
Understanding the roles of basophils: breaking dawn

Introduction

Basophils are the least abundant leucocytes primarily

found in the circulation. They comprise only a small per-

centage (� 0�5%) of circulating blood cells under steady-

state conditions, but rapidly expand in the bone marrow

in response to inflammatory signals and are mobilized to

the blood, spleen, lung and liver. They are generated from

the granulocyte–monocyte progenitors in the bone mar-

row and populate the periphery as fully mature cells.1

The lifespan of basophils is short; recently estimated to be

in the range of 1–2 days.2 For many years basophils have

been a somewhat enigmatic immune cell type and ques-

tions regarding their role in protective immunity as well

as the specific pathogens or insults that elicit basophil

responses are not fully answered.3,4 In addition to their

scarcity and short lifespan, studies of basophils have been

hindered by the lack of information about how basophils

can be distinguished both phenotypically and functionally

from the developmentally related mast cells. Both mast

cells and basophils express the high-affinity receptor for

IgE and can release a similar spectrum of mediators upon

IgE cross-linking. A panel of markers that define basoph-

ils (e.g. ckit)FceRI+, CD11b+, IL-3Rhi, etc.) have now

been identified that can distinguish these cell lineages and

the list continues to expand.5,6 The recent development of

basophil-depleting monoclonal antibodies7–9 and trans-

genic mouse strains that are deficient in basophils10–12

have enabled us to further explore the relationship

between basophils and host immunity.

A major breakthrough in the understanding of baso-

phil effector functions came from studies using interleu-

kin-4 (IL-4) -reporter animals, and led to the discovery

that basophils are a primary source of IL-4 in vivo.3,13

It was therefore hypothesized that basophils direct the

development of robust IL-4-producing CD4 T cells. It

is well accepted that upon initial antigen encounter,

naive CD4 T-cell differentiation into IL-4-producing T

helper type 2 (Th2) effector cells occurs with the help

of IL-4 present in the microenvironment.14 The initial

source of IL-4 remained elusive for many years. How-

ever, unlike CD4 T cells, which must undergo rounds

of differentiation to express significant IL-4,15 basophils

immediately secrete IL-4 following activation, and this
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Summary

Early studies that used parasite-infected interleukin-4 (IL-4) reporter ani-

mals led us to identify basophils as the primary source of IL-4 and hence

propose the hypothesis that basophils trigger the development of antigen-

specific T helper type 2 (Th2) immune responses in vivo. These findings

appeared to resolve a long-standing puzzle underlying Th2 immunity, that

is, ‘what is the source of the initial IL-4 necessary for CD4 T-cell differen-

tiation into Th2 effector cells?’. However, results from extensive investiga-

tions of the contribution of basophils to Th2 immunity unveiled some

controversial data that cast doubt on the initial hypothesis. In this review,

the consensus and the controversy regarding the roles of basophils in

infection and immunity, as well as outstanding questions for the future,

are discussed.
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is readily achieved even in immature basophil precursor

cells.16

Immunomodulatory functions of basophils

Because T helper cell differentiation takes place in the

lymphoid tissues, a key question was how could circulat-

ing basophils affect Th2 differentiation? Recent data

showing that basophils are recruited into the immune-

active draining lymph nodes and locate close to antigen-

activated naive CD4 T cells offers a likely answer.9 The

recruitment of basophils occurring between 3 and 4 days

after immunization/infection is transient, and is observed

with similar kinetics in several Th2 immunity models.

These include immunization with protease antigen such

as papain9 or house dust mite antigen,17 non-viable para-

site injection,18,19 and infection with live parasites such as

Nippostrongylus brasiliensis,2,3,19 Schistosoma mansonii18,20

and Trichuris muris.20 Accumulation and activation of

basophils at sites of infection by parasites such as

N. brasiliensis is well documented,3,10,13 Importantly, IL-3

produced by activated parasite-specific CD4 T cells plays

a key role in the timing of basophil arrival and the num-

bers of basophils recruited to the sites.21 A cellular mech-

anism underlying IL-3-mediated basophil recruitment is

not well understood, although the targets of IL-3 are of

bone marrow-derived cell origin.22

Subsequent reports from three independent studies that

basophils can function as professional antigen-presenting

cells further support the hypothesis that basophils are

critical for the induction of Th2 immunity.23–26 Immuni-

zation of mice with ovalbumin protein antigen together

with papain results in the induction of ovalbumin-specific

IL-4-producing CD4 T cells. However, injection of the

basophil-depleting anti-FceRI monoclonal antibody,

MAR-1, abolishes this response.27 Basophils can capture

antigen–IgE complexes leading to the differentiation of

antigen-specific naive CD4 T cells into Th2 type cells.28

In the context of helminth infection, dendritic cell deple-

tion does not affect parasite-specific Th2 immunity;

instead, MAR-1-mediated basophil depletion significantly

impairs Th2 cytokine responses as well as parasite expul-

sion.20 Therefore, these findings strongly suggest that Th2

immunity arises with the help of specialized antigen-pre-

senting basophils and the basophil-derived cytokine IL-4.

