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Summary
The inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex is the master regulator of the NF-
κB signaling pathway. The activation of the IKK complex is a tightly regulated, highly stimulus-
specific, and target-specific event that is essential for the plethora of functions attributed to NF-
κB. More recently, NF-κB independent roles of IKK members have brought increased complexity
to its biological function. This review highlights some of the major advances in the studies of the
process of IKK activation and the biological roles of IKK family members, with a focus on NF-κB
independent functions. Understanding these complex processes is essential for targeting IKK for
therapeutics.
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Introduction
Nuclear factor-κB (NF-κB) is one of the major signaling pathways activated when cells are
exposed to a variety of stimuli, including cytokines such as tumor necrosis factor (TNF) and
interleukin 1 (IL-1), ultraviolet (UV) radiation, stress, and pathogenic assaults. In the
quiescent state, NF-κB is sequestered in the cytoplasm by its inhibitor of NF-κB (IκB)
molecules (Reviewed in Hinz et al., this volume). Upon activation, IκB is phosphorylated by
the IκB kinase (IKK) complex, composed of three major components: IKK1 (IKKα), IKK2
(IKKβ), and NF-κB essential modulator (NEMO)(IKKγ)(1-3). Phosphorylation of IκB leads
to its degradation, and subsequently, nuclear transport of NF-κB proteins initiates the
downstream transcription of target genes. The 700-900 kDa multiprotein IKK holoenzyme
therefore act as the master coordinator of NF-κB activation.

In addition to the canonical pathway of NF-κB activation mentioned above, in immune cells
and under certain stimuli such as lymphtoxin-α/β, CD40L, and B-cell activating factor
belonging to the tumor necrosis factor (TNF) family (BAFF), there exists an alternative
pathway that requires NF-κB-interacting kinase (NIK) and IKK1 homodimer mediated slow
processing of p100 into p52 followed by nuclear translocation of RelB-p52 dimer (4,
reviewed in Sun, this volume). Neither IKK2 nor NEMO deficiency affects this pathway
(4-6). This pathway is much less well characterized than the canonical pathway, but it plays
a critical role in the development of lymphoid organs responsible for the generation of B and
T lymphocytes (7, reviewed in Kaileh & Sen, this volume).

In recent years, many NF-κB-independent functions of IKK complex members have been
identified, some of which require the kinase activities, while others do not. These functions
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encompass tumorigenesis, immune functions,and cell cycle, just to name a few. They
provide a bridge for crosstalk between NF-κB pathways with other important pathways such
as p53 and mitogen-activated protein kinase (MAPK).

Personal and historical narrative
By early 1997, it was well established that IκBs were sequestered in the cytoplasm (8, 9),
that IκBα was phosphorylated on S32 and S36 from site-directed mutagenesis studies
(10-14, Reviewed in Kanarek & Ben-Neriah, this volume), and that polyubiquitination
initiated the degradation of the IκBs by the 26s proteasome (14-16).The big question was,
‘what induces IκBα phosphorylation?’ Almost simultaneously, three groups published the
characterization and subsequent cloning of IKK1 and IKK2, thus providing one of the
missing links in the activation of NF-κB signaling pathway (2, 17-19). The IKKs were
identified by fractionating whole cells extracts from TNF-stimulated HeLa cells using
immunoprecipitation and anion exchange chromatography. Mercurio et al. additionally
noted two separate bands of approximately 85 and 87 kDa by SDS-PAGE silver staining
from these purified fractions, corresponding to IKK1 and IKK2 (17). These extracts were
then tested for IκBα and IκBβ phosphorylation activity by in vitro kinase assay using
wildtype and phospho-mutant recombinant peptides. Mercurio et al. generated the
corresponding IKK2 S177A/S181A and S177E/S181E constitutively inactive and active
mutants, demonstrating the primary mechanism of activation of the IKK complex. The
corresponding S176E/S180E IKK1 mutants were also minimally active. While both IKK1
and IKK2 are phosphorylated, the phosphorylation of serines in the activation loop of IKK2
is required for NF-κB activation, suggesting a more important role of IKK2 in what we now
call the canonical NF-κB pathway. The third major polypeptide in the IKK complex,
NEMO, was discovered simultaneous by two groups using very different approaches.
Yamaoka et al. first reported the cloning of NEMO by complementation of human T-
lymphotrophic virus-1 (HTLV-1) Tax-transformed rat fibroblasts that were unresponsive to
all tested NF-κB activating stimuli. They demonstrated in vitro interactions of NEMO with
IKK-2 and its essential role in Tax, TNF, phorbol myristate acetate (PMA) and interleukin-1
(IL-1)-induced NF-κB activity(3). Shortly thereafter, Alain Isreal's group in Paris reported
the identification of NEMO as well, by sequencing polypeptides that co-immunoprecipitated
with IKK-1 antibody. These truncated mutants were two forms of differentially processed
NEMO that bind to IKK-2 and can block NF-κB activation(20).

My laboratory's entry into the NF-κB field came by accident when Paulina Bull from Chile
joined Tony Hunter's and my laboratory as a joint postdoctoral fellow. She did not want to
work on Fos-Jun complex, a very active area of inquiry in my laboratory, because she felt it
was a highly competitive field. She was the first to identify that c-rel was serum and TPA
inducible. Like NF-κB, it had a N-terminal regulatory domain and a C-terminal
transactivation domain (21) (22). Later, our laboratory focused on investigating the
regulators of NF-κB activation and identified an additional regulatory protein ELKS in the
IKK complex. We were also one of the first groups to generate IKK1 and IKK2 knockout
(KO) mice and reported their distinct functions in vivo. Lately, our laboratory's focus has
been shifted to identifying NF-κB-independent IKK functions. We identified p53 as a
substrate for IKK2 phosphorylation and how this affects the stability of p53 (23). We also
identified SNAP-23 as a target for IKK2 phosphorylation and its critical role in
degranulation in mast cells (24).
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Composition of IKK complex and its activation
Members of IKK complex

