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Computers are organized into hardware and software. Using a theo-
retical approach to identify patterns in gene expression in a variety of
species, organs, and cell types, we found that biological systems
similarly are comprised of a relatively unchanging hardware-like gene
pattern. Orthogonal patterns of software-like transcripts vary greatly,
even among tumors of the same type from different individuals. Two
distinguishable classes could be identified within the hardware-like
component: those transcripts that are highly expressed and stable and
an adaptable subset with lower expression that respond to external
stimuli. Importantly, we demonstrate that this structure is conserved
across organisms. Deletions of transcripts from the highly stable core
are predicted to result in cell mortality. The approach provides a con-
ceptual thermodynamic-like framework for the analysis of gene-
expression levels and networks and their variations in diseased cells.

disease patterns | firmware | genomics | surprisal analysis | thermodynamic
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In biological studies, gene-expression networks are interrogated
routinely to recognize transcripts and pathways that vary sig-

nificantly upon experimental manipulation or among samples
displaying distinct phenotypes. Identifying the significance of
variation requires a definition and understanding of transcripts
whose expression levels are steady and therefore can serve as a
baseline from which the change is measured. We expect that the
baseline includes the transcripts often referred to as “house-
keeping genes,” the genes thatmaintain the basic cellular function.
However, many familiar housekeeping genes vary significantly
under different experimental conditions (1), complicating their
utility as a baseline for gene-expression studies and calling into
question our understanding of their cellular function. We use
a thermodynamic-like theoretical approach to identify a set of
steady-state genes in living cells. These genes define the stable
baseline. Interestingly, two distinguishable groups could be re-
solved within this “steady” set of transcripts: genes that are highly
expressed, stable, and robust and a flexible subset with lower ex-
pression levels that can vary depending on the experimental
manipulations and are subject to epigenetic transformations.
Importantly, we demonstrate that this structure is conserved
across organisms.
The set of steady transcripts is reminiscent of what is called

“firmware” in electronic systems and computing. Firmware enables
the very basic functioning of a consumer electronic device.
The devices it enables can range in complexity from washing

machines or remote controllers of TV sets to smart mobile
phones. Engineers discern two classes that make up firmware:
low-level firmware, which is part of the hardware of the device,
and high-level firmware, the operational instructions that reside
in the device. These two levels are analogous to the two classes,
housekeeping and signaling, that we identify within the steady set
of genes.
The analogy perhaps can be extended further, because it is

possible, from the outside, to induce the high-level firmware to

reprogram itself and thereby provide additional applications
or to express hitherto hidden functionalities of the device, such
as the switch to glycolysis (2) in cancerous cells. Furthermore,
landmark studies have demonstrated a corresponding and newly
recognized plasticity in mammalian cells: Like firmware, gene
networks in a differentiated cell can be induced by extrinsic
influences, including transcription factors and small molecules,
to alter their normal state, reprogram to an embryonic-like state,
and perform hitherto hidden functions. On the other hand,
changes in the housekeeping genes are expected to be lethal.
This feature, too, is reminiscent of electronic devices.
To complement the set of transcripts that constitute the

steady pattern, we characterize the transcription patterns un-
derlying the process of oncogenic transformation and other
changes in biological processes. The expression levels of the
transcripts that belong to these patterns vary significantly in
different types of cancers and among different patients who
have the same type of cancer. The dramatic variations among
patients who have the same disease have clear implications for
translation and personalized medicine. At the same time, we
show that these variations are minor compared with the level of
expression of the stable transcripts. It is possible to extend the
computer analogy and relate software to those easily modified
and personalized transcription patterns that describe the bi-
ological change.
A pattern is a set of genes whose expression levels do not vary

with time, as in the steady state, or that vary in concert (i.e., all
the transcription levels are time-dependent in the same way).
The analogy that we make with computer architecture is