However, this conclusion was recently challenged by

several contradictory reports demonstrating that basophils

are dispensable for Th2 immunity. Using CD11c-DTR

transgenic mice in which dendritic cells can be selectively

ablated by injecting diphtheria toxin (DT), Phythian-

Adams et al.18 show that dendritic cell depletion in mice

is sufficient to disrupt Th2 immunity induced by Schisto-

soma egg antigen challenge or live Schistosoma infection,

despite efficient recruitment of basophils to the lymph

nodes. In contrast to earlier studies, they demonstrate

that depleting basophils has no effect on the Th2 induc-

tion. In a separate study, Hammad et al. identified a

novel ‘inflammatory’ DC subset that also expresses

FceRI.17 Upon intranasal challenge of mice with protease

allergen, house dust mite antigen, TLR4/MyD88-depen-

dent recruitment of basophils as well as FceRI-expressing

dendritic cells into the draining lymph node tissues was

observed. However, it was found that basophils did not

take up inhaled antigen, and most importantly did not

express molecules involved in antigen presentation nor

were they able to activate T cells.17 Instead, a population

of FceRI-expressing inflammatory dendritic cells are nec-

essary and sufficient to induce Th2 immunity and all the

features of asthmatic inflammation.17

Novel mouse models to examine basophil
functions in vivo

Although the contradictory results may be attributed to

the different animal models used, some of these studies

generated opposing results using an identical experimental

system (e.g. immunization with ovalbumin plus

papain).17,27,29 The recent development of novel mouse

models that allows selective basophil ablation has begun

to resolve some of these controversies and unveil novel

functions of basophils. Three independent conditional

basophil-deficient mice have been established so far, and

studies with these mice have yielded similar conclusions

regarding the contribution of basophils to Th2-dependent

immune responses. Ohnmacht et al.12 generated

Mcpt8Cre mice that express the Cre recombinase under

the control of the mast cell protease 8 (mcpt8) gene,

which is expressed by basophil lineage cells. Unexpectedly,

more than 90% of basophils, but not other cells, were

spontaneously depleted in these mice. Using these

Mcpt8Cre mice, it was shown that active systemic ana-

phylaxis, passive systemic IgE-mediated anaphylaxis, and

passive IgG1-mediated anaphylaxis were normally induced

in these mice, although IgE-mediated chronic allergic skin

inflammation was attenuated indicating that basophils are

essential in this disease model.12 Notably, papain-induced

Th2 differentiation, ovalbumin/alum-induced allergic lung

inflammation, and the primary immune response after

N. brasiliensis infection were also normal in Mcpt8Cre

mice.12 Interestingly, N. brasiliensis expulsion following

secondary infection was significantly compromised in

these mice, suggesting a protective role for basophils.12

Locksley and colleagues took a similar approach to gen-

erate basophil-deficient animals by replacing the mcpt8

gene with a YFP-IRES-Cre cassette (referred as basoph8

mice).10 Highly efficient depletion of basophils was

achieved upon crossing the basoph8 mice with the Rosa-

DTa mice. Similar to the Mcpt8Cre mice, immunization

of basoph8 · Rosa-DTa mice with Schistosoma egg anti-

gen or papain-induced wild-type level IL-4-producing
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CD4 T-cell responses, indicating a dispensable role of

basophils during these responses.10 In contrast to earlier

studies, however, intravital image analysis of YFP-positive

basophils in the draining lymph node of the basoph8

mice did not find evidence of interaction between anti-

gen-specific CD4 T cells and basophils. Instead, prolonged

serial interaction between T cells and basophils was noted

in the lung tissues, although the biological significance

underlying this interaction remains to be elucidated.

