF,

EMF2, SWN, or the RING-finger protein genes. EMF1 does not

interact with VRN2 either, which has similar, ubiquitous

expression patterns as EMF1 and EMF2. EMF1 interacts with

the chromatin of FIS2 and MEA, components of FIS2-PRC2,

consistent with their inactivity after germination. So far, no up-

regulation of these two genes has been detected in the absence of

EMF1. Thus, EMF1 binding may not be the sole factor

responsible for their repression, or their expression may require

activators that are absent after germination.

EMF1 coordinates only with EMF2-PRC2 to regulate PcG

target genes. Neither EMF1 nor EMF2–PRC2 regulate the Type I

MADS box genes involved in female gametophyte and endosperm

development (Table 2), including PHE1 and PHE2, whose

maternal inheritance is mediated by FIS2-PRC2 [74]. PHE1

and PHE2 do not interact with EMF1 and are not normally

expressed post-germination. Their repression is not likely depen-

dent on EMF1 or EMF2–PRC2, for they are not ectopically

expressed in emf1 and emf2 mutants, even though they are

trimethylated on H3K27 (Figure S3). This is consistent with a

close association of EMF1 with EMF2-PRC2 and its lack of

involvement in FIS2-PRC2 mediated epigenetic repression.

ULT1 interacts with ARABIDOPSIS TRITHORAX 1

(ATX1), thus is considered a component of the Arabidopsis trxG

that acts to antagonize PcG action, as evidenced by ult1 mutants

rescuing the clf mutant phenotype [75]. ULT1 and ULT2, a

homolog of ULT1, are EMF1_K27 genes (Table 2), and

considered to be anti-repressors of PcG genes. ULT1 is up-

regulated in emf1 and emf2 (Table S6), and both ULT1 and ULT2

are up-regulated in fie [30]. The temporal and spatial differenti-

ation of ULT1 and ULT2 expression patterns is likely to involve

EMF1, but its role in the fine tuning of the repressor and anti-

repressor balance in regulating gene expression remains to be

characterized. Similarly, EMF1 autoregulation must be a dynamic

process in order to modulate its epigenetic regulatory activities at a

cellular level. Indeed, although EMF1 transcripts and proteins

have been found in all tissues and organs [28,34,36], their

expression pattern differs temporally and spatially in WT and emf1

plants [31]. This may result from EMF1’s autoregulatory actions.
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Future investigation of cell- and tissue-specific EMF1 binding

activities is needed to address these questions.

EMF1_K27 genes maintain vegetative developmental
phase and cell identity

Temporally, EMF1_K27’s major role, as plants undergo seed,

vegetative and reproductive phase transitions, is to maintain

repression of the seed and flower genes so as to allow vegetative

growth after germination. Thus, major seed regulators and flower

organ identity genes are repressed. Spatially, EMF1 is involved in

switching or maintaining differentiated cell states, such that EMF1

probably represses the leaf polarity genes, KANADI and YABBY,

and the shoot meristem-specific genes, STM and KNAT2, in the

differentiated leaf, hypocotyl and root cells. The three genes

specifying stomata development, SPCH, FAMA, and MUTE, are

inactivated in most cells except during stomata differentiation in

the leaves. PLT1 and PLT2 are silenced in the shoot and mature

root so that meristematic growth is restricted to the root tip. Future

investigation of gene expression in separated tissues or in situ

assays on individual genes of interest will clarify the role of EMF1

binding on the regulation of genes that did not show apparent

expression change in mutants.

Materials and Methods

Plant materials and growth conditions
WT and emf mutants, emf1-2 and emf2-1, of Arabidopsis used in

this study are from the Columbia ecotype background, and have

been described [33]. The transgenic plants impaired in FIE was

described in Kinoshita et al., [18], and the pEMF1::3FLAG-tagged

EMF1, called RM, in Calonje et al., [36]. Seeds were surface-

sterilized and plated on agar plates containing 2/5X strength

Murashige and Skoog medium [76]. The plates were placed for 2

days at 4uC and then transferred to a short day growth room

(8 hrs light/16 hrs dark) at 21uC. WT, mutants, and transgenic

plants were harvested after growth for 14 days for expression and

ChIP experiments.

ChIP and microarray assays
ChIP experiment was performed according to published

procedure [36] on WT, emf1, emf2, transgenic FIE, and transgenic

plant harboring the EMF1-3FLAG construct grown in the short

day growth condition for 14 days. Due to homozygous lethality of

emf1, emf2, transgenic FIE mutants, seeds from heterozygous plants

were germinated; mutants were separated from the WT-looking

plants and harvested. Plants were vacuum infiltrated in 1%

formaldehyde solution for half an hour to cross-link the chromatin.