complementary to the well-developed characterization of local
motifs in transcription networks (3, 4). The aim in characterizing
local motifs is to discern connections between a few genes that
act like simple logic gates. Here, instead, we examine the flow
of information in the whole genome to identify large groups of
transcripts that act in concert. There are other important methods
that analyze expression level changes in the cellular process (5).
Many are local (i.e., bottom up), such as the Bayesian methods
based on elucidating the relationships between a few genes at
a time (6–11). The approaches based on information theory that
rely on the concept of statistical entropy (8–10, 12) differ from the
present work in that we use thermodynamics to define the phys-
ical entropy, the free energy of the transcripts, and thereby the
steady state. Reverse-engineering algorithms based on chemical
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kinetic-like differential equations identify causal interactions
through the rate constants of mutual influence (11, 13–17). Tree-
based methods of clustering (18, 19) and connectivity in graphs
(20) are similar to the more global point of view that we use. All
the studies successfully infer gene networks from particular
datasets and are able to follow the most significant changes in the
biological system (21). We suggest that only by identifying what is
stable (1) can we truly understand the significance of variation.
Hence we begin by using gene-expression profiling to find the free
energy of transcripts at the steady state and the time-evolving
deviations in gene expressions caused by the disease or pertur-
bation. By using thermodynamics, we can relate the physical idea
of “work” to the expression levels of genes. This approach thus
allows us to determine a steady state that is almost invariant
across organisms (Experimental Procedures and refs. 22 and 23).
Posttranslation factors and other elements also are important and
are not yet included in our analysis that looks at the expression
levels from mRNA microarrays.
The stable steady state provides more than a reference. Using

available experimental data, we validate the claim that highly
expressed or very stable transcripts are the most functionally
connected. The dependence of the network connectivity on
transcript stability provides quantitative thermodynamic support
for the theory of general robustness of biological networks (24).

Results
Steady and Time-Varying Parts of the Expression Level of Transcript.
We consider evolving biological systems that have been mea-
sured at several time points or stages along the process and in
which there is a change between two measurements. We analyze
the change over time in the natural logarithm of the expression
level (i.e., the fold value) of each transcript. The method we use to
represent the changing values of the expression levels is known as
“surprisal analysis” (25, 26). Surprisal analysis also is able to de-
termine how many transcripts really contribute to a particular
biological process. Explicit applications to changes in the evolu-
tion toward cancer are reported in refs. 22 and 23. Surprisal
analysis as outlined inExperimental Procedures, Box 1 in particular,
represents the fold value as a sum of two types of contributions:
a steady state that is the time-invariant part of the expression level
and a time-varying contribution reflecting the change.

Perturbing Steady-State Transcription Levels. Surprisal analysis
relates the fold change in the expression level of a transcript to
the work done by the ongoing biological process. We thereby
explain why the steady-state pattern is exceptionally stable.
The free energy of the transcript i at the steady state, mea-

sured in units of the thermal energy kT, is denoted as −Gi0λ0.
λ0 is the weight of the steady-state pattern, common to all the
transcripts. Gi0 is the contribution of transcript i in the steady
state (Experimental Procedures, Box 1). By comparing these val-
ues with the values −Giαλα, which describe the work done by
a disease pattern α on the transcript i, we show that the steady
state is robust.
Fig. 1 shows an explicit example (22) taken from the cellular

cancer model system WI-38 (27). This cellular system includes 12
stages of cancer development in which genetic alterations were
applied (SI Appendix, Fig. S4). The gene-expression level for
each transcript, Xi(t), was measured at time t for a series of 12
time points (27). This system did not develop continuously from
one point to the next; therefore we divided it into several tra-
jectories that go through different time points (SI Appendix, Fig.
S4). For example, trajectories 156 and 15781012 share a common
process up to and including point 5. Examination of the −Gi0λ0
and −Giαλα values of different trajectories in the WI-38 system
revealed that for most transcripts the values of the free energy
−Gi0λ0 are lower than the free energy changes, −Giα = 1λα = 1,
because of the main pattern of the disease. Fig. 1 suggests that

the steady state is very stable and that the process of trans-
formation changes the free energy balance of the steady state
only slightly. The robustness of the steady state of the cell, as
shown in Fig. 1, was identified in healthy cells, such as TGF-β–
treated hematopoietic stem cells and dendritic differentiated
cells; in different types of malignant cells, including lung ade-
nocarcinoma A549 cells treated for up to 72 h with TGF-β to
induce epithelial–mesenchymal transition (EMT) (28); in three
different disease stages of primary renal, colon, and prostate
tumor-development processes from multiple distinct patients;
and across organisms, as seen in phenelzine-treated Saccharo-
myces cerevisiae (29) and in the development of three disease
stages of carcinoma in 31 mice (30). For additional examples, see
SI Appendix, Figs S1 and S2. For a more detailed description of
the experimental studies reported in the manuscript, see SI
Appendix, Text.