Most biochemical assays studying purified IKK complex suggest that the IKK proteins exist
in the complex at 1:1:2 ratio, supporting the notion that one IKK1 and IKK2 hetero-dimer is
bound to dimers of NEMO (25-27). However, this does not exclude the existence of
multiple forms of IKK complex, including IKK1 or IKK2 homodimers, associated with or
distinct from NEMO. The fact that IKK2 can still function to activate NF-κB pathway in the
absence of IKK1 in a NEMO dependent way is a direct proof that such dimers can exist and
interact with NEMO. The two kinases of the IKK complex, IKK1 and IKK2, are highly
homologous, sharing 51% of their sequence identities (17). They both have a kinase domain
with two serine residues (S176 S180 for IKK1 and S177 S181 for IKK2) that require
phosphorylation for the kinase functions (17-19, 28), a predicted leucine zipper (LZ) domain
and a helix-loop-helix (HLH) domain (29), and a C-terminus NEMO-binding domain
(NBD). In addition, IKK2 has a ubiquitin-like domain (ULD) that is not found on IKK1,
with a key residue at L353 (30). Mutants where this domain is deleted can still form the IKK
complex; however, the complex cannot activate NF-κB in response to stimuli such as IL-1
and TNF. Site-specific mutation of the L353 residue did not alter the ability of IKK2 to
phosphorylate IκBα, but this IKK2 mutant was not able to dissociate from p65 subunits with
or without stimuli. These studies suggest that ULD may be involved in the dissociation of
IKK complex from the NF-κB proteins after the phosphorylation and degradation of IκBα.
However, recent studies of the crystal structure of IKK2 found that the predicted LZ and
HLH motifs do not form those structures but instead are part of an elongated, α-helical
scaffold/dimerization domain (SDD)(31). Furthermore, the critical L353 residue was buried
in the core of ULD and was not part of the protein interaction interface. It is possible that the
L353A mutation caused structural change of ULD and thus disrupted normal functions of
ULD. The structure also revealed that both the ULD and the SDD are involved in interaction
with IκBα and that SDD is essential for IKK2 dimerization. Structurally, IKK1 is very
similar to IKK2, the only difference being IKK1 has a predicted nuclear localization signal
(32). Although IKK1 has been shown to have nuclear activities independent of NF-κB, the
function of the IKK1 NLS is still not fully understood. It appears that the interaction of
IKK1 with NEMO is weaker than that of IKK2, because a peptide mimic of the IKK and
NEMO interaction site can disrupt IKK1 interaction with NEMO at a lower concentration
than IKK2. Whether this weaker interaction with NEMO can explain the less stringent
requirement of IKK1 in the IKK complex for activation of NF-κB is still a matter for debate.

NEMO lacks the catalytic domain found in IKK1 and IKK2 and is structurally very different
from those two proteins. It is comprised of two coil-coil domains (CC), a LZ, and a zinc
finger (ZF) domain (Reviewed in Ghosh et al., this volume). Structural data indicate that
dimers of NEMO bind to both IKK1 and IKK2 homo- as well as hetero-dimers(33, 34). The
N-terminal portion of NEMO interacts with the NBD of the IKKs and such interaction is
required for IKK activation. Furthermore, NEMO seems to have the ability to oligomerize
via a minimal oligomerization domain (MOD) (35, 36). Mutations in this domain greatly
reduce induced NF-κB activation, indicating that oligomerization of NEMO might be an
important part of its function as a regulatory protein. Exactly how NEMO regulates IKK
activity is still a mystery, but there is no doubt that it is a key regulator of IKK complex,
both positively and negatively. Other than the ability of NEMO to oligomerize, its ability to
bind to K63-linked polyubiquitin chains may also serve an important function in IKK
activation. Several groups have shown that NEMO can recognize polyubiquitinated
upstream kinases (37-39), such as receptor-interacting protein-1 (RIP1) or other adapter
proteins. Studies with site-specific mutation that disrupts NEMO recognition of
polyubiquitin shows that NF-κB response is greatly reduced. It is possible that NEMO may
function as a chaperone protein that brings the IKK complex to upstream polyubiquitinated
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kinases, leading to IKK phosphorylation and activation. In addition to activation of IKK
complex, NEMO may also function as a negative regulator of the IKK complex. IKK2
mutation in the NEMO binding domain has increased kinase activity in the absence of
stimuli (40). Furthermore, phosphorylation of NEMO on S68, which is located in the region
that interacts with IKKs can down regulate NF-κB activation in the presence of stimuli
(40-42), providing the possibility that phosphorylation of NEMO can serve as a negative
regulatory event. Additionally, NEMO has also been shown to interact with several negative
regulatory proteins including the deubiquitinases A20 and CYLD (43-45), as well as protein
phophatases PP2A and PP2C (46-48). These proteins have been postulated to remove
phosphorylation in the activation T loop of IKKs, so in essence, NEMO may serve as a
docking station for negative regulators as well. It is not clear how NEMO switches roles
from being a regulator of IKK activation to a mediator of repression. It is, however, possible
that NEMO carries out both functions at the same time, but the balance towards activation or
deactivation is delicately controlled by the amount of co-factors induced by upstream
signaling.

Another important function of NEMO that came into the spotlight recently is NEMO's role
in nuclear-initiated NF-κB signaling. The receptor-induced signals such as TNFR and TLR4
initiate IKK activation from the cytoplasm, where inactive NF-κB is sequestered. In
contrast, DNA damage is a stress signal that initiates in the nucleus, yet the signals are
relayed from the nucleus to the cytoplasm where activation of NF-κB occurs (Reviewed in
McCool & Miyamoto, this volume). Interestingly, NEMO's presence in the nucleus free of
IKK1 and IKK2 seems to be essential for such signal relay. The current hypothesis is that
activation of ATM by DNA damage and NEMO SUMOylation leads to nuclear export of
both proteins as well as subsequent activation of TAK1, IKK, and NF-κB (49). This IKK-
independent function of NEMO in the nucleus signifies the importance of the role of the
members of IKK complex independently involved in the crosstalk between many signaling
pathways.

