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Abstract
Current computer-aided detection (CAD) schemes for detecting mammographic masses have
several limitations including high correlation with radiologists’ detection and cueing most subtle
masses only on one view. To increase CAD sensitivity in cueing more subtle masses that are likely
missed and/or overlooked by radiologists without increasing false-positive rates, we investigated a
new case-dependent cueing method by combining the original CAD-generated detection scores
with a computed bilateral mammographic density asymmetry index. Using the new method, we
adaptively raise CAD-generated scores of regions detected on “high-risk” cases to cue more subtle
mass regions and reduce CAD scores of regions detected on “low-risk” cases to discard more
false-positive regions. A testing dataset involving 78 positive and 338 negative cases was used to
test this adaptive cueing method. Each positive case involves two sequential examinations in
which the mass was detected in “current” examination and missed in “prior” examination but
detected in a retrospective review by radiologists. Applying to this dataset, a pre-optimized CAD
scheme yielded 75% case-based and 55% region-based sensitivity on “current” examinations at a
false-positive rate of 0.25 per image. CAD sensitivity was reduced to 42% (case-based) and 27%
(region-based) on “prior” examinations. Using the new cueing method, case-based and region-
based sensitivity could maximally increase 9% and 33% on the “prior” examinations, respectively.
The percentages of the masses cued on two views also increased from 27% to 65%. The study
demonstrated that using this adaptive cueing method enabled to help CAD cue more subtle cancers
without increasing false-positive cueing rate.

Keywords
Computer-aided detection (CAD); Digital mammography; Bilateral mammographic density
asymmetry; Mass detection

I. INTRODUCTION
Breast cancer is the most prevalent cancer among the women over age of 40 years old
worldwide (Jemal et al 2010). Scientific evidence has shown that earlier cancer detection
significantly reduced patients’ mortality and morbidity rates (Tabar et al 2001). Since the
majority of breast cancers are detected in women without any known risk factors (Madigan
et al 1995), a uniformly applied cancer screening programs in the general population (e.g.,
women over age of 40 in USA or women over age of 50 in many countries in Europe
without known elevated risk factors) is considered important and efficacious. Although a
number of screening tools have been developed and tested, mammography is the only
clinically accepted imaging modality for screening the general population to date (Smith et
al 2011). However, interpreting mammograms is difficult and time-consuming due to the
variability of depicted breast abnormalities, overlapping dense fibro-glandular tissue on the
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projected images, and low cancer prevalence in the screening environment (Buist et al
2011). As a result, detection sensitivity and specificity of screening mammography is not
optimal (Fenton et al 2006). Although image double-reading could significantly improve
performance of screening mammography (Thurfjell et al 1994), it is not a practical choice in
the clinical practices of the most countries around the world. Hence, the computer-aided
detection (CAD) schemes were developed and tested as “a second reader” to assist
radiologists when interpreting screening mammograms (Gilbert et al 2006). While studies
showed that using CAD helped radiologists detect more cancers associated with micro-
calcification clusters (Freer et al 2001), the success in using current CAD for improving
detection of cancers associated with mass-like abnormalities has been less than
overwhelming (Gur et al 2004a). Several large multi-institutional observational studies have
showed that using CAD actually reduced radiologists’ performance of reading screening
mammograms in the clinical practice (Fenton et al 2007, Fenton et al 2011). Therefore,
some researchers believe that CAD, in its present form, is not an optimal or effective aid for
screening mammography (Nishikawa et al 2006a) and many radiologists in general largely
ignore CAD-cued mass-like regions in the clinical practice due to their low confidence in
the CAD-cued results (Zheng et al 2006a).