Tissues were ground in liquid nitrogen, nuclei isolated, and

chromatin extracted according to Bowler et al., [77]. Chromatin

was sheared by sonication (Microson, MS-50), 100 on and 100 off

for 10 times to generate 0.5- to 2 kb fragments. For immunopre-

cipitated chromatin (IP), monoclonal anti-FLAG mouse antibody

(Sigma F1804) and polyclonal anti-H3K27me3 antibody (Upstate,

rabbit IgG, 07-449) were added to fragmented chromatin to

precipitate EMF1-bound and H3K27me3 modified chromatin,

respectively. The cross-linking of IP was reversed with 5M NaCl

and DNA precipitated by 100% EtOH. For the Input control

(Input), 0.5% of total chromatin before immunoprecipitation was

reverse cross-linked by 5M NaCl and DNA isolated by 100%

EtOH. The relative amount of DNA was determined by PCR and

spectrophotometry (NanoDrop, ND1000).

ChIP-chip was performed according to the NimbleGen protocol

(Roche, www.nimblegen.com). IP and Input DNA were amplified

using the Whole Genome Amplification kit (Sigma, GenomePlex

Kit, WGA2), and labeled with CY5 and CY3, respectively [78,79].

Combined samples, which include 10 ug of CY5-labeled IP and

10 ug of CY3-labeled Input DNA, were hybridized with

NimbleGen HD2 arrays (http://www.nimblegen.com/products/

chip/custom/index.html), with 2.16 million, ,50mer probes that

allow coverage of the entire Arabidopsis genome without gaps.

The hybridization and data extraction were performed at the Fred

Hutchinson Cancer Research Center DNA array facility (http://

www.fhcrc.org/science/shared_resources/genomics/index.html).

Microarray hybridization was repeated three times with inde-

pendent biological samples.

For global gene expression studies, total RNA was extracted

from 14 old WT and mutants using trizol (Invitrogen) and

converted into cDNA according to Moon et al., [33]. Genomic

DNA from WT and cDNA from mutants and WT were labeled

with CY3, and CY5, respectively, and combined to hybridize with

NimbelGen HD2 arrays as described.

Data analysis
For microarray analysis, signal intensity data of microarrays are

extracted from the scanned images of each array using

NimbleScan, NimbleGen’s data extraction software. For ChIP-

chip data, each feature on the array is represented as log2-ratio of

the input signals for the immunoprecipitated DNA. The log2-ratio

is computed and scaled to center the ratio of data around zero.

Peaks were derived using a Perl implementation of ChIPOTle

(https://sourceforge.net/projects/chipotle-perl/) [80] using a

window size of 300 bp, step size 50 bp with specific cut-offs.

The p-value of 1610235 and the peak length of 300 bp were

applied as a cut-off for dataset of H3K27me3, and the p-value of

161026 and the peak length of 100 bp were applied as a cut-off

for the EMF1 binding dataset, respectively. Peaks were annotated

using TAIR 8. Genome browser views were generated using the

SignalMap software from NimbleGen. End analysis was done as

described in Zilberman et al., [79]. For RNA expression data,

each feature on the array is represented as log2-ratio of the

genomic DNA for the amplified cDNA from each mutant. After

median normalization, each feature was annotated and scored

using perl scripts. To find differentially expressed genes in

mutants, the datasets of [mutant –WT] were generated by

subtracting probe values in the mutant datasets from counterpart

values in the WT datasets, and then, arbitrary cutoff of 61.5sd was

used to select differentially regulated genes.

Gene Ontology analysis
The functional categories of target genes were assigned based on

the GO annotations from the TAIR website [81]. For functional

categories of GO annotations, the significant difference of each

category for each group compared to the whole genome in TAIR8

was calculated with a poisson p-value for data in Figure 5C and

Table S5. For the small number of genes in developmental process

and transcription categories, Fisher’s exact test was used for

assessing the significance of data in Table 1.

ChIP–PCR
To validate EMF1-bound genes identified by ChIP-chip, ChIP

products from three independent biological samples were used to

perform semi-quantitative PCR according to Moon et al., [33] on

genes with different p-values. The PCR bands were scanned and

measured by ImageJ program (http://imagej.nih.gov/ij/). The

input signal for each gene was normalized to 100. The IP signal

was calculated as % input. PHE1, which is not bound by EMF1,

was used as negative control and its IP signal was subtracted from
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that of other genes and plotted on the graph. Primer sequences

used for ChIP analysis are listed in Table S7.