There are other essential components of the IKK complex that regulate NF-κB signaling and
perhaps more waiting to be discovered. These include heat shock protein 70 (HSP70), which
interacts with NEMO to suppress NF-κB activation (50, 51), HSP90 and its co-chaperone
Cdc37, which stabilize IKK complex(52), and ELKS, a regulatory component of the IKK
complex identified by our group. ELKS was discovered by the same gel filtration and
immunoprecipitation methods in stimulated 293T cells used to identify IKK1 and IKK2
(53). Silencing of ELKS by RNA interference (RNAi) blocked the induction of NF-κB
target genes and protected the cells from apoptosis in response to TNF and IL-1α. Recent
reports have also implicated a role for ELKS in the cellular response to ATM-dependent
DNA double stranded break repair. After the attachment of K63-linked ubiquitin chains to
ELKS in an ATM- and NEMO-dependent process, ELKS promotes the clustering of TAB2-
TAK1 and IKK complexes, thereby enhancing the proximity of the proteins and the
subsequent activation of IKK and NF-κB (54, 55). Ongoing biological characterizations of
ELKS will hopefully shed more light on the detailed mechanism and interacting partners.

IKK activation
Activation of IKK complex requires phosphorylation of S176 and S180 on IKK1 and S177
and S181 on IKK2(17). This event likely leads to a conformational change in the activation
loop, which renders the kinase domain catalytically active. Evidence also exists to support
that dephosphorylation of IKK can restore their inactive state, because protein phosphatases
such as PP2A can inactivate recombinant IKK, while phosphatase inhibitors can lead to the
slow activation of IKK (2).
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Although it has been the subject of intense study since the initial discoveries of IKK1 and
IKK2 in 1997, the complete mechanism by which the IKK complex becomes
phosphorylated remains an important unanswered questions in NF-κB field. There appear to
be two general lines of thoughts on this process. First, it is possible that IKKs can
autophosphorylate each other. This idea was proposed because NF-κB activation by certain
viral proteins, such as HTLV1 Tax (Reviewed in Chan & Greene, this volume), does not
seem to require any upstream kinase activity. Recent crystal structure studies revealed that it
is less likely, at least in the case of a IKK2 homodimer, that IKK2 phosphorylates its dimer
partner because of the large spacing (31). However, the IKK complex exists as holoenzyme
of at least a dimer or dimers, and NEMO may play an important role in forming such
complexes. NEMO has oligomerization domains, and can bind to polyubiquitinated
substrates bringing bound IKK into close proximity with each other. More detailed structure
data may shed light on this issue (Reviewed in Ghosh et al., this volume).

The second line of thought is that there are specific IKK kinases (IKKK) depending on the
signals inducing the NF-κB activity. A few candidates have emerged, though none has been
definitively proven. The most prominent one is TAK1 (56, 57), a MAPKK that is also
involved in the c-Jun N-terminal kinase (JNK) pathway. It was discovered by co-eluting the
enzyme with IKK-inducing activity in a cell-free assay (57). The mechanism proposed was
that when IL-1 binds to the IL-1 receptor, which has the myeloid differentiation factor 88
(MyD88) and IL-1 receptor-associated kinase 1 (IRAK1) adapter proteins, the complex
recruits TNF receptor-associated factor 6 (TRAF6) that can activate TAK1 after
modification by polyubiquitination. TAK1, along with its cofactors TAB1 and TAB2 in a
complex, can then phosphorylate IKK2. Studies with deletion mutants demonstrate that IKK
complex activation is dependent on the TAK1 kinase domain, and that this activity is
ubiquitin dependent. However, contradicting evidence exists. Constitutively active TAK1,
even in the presence of TRAF6, is unable to phosphorylate IKK2, and overexpression of
TAK1 is insufficient to activate NF-κB (57). Furthermore, animal studies have demonstrated
that TAK1 is dispensable for IKK activation in vivo, at least in certain cell types. While
TAK1-deficient MEFs show significantly reduced levels of NF-κB activation, they are not
entirely abolished. Additionally, while TAK1 was important for TLR, TNF, and IL-1-
induced NF-κB signaling, TAK1-deficient B-cells showed no deficits in NF-κB activity
(58). RNAi studies of the cofactors TAB1 and TAB2 also showed no deficit in NF-κB
activation (59). Therefore, the requirement of TAK1 for IKK activation maybe cell type
specific.

RIP1, a serine/threonine kinase, has also been postulated to play a role in IKK
phosphorylation as it is required for TNF-mediated IKK activation (60, 61). It is also
recruited by TRAFs and its overexpression leads to IKK activation. RIP1 KOs are deficient
in IKK activation (61), yet the kinase activity itself appears to be dispensable, because when
RIP1 KO cells are reconstituted with kinase dead mutant protein, NF-κB activation was
restored (60).

MEKK3 (MAPK/ERK kinase kinase 3) was also shown to directly phosphorylate IKK in
vitro using recombinant IKK2. Yang et al. (62) used MEKK3-deficient fibroblasts to
demonstrate its importance in TNF-induced NF-κB activation downstream of RIP1. The
cells showed no p65 DNA binding activity by gel shift and IκBα was not phosphorylated in
an IKK kinase assay using deficient cells. Yet, the MEKK3−/− fibroblasts still had some
residual NF-κB activity. Subsequent studies show that NF-κB activity can be restored in
RIP1-deficient Jurkat T cells by fusing the RIP1 death domain to full length MEKK3 (63).
The fusion protein is capable of interacting directly with TNF receptor-associated death
domain (TRADD), indicating that RIP1 may act to recruit MEKK3 to the TNF-α receptor
complex. These results may explain why the kinase activity of RIP1 is dispensable for IKK
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activation. Even so, the direct phosphorylation of the IKK by MEKK3 and its importance to
NF-κB activation has not yet been demonstrated in vivo, due in part to the fact that KO mice
die at embryonic day 10.5-11(64).