Besides the relatively higher false-positive detection rates, previous studies have shown that
current mammographic CAD for mass detection also has two other major limitations. First,
there is high correlation between CAD and radiologists’ detection results (Gur et al 2004b).
When using CAD as “a second reader,” cueing the “easy” mass regions that can be easily
detected by radiologists (“the first reader”) is not helpful. Second, similar to the false-
positive cues, CAD cues most subtle mass-like abnormalities only in one image (either
craniocaudal (CC) or mediolateral oblique (MLO) view). As a result, radiologists are likely
to discard these CAD-cued positive regions as the false-positives in both prospective and
retrospective studies (Khoo et al 2005. Nishikawa et al 2006b). Thus, although the
commercialized CAD schemes are currently available and have been routinely used in the
clinical practice of many medical institutions, studies continue in the hope of improving
CAD performance in detecting subtle masses and increasing radiologists’ confidence in
CAD-cued results as related to “mass-like” identifications. These efforts include but not
limited to: (1) developing dual CAD schemes that combine separate schemes optimized with
“average” and “difficult” mass region groups (Zheng et al 2003, Wei et al 2006), (2)
selecting optimal image features with higher discriminatory power (Hupse et al 2010) and
fusing different classifiers based on different image feature sets (Park et al 2009); (3)
developing multi-view based CAD schemes that use matched image features computed from
a mass projected on two views to improve detection performance (Zheng et al 2006b,
Velikova et al 2009); and (4) developing interactive CAD schemes using a content-based
image retrieval approach that provides radiologists “visual-aid” to increase their confidence
in accepting CAD-cued results (Zheng et al 2007, Mazurowski et al 2008). However, none
of these approaches has been integrated into the commercial CAD schemes and routinely
used in the clinical practice, to date.

Although CAD schemes are able to detect a high fraction of subtle masses that are likely to
be missed and/or overlooked by radiologists (Birdwell et al 2001), to maintain the
acceptable false-positive cueing rates, current CAD use an universal operating threshold that
only cues the “easy” mass regions (with CAD-generated detection scores ≥ operating
threshold) while discarding the “difficult” positive regions (with scores < operating
threshold). To reduce the high correlation of mass detection between radiologists and CAD
without increasing false-positive cueing rate, this study investigated and tested a different
approach. Our hypothesis is that by adaptively changing the final CAD cueing scores of
detected suspicious mass regions depicted on different cases based on a specific case-based
index, CAD is able to cue more subtle mass regions depicted on high risk or “difficult” cases
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by raising their CAD-cueing scores (above the CAD operating threshold) and discard more
false-positive regions depicted on low risk or “easy” cases by reducing their scores (below
the operating threshold). As a result, without changing and/or re-optimizing the existing
CAD schemes, CAD can actually cue more subtle mass regions that are likely to be missed
or overlooked by radiologists while maintaining the overall false-positive cueing rate on a
diverse negative dataset. To test this hypothesis, we proposed a new adaptive CAD cueing
approach (Figure 1). Using this approach, each original CAD-generated detection score will
be adaptively changed into a new cueing score based on a case-dependent index. CAD
system will then cue all suspicious regions whose adjusted new cueing scores are greater
than CAD operating threshold and discard the other suspicious regions with the new cueing
scores smaller than the operating threshold. The goal of this study is to assess whether using
this new adaptive cueing method, CAD can cue more subtle masses that are not reported by
radiologists in their original image reading and also cue more subtle masses on both CC and
MLO view images.

II. MATERIALS AND METHODS
2.1. Image Dataset and a CAD scheme

In this study, we assembled a special image dataset. From an existing full-field digital
mammography (FFDM) image database previously reported (Zheng et al 2011), we selected
all of 78 positive cases that meet the requirement of this study and 338 available negative
cases. Each selected positive case should involve two sequentially acquired screening
FFDM examinations. In the “current” (the second) examination, a malignant mass was
detected by the radiologist in the original image reading and verified by the biopsy and
pathology analysis, while the “prior” (the first) examination was originally interpreted as
negative by the radiologist. However, in the retrospective review (with the availability of the
“current” images and diagnostic reports) the suspicious mass regions depicted on the “prior”
images were also marked and interpreted as detectable by radiologists. Thus, two sets of
FFDM images acquired from both “current” and “prior” examination were selected for each
case and included in our dataset. Each examination (including both positive and negative
case) contains four FFDM images representing both CC and MLO view images acquired
from the left and right breast of a woman. The positive case group involves a total of 624
images (in which 312 are “current” images and 312 are “prior” images). For the negative
cases, we only selected images acquired from one (the “current”) FFDM examination for
each case resulting in a total of 1352 FFDM images in 338 cases. Each negative case has
maintained negative (cancer-free) status for at least two sequentially annual FFDM
examinations after the selected examination of interest in this dataset. The distributions of
the image characteristics of our database including mass boundary categories (i.e., smooth,
irregular, spiculated, and focal asymmetry) and case-based mean mammographic tissue
density (e.g., BIRADS ratings of cases) have been previously reported (Zheng et al 2010).