Robustness of the Steady State. The essence of the robustness of
the steady state is the inequality in the weights of the transcripts

λ0 >> λ1; λ2; . . . [1]

The separation of fold magnitudes implies that the free energy
of the transcripts in the steady state is more than an order of
magnitude larger than the perturbations of the free energy of the
transcripts caused by disease. Explicit results are shown in SI
Appendix, Tables S1 and S2, in which the transcription patterns
are numbered in decreasing order of importance: λ0 ≥ λ1 ≥ λ2 ≥.

Durable Core of the Steady State. Robustness also has an impli-
cation for the expression levels of particular genes. The global
manifestation is expressed by the inequality in Eq. 1; namely, the
weight of the steady transcription pattern is significantly larger
than the weights of the disease-induced patterns. The second
manifestation applies at the level of the individual transcripts
and defines the set of more durable core transcripts that have the
lowest of the low Gi0 values. For such exceptionally stable tran-
scripts i one has the inequality Gi0λ0 >> Giαλα, α = 1, 2, . . . . On
the other hand, for steady-state transcripts with a weight near
zero (i.e, transcripts that have higher free energy), the change in
the free energy caused by the disease can be significant (Fig. 1).
Depending on the sign of the work done by the disease, Giαλα,
the fold change in these more adaptable transcripts can either
destabilize the transcript completely or make it significantly
more stable. We suggest that, unlike low-energy transcripts that

Fig. 1. Histogram of free energy values in units of the thermal energy kT of
the transcripts at the steady-state Gi0λ0 and the work done by the major
transcription pattern (α =1, Gi1λ1) at time point 8 in the trajectory 15781012
(in the middle of the transformation process) for the WI-38 cancer model
(27). The values of Gi0λ0 and Gi1λ1 are distributed in a bell-shaped manner
around a finite negative number and around zero, respectively.
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generate a connected stable network, the degree and structure of
the network of unstable transcripts is temporal and is somewhat
dependent on stimuli and available partners.

Conservation of the Steady-State Pattern in Different Cells and
Organisms. The distribution of the Gi0 values among the cellu-
lar functional modules remains essentially the same in the
steady-state pattern of the different cellular models, such as
TGF-β–treated lung cancer cells (28), WI-38 transformed
fibroblasts (27), HPV16 immortalized keratinocytes from four
different stages of transformation (31), the renal carcinoma
metastatic model (32), TGF-β–treated hematopoietic stem cells,
and dendritic differentiated cells (33). The detailed analysis of
the distribution among functional groups is provided in SI Ap-
pendix, Text Section 2.
The most stable transcripts (i.e., the core transcripts with the

lowest values of Gi0 discussed above) usually include ribosome,
protein translation, and energy pathways modules (see, for ex-
ample, SI Appendix, Tables S3, S7, S10, and S11). The transcripts
with mid Gi0 values participate in the cell cycle and DNA/RNA
metabolism (SI Appendix, Tables S8 and S12). The adaptable,
most easily modified, transcripts, those with the highestGi0 values,
usually participate in signal transduction, morphogenesis, and
cell communication modules (SI Appendix, Tables S9 and S13). It
is important to note that the majority of the transcripts have mid
Gi0 values (see, for example, Fig. 1 and SI Appendix, Fig. S3).

Quantifying the Conservation of the Steady-State Pattern in Different
Cells. A number of distinct experimental trajectories have been
measured for the WI-38 cancer model. These trajectories include
the development of normal cells (trajectory 134), immortaliza-
tion (trajectory 156), and cancer development (trajectory
15781012) (see refs. 22 and 23 and SI Appendix, Fig. S4 for more
details). We make a quantitative comparison of the steady-state
expression in different trajectories using the notion of dissimi-
larity discussed in Experimental Procedures Box 3. We make the
comparisons by calculating the overlap of two different vectors:P

iG
ðtrjXÞ
i0 GðtrjY Þ

i0 for the trajectories X and Y (see Experimental
Procedures, Box 3 for details). We know that

P
iG

ðtrjXÞ
i0 GðtrjY Þ

i0 ¼ 1,
because, for a given trajectory X, the weights are normalized (see
Experimental Procedures, Box 2). Therefore, if two different tra-
jectories have similar distributions of expression levels, the value
of the overlap

P
iG

ðtrjXÞ
i0 GðtrjY Þ

i0 should be close to 1. For example,
the scalar product of the G0 vectors of two different trajectories
in the cancer model system WI-38 is