Our own efforts to find additional kinases that phosphorylate the IKK complex has been
hampered by the limitations of siRNA screening. While the efficacy of siRNA knockdown
has greatly improved over the last several years, the near impossibility of achieving 100%
knockdown in an entire population of transfected or transduced cells means that some
residual target kinase activity may remain, which is often enough to keep pathways
unaltered. Future studies using small-molecule kinase inhibitors or KO MEFs may yield new
information that finally allows for some clarity in answering this elusive question.

Biological roles of the IKK proteins
Since we have already mentioned many of the biochemical studies of IKK members in NF-
κB signaling pathway in cell lines, here, the importance of each member for NF-κB
dependant functions is discussed further with the knowledge we gained through KO mouse
models. Knockout of any of the three major components of the IKK complex leads to either
embryonic developmental failure or neonatal developmental defects. Furthermore, KO of
these components in specific cell types leads to many detrimental effects. The most
important lesson learned from these KO mice is that IKK1 and IKK2 have distinct and non-
redundant biological functions due to differing substrate specificities. We also discuss in
detail the many NF-κB-independent functions, focusing on some of the work our laboratory
has done.

NF-κB-dependant functions
Our group generated IKK1 (65), IKK2 (66), and IKK1/IKK2 (67) KO mice by targeted gene
disruption. Like the RelA KO mice (68) and NEMO KO mice, IKK2 KO mice die
embryonically at approximately day E13, primarily due to massive liver apoptosis (66, 69).
The lethal liver apoptosis is probably due to TNF signaling during embryogenesis, because
IKK2−/− MEF showed increased sensitivity to TNF-induced apoptosis. Furthermore the
lethality of the KO could be rescued until a month after birth (longer if mice are kept in
germ free facility) by crossing IKK2 KO mice to the TNFR−/− mice. Hence IKK2 is
essential in NF-κB signaling that rescues developing liver cell from TNF mediated
apoptosis, and IKK1 does not have enough functional redundancy to prevent the liver
damage (66). TNF-mediated apoptosis is not limited to the liver, since others have shown
that tissue specific deletion of IKK2 can lead to similar consequences in the skin as well
(70). It is worth noting though, mature hepatocyte-specific deletion of IKK2 surprisingly did
not lead to liver damage, and NF-κB activation by TNF is functional in those cells (71). It is
possible that hepatocytes during embryogenesis respond to TNF stimulation differently and
have different requirement for NF-κB activation to such stimulus. Detailed mechanisms
aside, these contradictory results strongly suggest a cell-type specific/developmental stage
specific role of IKK2 in a biological system.

In contrast, IKK1-deficient mice can survive until a month after birth, yet they display
striking developmental defects. Among these, newborn pups have shiny, taut, and sticky
skin with a thicker, undifferentiated epidermis. They lack whiskers and their limbs fail to
protrude from their trunk. MEFs derived from KO mice have diminished NF-κB activation
after stimulation by IL-1 or TNF, but the IKK complex composed of IKK2 homodimers and
NEMO is still capable of phosphorylating IκBα and IκBβ in vitro (65, 69, 72), thus leading
to the conclusion that IKK2 alone is sufficient for canonical NF-κB activation. However,
sufficiency of IKK2 alone is not exclusive of the possibility that IKK1 plays a role in
canonical NF-κB activation in the natural state of a cell. Our group as well as others have
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reported that NF-κB-dependent gene expression in response to some canonical pathway
stimuli occurs in IKK2-deficient MEFs (66, 73), but when NEMO is absent, this residual
NF-κB activity is gone. Furthermore, Cao et al. (74) report that IKK1 is indispensible in
receptor activator of NF-κB (RANK)-induced canonical NF-κB activation in mammary
epithelial cells. Another interesting observation is that different stimuli may lead to different
requirement for IKK complex formation in the same cell type. For instance, NEMO
deficient MEFs were unable to respond to either TNF or IL-1, and little degradation of IkBα
was observed, indicating the absolute requirement of NEMO for NF-κB activation. IKK1-
deficient MEFs were able to respond to both TNF and IL-1, however, IL-1, but not TNF,
was able to induce IkBα degradation in IKK2-deficient cells and subsequent nuclear import
of NF-κB proteins. This NF-κB activation by IL-1 in the absence of IKK2 is dependent on
IKK1 interaction with NEMO because treatment with NEMO-binding domain peptide
abolishes this activation (75). These data suggest that the absolute requirement for IKK2 in
canonical NF-κB activation is stimuli dependent, and IKK1 can substitute IKK2 functions at
least in the case of IL-1 stimulation, though other cases may also exist.

We have also generated IKK1 IKK2 double KO mice, and they die at E12 due to enhanced
apoptosis and defects in both neuralation and the fetal liver(67). MEFs derived from double-
deficient mice have no detectable NF-κB activity after stimulation with TNF, IL-1α, or
lipopolysaccharide (LPS) by gel shift. Additionally, western blots examining IκBα and IκBβ
kinetics showed no degradation after stimulation. In mice, TUNEL staining showed that
double-deficient embryos fail to close the neural tube in the hindbrain due to apoptosis.
Similar to IKK2−/− mice, the double KO mice demonstrate severe hemorrhaging in the liver,
but unlike the IKK2−/− mice, the double-KOs crossed with TNFR−/− mice cannot be
rescued and survive only marginally longer until day E16.5. The IKK1−/−IKK2−/−TNFR−/−

mice have morphology similar to IKK1−/− mice, yet they still have the neural tube defect.
Finally, staining of NF-κB-LacZ transgenic mice showed constitutive NF-κB activation
during early vasculogenesis in wildtype mice, but almost no detectable activity in the double
KO mice. Together, these data showed that IKK1 and IKK2 have some functional overlap in
NF-κB dependant signaling pathway, but they are largely non-redundant with each playing
an essential but different role in development.