A pre-developed CAD scheme to detect mass regions depicted on FFDM images (Zheng et
al 2011) was applied (“as is”) to detect suspicious mass regions depicted on each of 1976
FFDM images in our testing dataset. In brief, this scheme includes three image processing
and feature classification steps. The first step applies a difference-of-Gaussian filtering
method to search for and identify suspicious mass regions. This step typically identifies
between 10 and 50 suspicious regions per image depending on breast tissue density and
pattern distribution. The upper level of CAD sensitivity is determined by this step. The
second step applies a multilayer topographic region growth and active contour algorithm to
segment suspicious mass regions and determine its boundary contour. In each suspicious
region initially detected in the first step, the algorithm searches for a growth seed with local
minimum value. A growth threshold for each topographic growth layer is adaptively
determined by computed region’s local contrast. A set of classification rules related to the
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region size, circularity, shape factor, and inter-layer growth ratio is applied to delete the
false-positive regions. After passing through three growth layers, an active contour
algorithm is applied to determine the final boundary contour of the growth region. This step
typically eliminates over 80% of initially identified suspicious regions and reduces the
number of the growth regions to ≤ 5 per image. The third step computes a set of morphology
and pixel-value (intensity) distribution based image features from each mass region detected
in the second step and then applies a pre-optimized multi-feature-based artificial neural
network (ANN) to classify this region by generating a detection score indicating the
likelihood of the region associating with a positive (malignant) mass. Finally, a pre-
determined operating threshold is applied to cue (mark) the detected suspicious mass regions
in which the CAD-generated detection scores are greater than the threshold, while the other
regions with detection scores smaller than the threshold are discarded (not-cued).

Figure 2 shows and compares histograms of the average mass sizes computed from the CC
and MLO view of the “current’ and “prior” images, respectively. The figure shows the trend
of increase of mass size from the “prior” to “current” examinations. Specifically, the average
size of 78 masses computed from the “prior” images is 75.5 mm2 ranging from 9.7 mm2 to
287.8 mm2, while the computed average mass size in this dataset increases to 110.2 mm2

ranging from 15.7 mm2 to 491.3 mm2 in the “current” examinations.

2.2. A bilateral mammographic density asymmetry index
Although a number of mammographic image features can be computed and used as the case-
dependent indices to indicate the case difficulty and/or cancer risk (i.e., mammographic
density [Oliver et al 2010] and breast volume differnece [Scutt et al 2006]), we selected the
bilateral mammographic density asymmetry as a testing index in this study. Our previous
study suggested that the bilateral mammographic density asymmetry had a higher
discriminatory power to predict the risk of each individual case being developing breast
cancer (Wang et al 2011). In addition, radiologists routinely use the bilateral mammographic
density asymmetry (in particular the matched regional based density asymmetry)
information to detect suspicious mass regions in interpreting mammograms in the clinical
practice. Hence, we used a simple image feature related to the bilateral mammographic
density asymmetry measured or computed from two images of the left and right breast as a
case-dependent cueing index to adaptively adjust the final CAD cueing scores of the
suspicious regions depicted on different cases.

For each case, we computed bilateral mammographic density asymmetry by selecting two
CC view images acquired from both the left and right breast. First, we applied a pre-
developed computing algorithm (Zheng et al 2006b) to segment breast tissue area by
assuming that a transition curve with the smoothest curvature between breast tissue and air
background represents the segmentation boundary (skin–air interfaces). For this purpose, an
iterative searching method was applied to detect the smoothest curvature between breast
tissue and the air background. After segmenting the entire breast area with N pixels depicted
on one image, we computed the average pixel value or intensity (Ik, k = 1,2,…, N) of the

entire segmented breast area,  to represent the mean mammographic density
(Chang et al 2002). We then computed the absolute difference between ĪL (left breast) and ĪR
(right breast), ΔĪ = |ĪL − ĪR|, to represent the bilateral mammographic density asymmetry.

Since the original CAD-generated detection scores range from 0 to 1, the computed feature
(ΔĪ) values were also normalized to the range of [0, 1] using a simple method (Zheng et al
2007). In brief, we computed the mean (μ) and the standard deviation (σ) of 494 (ΔĪ) values
(including those computed from 156 “current” and “prior” positive examinations and 338
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negative examinations) in the image dataset. The computed interval [μ − 3σ, μ + 3σ] of ΔĪ is
normalized between 0 and 1. Any values falling outside the interval range (outliers) are
assigned to either 0 (<μ − 3σ) or 1 (>μ+ 3σ).