P
iG

ð156Þ
i0 Gð15781012Þ

i0 ¼ 0:998.
(See Experimental Procedures, Box 3 for further discussion of the
notion of a scalar product.) Similar results are found for all scalar
products among the five different trajectories in the WI-38 system.
The steady-state core remains essentially unchanged despite the
different pathways that have been characterized for the WI-38
cellular system.
We find that the concept of the steady-state core is equally

applicable to other cellular systems. Using gene-expression data
for different cell types, we calculated the G0 vector of lung
cancer cells (A549) treated with TGF-β to induce EMT (28);
normal colon, primary carcinoma, and metastatic cells from two
different patients (34); normal renal, tumor, and metastatic cells
from three patients (32); prostate tissues taken from radical
prostatectomy surgeries from four different patients and sepa-
rated into highly purified populations of benign basal epithelial
cells, benign luminal epithelial cells, and cancerous luminal cells
(SI Appendix, Text); and human papilloma virus (HPV16) im-
mortalized keratinocytes from four distinct time points in the
route of transformation (31). We calculated the scalar product of
the G0 vectors of different cell types. Typical results are

X
i

Gðtrj156Þ
i0 GðTGF β cellsÞ

i0 ¼ 0:97;
X
i

GðHF1cellsÞ
i0 GðTGF β cellsÞ

i0 ¼ 0:96;

X
i

Gðcolon cancerÞ
i0 GðTGF β cellsÞ

i0 ¼ 0:98;

X
i

Gðprostate cancerÞ
i0 GðTGF β cellsÞ

i0 ¼ 0:97:

Because highly expressed transcripts have larger absolute Gi0
values and therefore contribute most to the scalar products,
the above results show that highly expressed stable transcripts
are neither extensively suppressed nor amplified across differ-
ent biological processes in human cells. Next we analyzed data
(30) for skin tumor progression from three different disease
stages (normal, benign papillomas, and malignant carcinomas)
in 31 mice. The resulting 31 vectors were remarkably similar,
with a scalar product > 0.993 for all mouse pairs (SI Appendix,
Fig. S5). The distribution of the transcripts among functional
groups in the steady-state pattern is similar to the distribu-
tion in human models. We further examined the steady-state
pattern of phenelzine-treated S. cerevisiae grown for 200 min
(29) and, as an extreme example, Escherichia coli grown
on biofilms for 24 h (35); results are reported in SI Appendix,
Text Section 2.

Comparing Disease-Induced Transcription Patterns of Different
Patients. In contrast to the conservation of the steady state, we
note that the transcription patterns that characterize the process
of transformation vary significantly among different patients who
have the same type of cancer. For example, the largest overlap
for the first disease pattern in two different patients with renal
metastatic cancer is 0.43, (SI Appendix, Table S4). The same
result was obtained for two patients with colon carcinoma (ref.
34 and SI Appendix, Table S5) and for four patients with prostate
cancer (SI Appendix, Table S6). The analysis of the key signaling
proteins present in the pattern disease in colon and renal cancer
samples, such as PTEN (a negative regulator of Akt pathway),
different MAPK proteins, SRC, MYC, EGFR, PDGFR, IGFR,
and NFκBIL2 (a negative regulator of NFκB) shows that these
hub proteins have different, sometimes opposite, contributions in
different patients who have the same type of cancer (SI Appendix,
Tables S4A and S5A).
As in human patients, the G1 (α = 1) arrays of the major tran-

scription patterns for differentmicewere rather heterogeneous and
very much uncorrelated (SI Appendix, Fig. S5). These results pro-
vide a potential explanation for the heterogeneity in patient tumor
response to pathway inhibitors observed in clinical trials.

Stable Transcripts of the Steady-State Participate Less in the Process
of Transformation. Transcripts that are significantly up- or down-
regulated in the process of transformation are necessarily
located at the edges of histogram describing the major tran-
scription pattern (Fig. 1). Examination of the free energy val-
ues of these transcripts at the steady state revealed that the
majority of these transcripts are located on the upper edge of
the steady-state free energy histogram (Gi0λ0; Fig. 1); that is, they
are categorized among the less stable of the stable core tran-
scripts. Quantitative data bearing on this point are discussed in
SI Appendix, Text, Sections 5 and 6 and Fig. S6. These transcripts
belong to signal transduction and cell communication proteins
and cell-cycle networks (SI Appendix, Text, Section 6 and Fig.
S6). Furthermore, the above analysis showed that the steady-
state core transcripts with the lowest free energy are hardly
influenced by any disease process (SI Appendix, Text, Section 6
and Fig. S6).