NEMO deficiency seems to be a greater detriment to the classical NF-κB signaling pathway
than either IKK1 or IKK2 deficiency alone. Cells lacking NEMO have no detectable NF-κB
response to almost all pro-inflammatory, immune regulatory and pro-survival stimuli (3, 76,
77). Furthermore, NEMO-deficient mice die during embryogenesis, similar to
IKK1−/−IKK2−/− mice, through massive apoptosis in the developing liver due to their
inability to turn on NF-κB signaling in response to TNF stimulation. These results confirm
the notion that NEMO is an indispensible regulator of IKK1 and IKK2 functions in the IKK
complex during canonical NF-κB signaling.

NF-κB-independent pathway
Other than their role in the NF-κB signaling pathway, both IKK2 and IKK1 have been
shown to phosphorylate a growing list of substrates that are involved in a variety of
biological functions including tumor suppression, immune functions, cell proliferation, and
chromatin remodeling. Below we describe recent findings on the role of IKKs in NF-κB
independent pathways, and a summary for both IKK1 and IKK2 are listed in Table 1. Most
of these studies are based on effects of IKK1 or IKK2 KO on the biological activities of the
substrate. Detailed mechanisms in many cases are still missing, such as how IKKs are
recruited to phosphorylate specific targets under specific stimulus. However, recognizing the
importance of NF-κB-independent functions of IKKs is the first step towards understanding
how these multi-functional kinases orchestrate crosstalk between different signaling
pathways.
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IKK2
Tumorigenesis

IKK2 has been shown to phosphorylate several tumor suppressor proteins, the most
prominent one being p53. Our laboratory was the first to raise the possibility that p53 is a
substrate for IKK2 when sequence analysis of IKK2 substrates using synthetic IκBα
peptides identified (D/A)S(G/L/D/R){G/D/R}XS as a consensus phosphorylation motif, and
tumor suppressor gene p53 has this motif in its C-terminus (23). This finding raised the
question whether IKK2 can regulate p53 stability and function by direct phosphorylation,
given that p53 regulation is mainly through the phosphorylation at multiple sites in both N-
and C-terminus of the protein (78). Most of the p53 phosphorylation sites are induced by
DNA damage and stress, and the phosphorylation stabilizes the protein by preventing Mdm2
mediated ubiquitination and degradation. However, certain sites (T155 by COP9
signalosome, T55 by TAF1, and S15 by Aurora A) were reported to target p53 for
degradation (79-81). Indeed, phosphorylation of p53 by IKK2 at S362 and S366 is
recognized by β-TrCP-mediated ubiquitination and proteasomal degradation (23). In
agreement, IKK2-deficient MEF cells showed elevated p53 protein level in comparison to
wildtype or IKK1-deficient cells(23). In addition, this observation was supported by in vivo
data that p53 protein level was significantly increased when IKK2 is deleted by Villin-cre in
intestinal epithelial cells (82). However, p53 phosphorylation at S362 and S366 or change of
p53 protein level was not observed when cells were treated with TNF, which potently
activated IKK complex to phosphorylate IκBα. In contrast, DNA-damaging reagents such as
doxorubicin, which only moderately induced IκBα phosphorylation, were sufficient to
induce p53 phosphorylation at S362 and S366 through IKK2. These observations suggested
that regulation of p53 stability by IKK2 is finely tuned by the microenvironment and nature
of the stimulus. NF-κB dependent regulation of p53 through Mdm2 transcription has also
been reported (83).

In turn, p53-deficient cells also exhibited elevated basal NF-κB activation (84). One of the
possible mechanisms has been proposed to be high-level of glycolysis and abundance of
active O-GlcNAcylation in p53-deficient cells. Constitutive O-GlcNAc IKK2 modification
at inhibitory phosphorylation site (S771) has been found in these cells, which potentially
increased its kinase activity (85). Dissection of the crosstalk between NF-κB and p53
pathways will be extremely important for understanding the inflammation-induced
tumorigenesis, given that p53 silencing/mutation and NF-κB activation are the hallmarks of
many human cancers. Recent studies from our laboratory has shown that loss of p53
impaired repression of NF-κB target gene transcription by glucocorticoids, providing
evidence for a mechanism with which tumor cells can disrupt normal regulation of
inflammatory process in the tumor microenvironment (86).

In addition to p53, there are other tumor suppressors that may be substrates for IKK2.
TSC1/2 complex is an important tumor suppressor upstream of mTOR. In the static state,
TSC1 binds to TSC2 and protects it from ubiquitination-mediated degradation.
Unexpectedly, IKK2 has been found to phosphorylate TSC1 upon pro-inflammatory stimuli
such as TNF and IL-1β, without Akt activation (87). Phosphorylation of TSC1 by IKK2 at
S487 and S511 results in the suppression of TSC1/2 complex and induces mTOR activation.
Given the critical role of mTOR pathway in tumorigenesis, this finding further emphasizes
the link of inflammation and cancer (Reviewed in Baldwin, this volume). TSC1/2-deficient
cells, unlike p53−/− cells, have impaired NF-κB activation upon DNA damage or TNF
stimulation. The underlying mechanism has not been fully clarified; however, it seems that
high mTOR signal in TSC1/2 deficient cells may suppress Akt activity through a negative
feedback regulation, which is important for the NF-κB activation upon certain stimuli(88).
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Another tumor suppressor that maybe regulated by IKK2 is FOXO3a. The Forkhead FOXO
family of transcription factors is usually regulated by phosphorylation by Akt at conserved
serine/threonine residues (89). However, IKK2 was found to regulate FOXO3a
phosphorylation in the absence of Akt, and target FOXO3a to cytoplasm for ubiquitination
mediated proteasomal degradation. This is supported by immunohistology of tumor
specimens that FOXO3a is mainly expressed in cytoplasm where IKK2 expression is high
(90).

Although IKK2 functions as a tumor promoting factor in most circumstances, in the case of
regulating spindle formation, IKK2 can also act as a tumor suppressor. IKK2 knockdown
cells were found to have defects in normal mitosis and the maintenance of spindle bipolarity.
In these cells, Aurora A level is elevated due to the loss of phosphorylation by IKK2 and
degradation by β-TrCP pathway. High Aurora A activity in the cells leads to hyperactivation
of mitotic motor KIF11 and deregulated bipolar spindle assembly; thus, the absence of IKK2
promotes genetic instability and oncogenic transformation (91).