2.3. A new CAD-cueing method
To adaptively change or adjust the original CAD-generated detection score (Sorg) of a
detected suspicious mass region based on the computed bilateral mammographic density
asymmetry score (ΔĪ) of the case depicting this detected region, we can plot a two-
dimensional scatter diagram between Sorg and ΔĪ′ (Figure 2). We then project each original
CAD score (Sorg) into a new cueing reference line using the following rotation or projection
equation to compute a new CAD cueing score (Snew):

(1)

where α is an angle between the projection (reference) line and the horizontal axis (ΔĪ = 0)
and tan(α) is the slope of the projection line to the horizontal axis. When α= 0, Snew = Sorg.
As the projection line slope increases, ΔĪ has more weight on the new cueing score Snew. It
will lift (raise) regions’ new cueing scores in the cases with greater ΔĪ values and reduce
regions’ cueing scores in the cases with smaller ΔĪ values.

To explain how this new adaptive cueing approach enables to cue some more subtle mass
regions (with original CAD-generated detection scores < CAD operating threshold) and
discard some “easier” mass regions (with CAD scores ≥ CAD operating threshold), we can
take two marked suspicious mass regions (A and B) in Figure 3 as examples. The original
CAD-generated detection scores (Sorg) for two regions (A and B) are 0.47 and 0.56,
respectively. Assuming the CAD operating threshold is T = 0.55 in our original CAD
scheme (Gur et al 2004b), region B will be marked (cued) and region A is discarded (not-
cued). However, because region A is located on a “high-risk” case with greater bilateral
mammographic density asymmetry score (ΔĪ′ =0.75), when projecting the region into a new
reference line (the dash line as shown in Figure 3), its new cueing score computed by
equation (1) is Snew = 0.65, while the new cueing score Snew is reduced to 0.50 for region B
because its ΔĪ′ =0.0. As a result, using the new cueing approach, the originally un-cued
lower score region A will be cued and the originally cued higher score region B is discarded.

2.4. CAD cueing performance evaluation and comparison
To evaluate and compare CAD performance under two cueing approaches, we computed
and plotted a number of free-response receiver operating characteristic (FROC) curves. We
generated each FROC curve in two steps. The detection scores of all suspicious mass
regions (including both true-positive and false-positive regions) are first used as input values
of a maximum likelihood statistical data analysis based ROC fitting program (ROCKIT,
http://www-radiology.uchicago.edu/krl/) to generate a quasi-ROC type performance curve.
The FROC curve is then generated by linearly stretching the quasi-ROC curve into the
maximum false-positive rate (in horizontal axis) and the maximum detection sensitivity (in
vertical axis). This simple and easy to be computed method has shown in our previous study
that it could generate very comparable FROC curves generated using more advanced and
complicated FROC models (Yoon et al 2007).

Since our goal in this study is to cue more “difficult” masses in the “prior” images of the
positive cases of our dataset as well as to cue more masses on both CC and MLO view
images without increasing false-positive cueing rate in the group of negative cases, from the
FROC curves we used detection sensitivity at 0.25 false-positive per image as the evaluation
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criterion of CAD cueing performance. This false-positive cueing rate is very comparable or
lower than the false-positive rates of current commercialized CAD schemes (Gur et al
2004b). We then systematically investigated and detected the trend between the projection
line slope (as shown in Figure 3) and the cueing performance. The results are then tabulated
and compared.

III. RESULTS
Figure 4 shows two examples that compare (1) two masses depicted on the “current” and
“prior” images, and (2) the difference of CAD-cueing results between using the
conventional CAD threshold method and the new case-dependent cueing method. Two
masses depicted on the “current” images (as shown in the left column of Figure 4) have
larger size and higher contrast (or conspicuity) than those depicted on the “prior” images
(the right column of Figure 4). Two “prior” mass regions correspond to the two circles (“A”
and “B”) plotted in Figure 3, respectively. As explained in previous discussion of Figure 3,
CAD was originally able to cue the bottom-right mass region (“B”) and discarded the top-
right mass region (“A”) based on CAD-generated detection scores. However, when using
the new case-dependent cueing scores, region (“A”) was cued and region (“B”) was
discarded.