RT–PCR
Total RNA was extracted from WT, emf1, and emf2 according to

Moon et al., [33]. Semi-quantitative PCR was performed as

described previously [33]. Primers used were as follows: EMF1;

(AGGTGCTGCCAACGAGATTGAT and CTTTTGAGTTT-

GAATGCAGTCCAC), UBQ; (GATCTTTGCCGGAAAACAATTG-

GAGGATGGT and CGACTTGTCATTAGAAAGAAAGAGATAA-

CAGG). RT-PCR of all samples and reference controls were

performed in 3 independent replicates and repeated at least three

times with similar results.

Data deposition
Sequences are deposited in Gene Expression Omnibus (GEO)

with accession number GSE34689.

Supporting Information

Figure S1 EMF1 binding and H3K27me3 pattern in WT. (A)

Genome browser view of Chromosome I with EMF1 binding and

H3K27me3 in WT. Black box represents gene body. Y-axis

represents log2-ratio of the IP/input signals. (B) EMF1-binding

and H3K27me3 modification on flower organ-specific genes. 10

flower MADS box genes and CRABS CLAW (CRC) are EMF1-

bound and trimethylated on H3K27 in WT seedlings. The

H3K27me3 modification is reduced to varying degrees in the

three mutants on these genes. AG: AGAMOUS; PI: PISTILATA;

AP1/2: APETALA1/3; SHP1/2: SHATTERPROOF1/2; SEP1/2/

3: SEPALATA1/2/3; CAL: CAULIFLOWER.

(PDF)

Figure S2 ChIP-PCR of EMF1-bound genes. Four genes with

high (p,10220) and five genes with low (10218,p,1026)

enrichment of EMF1-3FLAG binding were randomly selected to

confirm EMF1 binding by ChIP-PCR. PHE1 is used as negative

control. Gene ID and the p-value of EMF1 binding from the

ChIP-chip data are shown in the Table. ChIP products from three

independent biological samples were used to perform semi-

quantitative PCR, using primer sequences located within 500 bp

from the TSS (see Table S7 for primer sequences). Results are

shown in the graph. Twenty eight to thirty five PCR cycles were

performed for each gene. Three PCR experiments were

performed with the cycles showing enrichment. Average IP from

three experiments were expressed on the graph as % of

corresponding input DNA. Error bars represent the standard

deviations. Results were consistent among the 3 biological samples

(see Materials and Methods).

(PDF)

Figure S3 EMF1-independent repression of PHE1 and PHE2.

EMF1 binding and H3K27me3 pattern on PHE1 and PHE2

chromatin on WT and 3 mutants, and RNA expression change of

PHE1 and PHE2 from WT in the three mutants. PHE1/2:

PHERES1/2.

(PDF)

Figure S4 Expression change of EMF1_no_K27 genes. (A)

Expression change of 2303 EMF1_no_K27 genes in three

mutants. All data based on NimbleGen microarray analysis. (B)

Coordinated regulation of EMF1-bound photosynthesis genes by

EMF1 and PRC2. At1g03130: PHOTOSYSTEM I SUBUNIT D-2,

At1g15820:LIGHT HARVESTING COMPLEX OF PHOTOSYS-

TEM II SUBUNIT6 (LHCB6), At1g31330:PHOTOSYSTEM I

SUBUNIT F, At2g34430: LIGHT-HARVESTING CHLOROPHYLL

PROTEIN COMPLEX II SUBUNIT B1, At3g08940: LHCB4.2,

At5g01530: LCHB4.1.

(PDF)

Table S1 EMF1 binding peaks on the 5 Arabidopsis chromo-

somes.

(XLS)

Table S2 Lists of H3K27me3 (K27), EMF1-bound,

EMF1_K27, Group I, Group II, and EMF1_no_K27 genes.

(XLS)

Table S3 Overrepresented GO categories (molecular function,

developmental, hormone response and stress) in EMF1_K27

genes.

(XLS)

Table S4 A subset of H3K27trimethylated genes are EMF1-

bound.

(XLS)

Table S5 Percent representation of 9 functional GO categories

of EMF1_K27 genes shown in Figure 5C.

(XLS)

Table S6 Select EMF1_K27 genes coordinately regulated by

EMF1 and PRC2.

(XLS)

Table S7 Primer sequences used in ChIP-PCR experiments.

(XLS)
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