Regulating immune functions
The role of NF-κB has been extensively studied in the immune system; however, IKK2 also
has been shown to regulate immune response independent of NF-κB activation. Work from
our laboratory has shown that IKK2 regulation of immunoglobulin E (IgE)-mediated mast
cell degranulation plays a critical role in early-phase allergic reaction. Upon cross-linking of
IgE receptor, IKK2 is recruited to lipid raft where it phosphorylates SNAP-23 at S95 and
S120. Phosphorylation of SNAP-23 promotes its association with other SNARE proteins,
and initiates membrane fusion and exocytosis in mast cells (24). Although the canonical NF-
κB pathway is also indispensible for the TNF release in the late-phase allergic reactions,
IKK2 regulation of SNARE complex assembly defines an essential NF-κB-independent role
in early-phase allergic response. It has been well studied in the early years that signals from
antigen receptors (T-cell receptors and B-cell receptors) induce NF-κB activation and result
in lymphocyte proliferation, cytokine production and isotype switching (92, 93, reviewed in
Gerondakis et al. and Kaileh & Sen, this isvolumesue). The finding of NF-κB-independent
role of IKK2 in anaphylactic reactions raises the question whether there are similar
mechanisms to regulate immune response in other components of the immune system, such
as macrophages, T and B lymphocytes.

Crosstalk with the MAPK signaling pathway
p105 is one of the NF-κB proteins that has C-terminal inhibitory region similar to IκB
proteins. IKK2 mediated p105 phosphorylation and proteolysis produce mature p50 protein.
Interestingly, the p105 processing also releases a variety of other proteins, which are
originally captured and inhibited by p105. Cot (TPL-2) is among these proteins (Reviewed
in Gantke et al., this volume). In macrophages, IKK2 activity is increased by LPS
stimulation. IKK2 induces p105 processing and releases p50 as well as cot, which in turn
triggers the MEK and MAPK signal pathway (94, 95). IKK2 can also negatively regulate
MAPK by direct phosphorylation of Dok1. Dok1 phosphorylation leads to Erk1/2 inhibition
and impaired cell growth but increased cell mobility (96).

Inflammation and diabetes
The possible link between inflammation and diabetes has been a hot topic in recent studies
and the role of IKK has been implicated. For example, IKK2 has been shown to
phosphorylate IRS-1 at S312 upon TNF stimulation, which antagonizes insulin signaling
downstream of IRS-1 (97). Surprisingly, conditional deletion of IKK2 in adult myocytes did
not seem to prevent obesity-induced insulin resistance (98). It would be interesting to find
out if adipose cell-specific deletion of IKK2 has an effect on the disease.
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IKK1
Chromatin remodeling and transcription

The study of IKK1 in regulating transcription complex started from the findings from two
independent groups that IKK1 can shuttle from cytoplasm to nucleus and directly
phosphorylate histone H3 at S10 upon TNF stimulation, which modulates the optimal
expression of a group of NF-κB target gene (99, 100). This IKK1 regulation at chromatin
level has been found in certain other genes as well, for example c-fos expression in
epidermal growth factor-treated quiescent fibroblasts (101).

Kinase activity independent IKK1 regulation of chromatin has also been reported. In IKK1-
deficient keratinocytes, G2/M checkpoint molecule 14-3-3 δ protein level is low, due to
Suv39h1-mediated histone H3 trimethylation. Reintroducing IKK1 (or its kinase-dead form
IKK1 KA) back to the cells shields 14-3-3 δ gene locus from hypermethylation and restores
its expression and normal G2/M checkpoint(102). This finding is fully consistent with two
earlier reports showing that 14-3-3δ mutant mice (repeated epilation, Er/+) have similar
defects in skin development as IKK1 KO mice (103, 104).

Other than its ability to remodel chromatin, IKK1 can also directly regulate gene
transcription by targeting co-activators. Phosphorylation of CBP by IKK1 at S1382 and
S1386 has been identified to increase its intrinsic HAT (histone acetyltransferase) activity.
More intriguingly, CBP phosphorylation by IKK1 also increases its affinity to NF-κB gene
promoters versus p53 gene promoters, thus serving as a switch for turning on NF-κB genes
and stimulating cell proliferation (105).

Steroid receptor coactivator SRC-3 is another protein regulated by IKK1 (and IKK2)
phosphorylation. SRC-3 translocation from cytoplasm to nucleus is significantly enhanced
by phosphorylation by IKK complex, which in turn increases the expression of
proinflammatory NF-κB target genes (106).

Cell cycle regulation
β-catenin is an important transcription factor downstream of Wnt pathway, and it was one of
the first alternative substrates of IKK1 identified outside of NF-κB pathway. β-catenin
stability is regulated by GSK3β phosphorylation (threonine 41, serines 33 and 37) and
proteasomal degradation (107). Interestingly, while IKK2 negatively regulates β-catenin
stability similar to GSK3β, IKK1 seems to increase β-catenin protein level and downstream
signal, such as cyclin D1 transcription. These results suggested IKK1 may phosphorylate β-
catenin at different residues and protect it from ubiquitination mediated degradation (108,
109). Moreover, a conflicting role of IKK1 in regulating cyclin D1 has been identified as
well, based on the observation that IKK1−/− MEF cells have high constitutive level of cyclin
D1. IKK1 phosphorylation of cyclin D1 at threonine 298 is responsible for its fast
degradation through a ubiquitination-dependent pathway (110). Thus, the role of the IKK
complex in regulating β-catenin and cyclin D1 need to be considered in a context-dependent
way, and more details are waiting for being investigated.

Innate immune response
Canonical NF-κB activity regulates a set of important genes in the innate immune system,
including cytokines and chemokines. However, IKK1 also regulates interferon response
downstream of TLRs by directly phosphorylating interferon regulatory factors (IRFs). For
example, phosphorylation of IRF7 by IKK1 serves as a positive regulator of interferon
production (111). In contrast, phosphorylation of IRF5 by IKK1 has a negative role (112).
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The underlying mechanism for the two very similar factors undergoing completely opposite
regulation still remains to be clarified.