Figure 5 shows two FROC performance curves when applying our original CAD scheme to
the “current” examinations of 78 positive and 338 negative cases. All cancers in the
“current” examinations were detected by radiologists in the original image reading and
interpretation. At the maximum false-positive rate of 3.6 per image, CAD detected all of
these “easy” masses (cancers) by achieving 100% case-based sensitivity. Among these
positive masses, 67% (52/78) were detected by CAD on both CC and MLO views resulting
in detecting 130 mass regions with the maximum of 83% region-based sensitivity. By
setting up a CAD operating threshold to yield a false-positive rate of 0.25 per image, CAD
finally cued 75% (59/78) true-positive masses and 54% (85/156) mass regions. Among the
59 cued masses, 26 were cued by CAD on both CC and MLO views (44%).

Figure 6 shows two FROC curves when applying our original CAD scheme to the “prior”
examinations of 78 positive cases and the “current” examinations of 338 negative cases. All
“cancers” in the “prior” examinations were missed and/or overlooked by radiologists in the
original image reading but they were considered detectable in the retrospective review.
Although CAD performance level (detection sensitivity on these “difficult” masses) is
substantially lower as comparing to detect “easy” masses in the “current” examinations,
CAD was able to detect a high fraction of these “difficult” masses with the maximum
sensitivity levels of 91% (case-based) and 78% (region-based). However, these “difficult”
mass regions typically have lower CAD-generated likelihood scores. Thus, the final cueing
sensitivity levels are 42% (case-based) and 27% (region-based) at 0.25 false-positives per
image. Among 33 cued masses, 9 were cued on both CC and MLO view (27%).

Figure 7 shows a ROC-type performance curve to classify between “prior” examinations of
78 positive cases and “current” examinations of 338 negative cases using the computed
bilateral mammographic density asymmetry scores. The area under ROC curve is
0.702±0.032, which indicates that the positive cases in general have greater bilateral
mammographic density asymmetry than the negative cases probably due to the development
of mass-like abnormality in one breast. As a result, by increasing the slope of the new
scoring projection line (Figure 3) to put more cueing weights on cases with greater bilateral
mammographic density asymmetry, the number of masses and mass regions cued by CAD
also gradually increases until reaching the maximum and then starts going down (as shown
in Tables 1 and 2). Using this new cueing method, CAD is able to maximally increase case-
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based cueing sensitivity by 9.1% (at projection line slope = 0.4) and region-based sensitivity
by 33.3% (at projection line slope = 0.8) without increasing false-positive cueing rates. At
these maximum performance levels, the number of masses cued is increased from 33 to 36
and the number of cued mass regions is increased from 42 to 56. The results also show that
although using new cueing method CAD is able to cue additional mass regions with the
original CAD-generated detection scores smaller than the CAD operating threshold (Sorg <
T), CAD also discards a few mass regions with Sorg ≥ T. Meanwhile, when applying the
original CAD cueing method, 9 out of 33 cued masses were cued (marked) on two (CC and
MLO) view images (27%). Using the new cueing method, the number of masses cued on
two views can also substantially increase to 22, representing 65% of 34 cued masses at
projection line slope = 1.0 (as shown in Figure 8).

IV. DISCUSSION
Unlike detecting cancers associated with micro-calcification clusters in which CAD could
achieve higher sensitivity than radiologists (Freer et al 2001), current CAD schemes for
detecting mammographic mass-like abnormalities (or cancers) have lower performance than
radiologists (including both lower sensitivity and higher false-positive cueing rate) and thus
CAD was approved to be used as “a second reader.” Radiologists should first read and
interpret mammograms to detect suspicious abnormalities before viewing CAD results.
Under such application environment, in order to really help radiologists detect more subtle
mass-like cancers at earlier stage without significantly increasing false-positive (recall)
rates, CAD should meet two requirements without increasing false-positive cueing rates.
First, since cueing more “easy” masses that are easily detected by radiologists with and
without CAD is not very helpful, CAD should reduce its correlation with radiologists’
detection by cueing more subtle masses that are likely missed and/or overlooked by
radiologists although CAD may need to pay a price to discard (not cue) some “easy” masses
that have already been detected by radiologists before viewing CAD-cued results. Second,
since radiologists are likely to ignore or discard the subtle true-positive masses cued by
CAD only on one view as false-positive cues, CAD should cue more subtle masses on both
CC and MLO views to increase radiologists’ confidence to correctly accept CAD cueing
results.