Interestingly, this study reported somewhat different

results from studies using the Mcpt8Cre mice. Mice

infected both primarily and secondarily with N. brasilien-

sis did not display any defects in clearing parasites.10

Consistent with this observation, mice deficient in IL-3 or

IL-3Rb developed normal Th2 immune responses follow-

ing N. brasiliensis infection, despite the fact that basophil

lymph node recruitment was completely abolished.22

Interestingly, targeted deletion of IL-4 and IL-13 in either

CD4 T cells or basophils had a minimal effect on parasite

clearance. However, a non-redundant role for basophils

in moderating parasite burden could be discerned in situ-

ations where IL-4/IL-13 deletion occurred in both

basophils and CD4 T cells, where higher N. brasiliensis

intestinal worm burdens were observed.10 This would

argue for a potentially supportive role for basophils in

anti-parasite immune responses through their activation

by immune serum and production of cytokines.10 This

view is supported by a recent study demonstrating that

the increased susceptibility of juvenile animals to hel-

minth infection could be explained in part by the finding

that basophils in juvenile animals are inherently less func-

tional than basophils in adult mice.30

The results of early observational studies, based largely

in guinea pigs, suggested that basophils are involved in

mediating immunity against ectoparasites such as ticks.31–34

These studies were initially prompted by the finding of

increased basophil numbers at the site of tick feeding and

the demonstration that histamine antagonists can ablate

immunity to ticks. It was subsequently shown that c-kitW/Wv

mast-cell-deficient mice are able to develop protective

immunity to ticks similar to wild-type mice, thereby

excluding a role for mast cells and, by default, supporting

a role for basophils in immunity against tick infection.31

Basophils may play a more predominant role in confer-

ring immunity against repeated tick infestation as shown

in a recent study using the basophil-deficient Mcpt8DTR

mice, where DT receptor is transgenically expressed on

basophils and DT injection results in a transient depletion

of basophils.11 While wild-type mice are able to restrict

the growth and development of ticks upon repeated tick

infestation, the absence of basophils in DT-treated

Mcpt8DTR mice impairs this response. Notably, the infil-

tration of eosinophils and neutrophils at tick feeding sites

remains unaffected in these mice, arguing for a key non-

redundant role for basophils for immunity against this

type of ectoparasite.11 Future studies using other skin-

localized pathogens should determine whether protective

basophil-mediated contribution can be more generalized

to skin immunity.

Pathways involved in basophil development

Although regulatory roles of basophils have been exten-

sively studied, there is still much to be learned about the

developmental programmes that give rise to basophils.

Most studies have relied on the use of in vitro differentia-

tion assays using either whole bone marrow or isolated

bone marrow precursor cells cultured with IL-3, which

exerts effects at several stages of stem cell and basophil

development.35,36 Because of phenotypic and functional

similarities between basophils and mast cells, it is not sur-

prising that the molecular pathways regulating lineage

commitment and differentiation of these cells during nor-

mal haematopoiesis are interconnected.37 Basophils and

mast cells can be derived from the multipotent, lineage-

restricted granulocyte–monocyte progenitor (IL-7Ra)

Lin) Sca-1) c-Kit+ CD34+ FccRII/IIIhi b7lo) in the bone

marrow where they differentiate into either c-kit) FceR-

I+ CD11b+ basophil precursors (BaP) or c-kithi FceR-

I+ CD11b) mast cell precursors (MCp).37 A common

bipotent basophil–mast cell precursor (BMCP: Lin)

c-Kit+ FceRII/IIIhib7hi), which is thought to arise from

granulocyte–monocyte progenitors in the bone marrow,

was recently identified in the spleen.38 This precursor dis-

plays high expression of the intestinal-homing integrin,

a4b7, gives rise exclusively to BaP and MCp in culture

and is able to reconstitute intestinal MCp when trans-

ferred to mast-cell-deficient mice. Whether these splenic

BMCP are also the source of cells that are precursors to

the rapidly expanded and mobilized population of

basophils in infection settings remains to be determined.

Haematopoietic cell lineage decisions are facilitated by

cell–cell interactions through molecules such as notch–

notch ligands as well as by the growth factors that elicit a

complex interplay of transcription factors in the common

precursors.39,40 The precise relationship of the cell–cell

interactions, growth factor signals and transcription fac-

tors is still unknown, but the relative level as well as the

timing of transcription factor expression appear to be

critical in this regard.40 There is substantial evidence that

CCAAT-enhancer-binding protein a (C/EBPa) is a key

switch factor in basophil development and that it acts in

an antagonistic as well as cooperative fashion with

GATA-2 to drive lineage choice.37,38 Granulocyte–mono-

cyte progenitors constitutively express C/EBPa and baso-

phil differentiation is accompanied by increased

expression of C/EBPa coupled with a concomitant reduc-

tion in GATA-2.37,40 Co-expression of GATA-2 and C/

EBPa in granulocyte–monocyte progenitors promotes

eosinophil development, while GATA-2 expression in the
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absence of C/EBPa generates BMCP.40 It was shown that