Tumor metastasis
Although IKK1 acts at a tumor suppressor in squamous cell carcinomas, IKK1 has been
shown to promote prostate cancer metastasis in TRAMP mice expressing SV40 T antigen in
prostate epithelial cells. In late stage prostate cancer, infiltrating T cells and macrophages
produce RANKL, which is thought to induce IKK1 nuclear accumulation, leading to the
suppression of Maspin gene transcription resulting in increased metastasis. The reduced
Maspin expression has been suggested to be a result of recruitment of an unknown DNA
methyltransferase at the Maspin promoter region by phosphorylated nuclear IKK1(113).

Kinase-independent function during development
IKK1 KO mice showed defects in skin, limb, and skeleton development due to the crucial
function of IKK1 in epidermis. This function has later been shown to be kinase activity- and
NF-κB-independent, because knockin of kinase dead IKK1 was able to rescue this
phenotype (32). In keratinocytes, nuclear IKK1 induces cell cycle arrest and terminal
differentiation, through regulating Smad2/3 target genes that function as Myc antagonists,
including Mad1 (114). Indeed, the observation that IKK1 acts as a tumor suppressor in
certain squamous cell carcinomas further supported this unique function (115).

NEMO and human diseases
Mutations in NEMO have been identified as the main genetic basis for three rare but
devastating human diseases: incontinentia pigmnti (IP); X-linked recessive anhidrotic
ectodermal dysplasia with immunodeficiency (EDA-ID); X-linked recessive anhidrotic
ectodermal dysplasia with immunogdeficiency, osteopetrosis and lymphedema (OL-EDA-
ID). IP is most commonly identified in female infants heterozygous for the mutated NEMO
that is located on the X-chromosome, while the male fetus usually dies in utero. IP patients
have various developmental problems with varying degrees of severity, most commonly
with the skin, eyes, teeth, and central nervous system (116). Female patients maturing into
adulthood frequently exhibit skewed X-inactivation, possibly due to the increased apoptosis
of cells expressing the mutant NEMO. In contrast, EDA-ID and OL-EDA-ID usually are
found in male infants that have inherited the recessive NEMO mutation from their
heterozygous mothers. Physical manifestation of EDA-ID, also known as hypohidrotic
ectodermal dysplasia with immune deficiency (HED-ID), commonly includes lack of sweat
glands, sparse hair, and conical teeth. The degree of immunodeficiency can vary depending
on the patient. A large number of patients have deficient antibody production, but other
compartment of the immune systems can also show abnormality. Not surprisingly, HED-ID
patients are susceptible to various bacterial, viral, and fungal infections, and few survive into
adolescence. OL-EDA-ID patients develop lymphoedema in their hands and feet, as well as
osteopetrosis in addition to all the symptoms of EAD-ID.

The International IP Consortium first reported in 2000 that most of the IP patients in their
data bank have amorphic NEMO mutations and hence declared it as the cause of IP (117).
The mutations are most commonly found in the coil-coil domain and the zinc finger domain,
and frequently lead to improper expression of NEMO mRNA message. Cell lines were
derived from IP abortus, and upon TNF or IL-1 stimulation, NF-κB translocation into the
nucleus was undetectable. In addition, these cells have increased sensitivity to apoptotic
signals. Immediately, following this discovery, Zonana et al. (118) reported that male
infants from all four unrelated EDA-ID families they studied have mutations in the zinc
finger domain of NEMO as well. The authors hypothesized that EDA-ID patients have the
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‘less severe’ forms of NEMO mutation than that of IP patients. Maybe partially functioning
NEMO was able to allow male fetus harboring the mutation to post-natal survival, unlike the
prenatal lethality seen in IP patients. However, experiments studying the extent of NF-κB
inactivation by the mutated NEMO found in EDA-ID patients in comparison to that from IP
patients were not tested. Some evidence supporting this hypothesis comes from studies of
OL-EDA-ID patients. Doffinger et al. (116) reported that OL-EDA-ID patients harbor
mutations in the stop codon of NEMO, which led to a 27 amino acid addition. Stimulation of
PBMCs from these patients with IL-1β, IL-18, TNF, LPS, as well as CD40L shows that
these cells have impaired but not abolished NF-κB response, unlike that of complete
abolishment in IP. Such partial impairment could lead to survival of the infant but also to
high susceptibility to infection. Whether there is NEMO functional difference between the
stop codon mutation and the Zinc finger domain and if such a difference exists can explain
the phenotypic difference between EDA-ID and OL-EDA-ID is largely still a mystery.

Targeting IKK
Due to the prominent role of NF-κB signaling pathway in inflammatory disease and possible
links to cancer and autoimmune diseases, drug development for inhibition of NF-κB has
been hotly pursued by industry (Reviewed in Didonato et al., this volume). Inhibition of NF-
κB can be achieved at various stages along the signaling pathway: (i) inhibition of the
receptors at the cell surface membrane such as IL-1R and TNFR, (ii) inhibition of IKK
complex, (iii) stabilizing the suppressor protein IκB (Reviewed in Kanarek and Ben-Neriah,
this volume), (iv) interference with the nuclear transport of NF-κB, and finally (v) inhibition
of DNA binding of NF-κB proteins. The specificity of inhibition for NF-κB increases while
the target range for such inhibition decreases in the order listed above. Targeting the IKK
complex is attractive, because it has a perfect blend of pathway specificity and a broad range
of downstream effects: there are no known NF-κB activities that do not require at least one
of the IKK family members. Also due to the similarity of the kinase domains of IKK1 and
IKK2 with other known protein kinases, many compounds have been screened to select for
inhibition of IKK's kinase activity. So far, almost all of the compounds show greater
inhibition of IKK2 than IKK1, and it is not clear why that is the case. The number of
compounds that can inhibit IKK kinase activity is quite large. In Table 2, we have
summarized the biological effects of a selected number of compounds that are being
developed as IKK1 and IKK2 specific inhibitors (119-139). We have chosen these few due
to their specificity for IKK inhibition and for the in vivo data available showing their
efficacy.