Although many CAD schemes can initially detect a high fraction of subtle masses, most
subtle masses with lower detection scores are not cued (discarded) to maintain an acceptable
false-positive cueing rate. Based on FROC curve of a CAD scheme, simply reducing cueing
threshold, CAD can increase cueing sensitivity at a cost of increasing false-positive rates.
For example, in this study following the FROC curve (as shown in Figure 6) one could
increase case-based cueing sensitivity on the “prior” cases from 42% (33/78) to 46% (36/78)
by simply reducing CAD cueing threshold. However, the false-positive rate will also be
increased from 0.25 to 0.33 per image, which means cueing additional 108 false-positive
regions in our negative case group. Meanwhile, to increase the region-based sensitivity from
27% (42/156) to 36% (56/156) by reducing the cueing threshold, CAD will increase the
false-positive rate from 0.25 to 0.41 per image. To overcome this limitation, we in this study
tested a new CAD cueing concept that is case-dependent. The actual CAD cueing
performance level does not follow the original FROC curve of the CAD scheme. As a result,
this new cueing concept has a unique characteristic to potentially increase sensitivity of
cueing “difficult” cases without increasing false-positive cueing rates. To demonstrate the
feasibility of such a new cueing concept, we tested a unique approach to conduct the case-
dependent CAD cueing by using a bilateral mammographic density asymmetry index to
guide CAD cueing. The method aims to increase CAD sensitivity in detecting “difficult”
masses by selecting and cueing a fraction of mass regions with original CAD-generated
detection scores that are lower than the CAD operating threshold without increasing the
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overall false-positive detection rates. To combine (or fuse) the original region-based CAD
scores and the computed bilateral mammographic density asymmetry index, we created a
reference (projection) line. Each original CAD-generated detection score is projected to this
new reference line to generate a new cueing score. The new converted cueing scores are
then used to determine which suspicious regions are cued and which are discarded. Using a
special group of “difficult” positive cases (the “prior” images of positive cases in which
masses were not detected by radiologists in their original image reading but confirmed as
“detectable” in the retrospective image review), our experiment demonstrated that using this
new cueing approach, our CAD was able to cue more subtle masses (e.g., 9%) and more
subtle masses on two view images (e.g., 244% increase from 9 to 22 masses in our dataset)
while maintaining the false-positive cueing rate of 0.25 per image on the same group of 338
negative cases in our dataset.

We emphasize that this is just a preliminary technology development study with a number of
limitations. First, due to the small dataset with only 78 “prior” positive cases, the robustness
of this new case-dependent CAD cueing approach has not been independently evaluated.
Second, we did not asked radiologists to retrospectively rate the “difficult” levels of the
masses in our database. Hence, we only evaluated the overall CAD performance on our
entire dataset used in this study. The CAD performance level variation on different sub-
groups of cases (i.e., based on mass size and the subjectively “difficult” level ratings) has
not been assessed. Third, we only used a very simple image feature to represent the bilateral
mammographic density asymmetry in this study. This may not be an optimal feature. Using
a classifier involving multiple image features may further improve the results in classifying
between high and low risk cases as demonstrated in previous studies (Wang et al 2010, Wei
et al 2011). In addition, the potential clinical utility of this new approach has also not been
tested by radiologists. Specifically, although using this new cueing method CAD is able to
cue additional mass regions with originally lower CAD-generated detection scores and
maintain the overall false-positive cueing rate (e.g., 0.25 per image), CAD also discards
some of previously cued mass regions with higher detection scores and may cue a fraction of
different false-positive regions in the same set of negative cases. As a result, similar to the
positive cases, some negative cases with higher bilateral mammographic density asymmetry
level can also have increased false-positive cues and others have less false-positive cues.
How these two issues could actually affect radiologists’ performance in reading and
interpreting screening mammograms needs to be investigated and assessed in future
retrospective or prospective type observer performance studies. Despite these limitations (or
unsolved issues) we believe that the new case-dependent CAD cueing concept tested in this
study is valid and all suspicious masses depicted in the “prior” examinations of our dataset
should be considered “difficult” in the mammographic screening environment. Hence,
developing and testing the similar new CAD-cueing approach to improve CAD performance
in the detecting more difficult cases alone is important and has scientific merit because
previous study have demonstrated an improvement in radiologists’ performances when
using “highly performing” CAD, while radiologists’ performances actually reduced when
using “poorly performing” CAD with lower cueing sensitivity on difficult cases and high
false-positive cueing rates (Zheng et al 2001).