enforced expression of C/EBPa in BMCP also results in

exclusive differentiation into basophils and that condi-

tional deletion of C/EBPa supports differentiation of

BMCP exclusively into mast cells. Furthermore, ectopic

expression of C/EBPa in MCp reprogrammes them into

basophils.38

Recent studies have implicated Ikaros in basophil–mast

cell lineage decisions. Ikaros is a family of zinc finger-con-

taining transcription factors best studied in lymphoid cell

development.41 Ikaros)/) mice have significantly reduced

numbers of intestinal mast cells. The in vitro differentia-

tion of mast cells from Ikaros)/) bone marrow cells is also

profoundly altered and results in skewing towards a baso-

phil-like population. Consistent with this predominance

of basophils observed in vitro, Ikaros)/) mice exhibit pro-

found basophilia in the absence of infection. These data

indicate that Ikaros may act to promote mast cell lineage

choice by suppressing C/EBPa expression and its absence

results in a default to a basophil differentiation-dominated

pathway (K.N. Rao et al., unpublished data).

Perspectives and outstanding questions

Although IL-3 is known to promote the differentiation of

BaPs (and BMCPs) into basophils both in vitro and

in vivo,2,10,42 it is also involved in multiple steps of baso-

phil expansion and function Fig. 1. Interleukin-3 primes

basophils to increase IL-4 secretion following stimula-

tion,4,16,21,43 enhances basophil generation after parasite

infection,3,13 and recruits circulating basophils into the

lymphoid tissues.12,17,18,22 Nonetheless, the homeostatic

maintenance of basal level basophils in vivo is not altered

by the lack of IL-3.21,44,45 This paradox might be explained

by a recent study from Artis and colleagues who identified

the thymic stromal lymphopoietin (TSLP) as a key regula-

tor of basophil haematopoiesis that acts independently of

IL-3.46 Most strikingly, they also demonstrated that ba-

sophils elicited by either IL-3 or TSLP in vivo appear to be

phenotypically and functionally distinct, suggesting that

functionally heterogeneous basophils may exist in vivo and

play unique roles in Th2 immunity and in other basophil-

mediated responses.46 There are many questions related to

these observations that need to be examined. For example,

what circumstances favour the generation of functionally

distinct basophils? What are the target cells of these dis-

tinct basophil responses? Finally, what are the underlying

mechanisms by which IL-3 and TSLP confer multiple and

distinct functions to basophils?

In addition to IL-3 and TSLP, there are many other

factors that regulate basophil biology. These include posi-

tive regulators that enhance basophil generation and func-

tions (immune complexes,28,47,48 IL-18,43,49 IL-25,50,51 IL-

33,49,52,53 lipopolysaccharide,51,54 complement C5a,55,56

HIV gp12057) and negative regulators that inhibit baso-

phil functions and expansion (interferon regulatory factor

2 [IRF2],58 lyn kinase,59 SH2 domain containing inositol

phosphatase [SHIP]60,61). Interestingly, all positive regula-

tors identified so far are soluble/secretory proteins,

whereas all negative regulators are intracellular enzymes

that influence basophil expansion and receptor-mediated

activation, which result in marked basophilia. Mecha-

nisms underlying the regulation by these factors also

remain to be identified.

Perhaps the most exciting findings come from a recent

study showing that adoptive transfer of basophils is suffi-

cient to induce Th2 immunity in an environment where

Th2 immunity is impaired.11,46 This suggests the possibil-

ity that basophil transfer could be used therapeutically to

modulate immune responses mediated by pathological

pro-inflammatory Th1/Th17 type cells. Indeed, parasite

infection is currently being used to treat patients with

inflammatory bowel disease.62,63 Whether basophils medi-

ate the protection in this case is still unclear, but if they
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Figure 1. Pathways of basophil responses. Basophils are generated

from the progenitors by coordinated expression of transcription

factors as well as haematopoietic cytokines, interleukin-3 (IL-3) and

thymic stromal lymphopoietin (TSLP). Mature basophils enter the

circulation and mobilized into either lymphoid and non-lymphoid

tissues. Recruited basophils are expected to modulate the induction

of adaptive immunity or to carry out effector functions. BaP, baso-

phil progenitor; BMCP, basophil–mast cell precursor; c/EBP,

CCAAT-enhancer-binding protein; DC, dendritic cell; Th2, T helper

type 2.
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do then understanding how basophils modulate these

responses will be an excellent question for future study.
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