Apart from inhibiting the kinase activity of IKK1 and IKK2, another approach is to target
protein-protein interactions between the IKK complex members. The best success story in
this approach is the NEMO-binding domain (NBD) peptide. The C-terminal hexapeptide
core sequence present on both IKK1 and IKK2 is essential for their interaction with NEMO
and for their activity. Therefore, not surprisingly, NBD peptides were able to competitively
inhibit IKK1 and IKK2 interaction with NEMO (40). Interestingly, the concentration of
NBD peptide required to inhibit IKK2 is much higher than that of IKK1, suggesting that
IKK1 NBD interacts with NEMO at much lower affinity than IKK2. This observation fits
well with the fact that IKK2 is of much greater importance in the canonical pathway than
IKK1. In addition a modified NBD peptide that can easily traverse cell membranes has been
shown to have great efficacy in entering cells and block signal induced NF-κB activation
(140). A number of studies later also demonstrated that this modified NBD peptide has in
vivo efficacy in animal models of inflammatory diseases, such as arthritis (141), colitis
(142), and cerebral ischemia-reperfusion injury (143). Despite the success NBD peptide had
in preclinical trials, its high cost and low stability may make it an unlikely candidate for
pharmaceutical companies to pursue.
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Despite the intensive effort pouring into targeting IKK for therapeutics and the many
positive results in preclinical studies, challenges lay ahead for the practical use of IKK
inhibitors in disease treatment largely due to its pleiotropic effects. There are several layers
of complexity to IKK's role in a cell. First, there are many signals that can induce NF-κB
activation. These pathways converge at the IKK complex, yet, different downstream gene
expression programs are induced that reflect the response to a particular stimuli. This
specificity may come from the different upstream adaptor proteins, and it may come from
differential IKK complex composition. Hence, design of drugs to inhibit NF-κB activation
to a specific stimulus requires our full understanding of how IKK specificity is achieved.
The second level of complexity comes from the many roles of IKK proteins, especially in
NF-κB-independent pathways, including immune functions, cell survival, cell proliferation,
and crosstalk between signaling pathways. Targeting IKK for therapeutics will likely lead to
unwanted toxicity, and further understanding of IKK's many roles allow us to predict the
risk and assess whether the risk outweigh the benefits. The third level of complexity comes
from organism itself. In a disease model, different cells may require NF-κB activation for
different purposes that maybe lead to different outcome for the disease progression. This
case is best exemplified by the role of IKK2 in cancers. It has been reported in a mouse
model of colitis that IKK2 deletion in the intestinal epithelia cells lead to increased
apoptosis, while IKK2 deletion in myeloid cells lead to decreased pro-inflammatory
cytokines production. The different functions of IKK2 in the two cell types led to different
outcome of tumor progression (144). Therefore, when targeting IKK inhibition, it is
important for us to understand the role of IKK activation in all tissue types of an organism.

Perspectives
conclusions and outstanding questions During the past two decades, the field has gained
tremendous insight into the composition, activation, and regulation of the IKK complex.
However, with every question answered, the complexity of NF-κB activation has revealed
further signal-specific and cell-type specific regulation of NF-κB by IKK complex. Another
area that is underdeveloped but attracting attention is the downregulation of NF-κB
signaling and the role of the IKK complex in this process. This could be an important
mechanism of resolution of inflammation. Several deubiquitinases upstream of the IKK
complex have been shown to be important for the downregulation of NF-κB activity, such as
A20 and CYLD (44, 145). Deubiquitination of upstream binding partner of NEMO may
interfere with the IKK holoenzyme formation (Reviewed in Harhaj & Dixit, this issue). A20
expression is induced by NF-κB activation, while CYLD is not. Hence these two
deubiquitinases also demonstrate that NF-κB can either be regulated by an auto-negative
feedback loop or additional active suppression mechanisms. However, detailed mechanistic
insight into the dissociation of IKK complex is still largely unknown. Given the important
role of NF-κB signaling in inflammatory diseases and malignant diseases, knowledge in this
process will be essential in developing new diagnostic and therapeutic tools.
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Table 1

Biological functions Kinase / substrate Detailed description Reference

Tumorigenesis

IKK2 / P53 Destabilizing P53 23

IKK2 / TSC1/2 Suppress TSC1/2, induce mTOR activation 87, 88

IKK2 / FOXO3a Target FOXO3a for proteasomal degradation 89, 90

IKK2 / AuroraA Target AuroraA degradation by β-TrCP pathway 91

IKK1 / unknown Suppress Mapsin, increase metastatogenesis 113

IKK1 / unknown Regulate Smad2/3 Target genes that function as Myc antagonists 114

Immune functions

IKK2 / SNAP23 Promote exocytosis in mast cells 24

IKK1 / IRF7 Increase IFN production upon TLR stimulation 111

IKK1 / IRF5 Decrease IFN production upon TLR stimulation 112

Transcriptional regulation

IKK1 / Histone H3 Regulate optimal expression of NF-κB genes upon TNF
stimulation 99,100

IKK1 / no substrate Stabilize G2/M checkpoint 14-3-3σ protein gene expression 102

IKK1 / CBP Increase CBP histone acetyltransferase activity, increase its
affinity for NF-κB promoter 105

IKK1 and IKK2 / SRC-3 Increase pro-inflammatory gene expression 106

Cell cycle
IKK1 / β-catenin Protect β-catenin from ubiquitination mediated degradation 107,108,109

IKK1 / cyclin D1 Fast degradation of cyclin D1 through ubiquitination pathway 110

Crosstalk between pathways
IKK2 / p105 Activate MEK and MAPK pathways via p105 proteolysis 94,95

IKK2 / Dok1 Suppress MAPK Dok1 phosphorylation that inhibits Erk1/2 96

Diabetes IKK2 / IRS-1 Antagonize insulin signaling downstream of IRS-1 97
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