In summary, instead of applying a universally adopted CAD cueing method to all cases
regardless of their cancer risk levels and/or other image characteristics, we in this
preliminary study demonstrated a new case-dependent cueing concept with a simple
approach of combining the computed bilateral mammographic density asymmetry to
adaptively adjust CAD cueing scores, which increases CAD cueing sensitivity on “difficult”
mass regions while maintaining the overall false-positive cueing rates. This approach is not
unique only to our own CAD scheme. Since our approach does not change or re-optimize
the original CAD schemes, it can be easily integrated into any other existing CAD schemes
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for detecting mammographic masses. Meanwhile, the tested concept of adaptively adjusting
or shifting the original CAD-generated detection scores is also not only limited to a simple
computed bilateral mammographic density asymmetry index (or feature) used in this study.
The same concept can also be applied when one identifies and uses other more effective
image features or risk indices in the future studies.
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Figure 1.
Illustration of a new adaptive CAD cueing approach.
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Figure 2.
Comparson of histograms of average mass size (mm2) computed from two (CC and MLO)
view images of 78 masses depicted on the “current” and “prior” examinations.
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Figure 3.
Illustration of adaptively changing CAD-generated detection scores based on bilateral
mammographic density asymmetry score by projecting the original CAD scores into a new
scoring reference line (as shown in dashed line).
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Figure 4.
Example of two masses with different CAD cueing results. Left column are two “current”
images of two cases and the right column are two corresponding “prior” images. The true-
positive mass regions are circled in all four images. Two “prior” mass regions depicted on
the top-right and bottom-right images correspond to “A” and “B” circles as shown in Figure
3, respectively.
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Figure 5.
Two FROC-type performance curves representing performance of applying our original
CAD scheme to our testing dataset with “current” examinations of 78 positive cases and 338
negative cases.
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Figure 6.
Two FROC-type performance curves representing performance of applying our original
CAD scheme to our testing dataset with “prior” examinations of 78 positive cases and
“current” examinations of 338 negative cases.
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Figure 7.
A ROC-type performance curve to classify between the “prior” examinations of 78 positive
cases and the “current” examinations of 338 negative cases using the computed bilateral
mammographic density asymmetry scores (solid line curve) with the area under ROC curve
(AUC = 0.702). The dash line is a reference line with AUC = 0.5.
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Figure 8.
The relationship between the number of masses cued on two views and the change of
scoring projection line slopes.
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Table 1

Case-based comparison of the total number of masses cued by changing the scoring projection line slopes
including the number of cued masses with original CAD-generated scores (Sorg) greater than the cueing
threshold (T) and the number of cued masses with Sorg < T at a false-positive rate of 0.25 per image.

Projection line slope
(tan(α))

Total number of cued
masses

Cued masses with Sorg ≥
T

Cued masses with Sorg
< T

Increase of Sensitivity
(%)

0.0 33 33 0 N/A

0.2 35 32 3 6.1%

0.4 36 31 5 9.1%

0.6 35 29 6 6.1%

0.8 35 28 7 6.1%

1.0 34 26 8 3.0%

1.2 34 25 9 3.0%
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Table 2

Mass region based comparison of the total number of mass regions cued by changing the scoring projection
line slopes including the number of cued regions with original CAD-generated scores (Sorg) greater than the
cueing threshold (T) and the number of cued regions with Sorg < T at a false-positive rate of 0.25 per image.

Projection line slope
(tan(α))

Total number of cued
regions

Cued regions with Sorg
≥ T

Cued regions with Sorg
< T

Increase of Sensitivity
(%)

0.0 42 42 0 N/A

0.2 49 41 8 16.7%

0.4 53 40 13 26.2%

0.6 55 37 18 31.0%

0.8 56 36 20 33.3%

1.0 56 35 21 33.3%

1.2 53 32 21 26.2%
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