From Steady-State Transcription Levels to the Functional Network.
To examine the structure of the transcripts with the greatest
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contribution to the steady state, we used the STRING software
(36) that builds functional protein-association networks based on
compiled available experimental evidence. As an example, con-
sider the most stable transcripts, namely those with the lowest
Gi0 values (less than −0.018) in SI Appendix, Fig. S3. Fig. 2 shows
that these transcripts generate a highly connected, experimen-
tally validated network. The lowest Gi0 values therefore are able
to predict experimentally previously known protein–protein
interactions. The least stable transcripts, those with the highest
negative Gi0 values (greater than −0.008) in SI Appendix, Fig. S3
are much less connected than the transcripts with the lowest free
energy (Fig. 2B). In the SI Appendix we show that the transcripts
with either low or high Gi1values produce significantly less-con-
nected experimentally validated networks (SI Appendix, Fig. S7).
In SI Appendix, Text Sections 1 and 3, we discuss why the lowest
Gi0 values predict connectivity. We conclude that transcripts with
stable gene expressions are more connected.

Free Energy Predicts the Functional Connectivity of Transcripts. To
validate further the prediction of functional connectivity by free
energy values, we built a heatmap according to the symmetric
matrix, whose ij element is Gi0Gj0. Results for the process shown

in Fig. 1 are compared in Fig. 3 with the known protein–protein
interactions according to STRING. The values of the product
Gi0Gj0 for 160 transcripts are represented in Fig. 3 by a heatmap
(Fig. 3B). The most connected group in the heatmap comprises
the transcripts with the lowest Gi0 values. Transcripts in this
group are involved primarily in protein synthesis. Transcripts
involved in energy pathways and transcription are somewhat
less connected. The transcripts with high free energy are hardly
connected. The steady-state connectivity agrees well with the
known interaction maps according to STRING (Fig. 3A).
Corresponding results for the TGF-β–treated A549 cells are

shown in SI Appendix, Fig. S8. The interactions predicted by the
heatmap also reflect known interactions according to STRING.
The same result is found in other human cells.

Connectivity Networks Across Organisms. Finally, we argue that in
other organisms, also, low Gi0 values predict connectivity. In
mice, for example we examined the process of carcinoma de-
velopment (30) that included three stages: normal, benign, and
carcinoma. The analysis showed that the steady-state connec-
tivity that we calculated (Fig. 4B), agrees well with the known
interaction maps according to STRING (Fig. 4A). The most
connected group in the heatmap primarily comprises transcripts
involved in protein synthesis. Transcripts involved in energy
pathways are less connected. The transcripts with high free en-
ergy are hardly connected. Examination of data for other
organisms showed similar results (SI Appendix, Figs. S9 and S10).

Fig. 2. Examination of the experimentally determined networks obtained
from the Gi0 values in the trajectory 15781012. (A) The 66 transcripts with
the lowest (i.e., most stable) Gi0 values (less than −0.018 according to SI
Appendix, Fig. S3). (B) The 354 transcripts with the highest Gi0 values
(greater than −0.008 according to SI Appendix, Fig. S3). The validation of the
high connectivity of the stable transcripts is shown in Fig. 3.

1

2

3

4

1. protein 
synthesis

2.translation
3. energy 
pathways
4. transcription

5. signaling

G0i*G0j

A

B

Fig. 3. Predicting the connectivity of transcripts in the trajectory 15781012.
(A) Connectivity of 160 transcripts in the process of Fig.1 according to the
STRING software. The 120 most stable and the 40 least stable transcripts are
shown. (B) A heatmap of the corresponding Gi0Gj0 values. The transcripts are
labeled according to Gene Ontology categories. The transcripts with high Gi0

values, group 5, are sparsely connected.
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Discussion
Using the measured distribution of expression levels of transcripts
at several time points of a biological progression (Experimental
Procedures), we determined the steady-state pattern and the tran-
scription patterns that represent the deviations from the steady state
caused by the ongoing process. The transcripts that contribute sig-
nificantly to the steady state have much lower free energy values
than the values of energy that can beproducedby the particular pro-
cess. The lower free energy explains why the steady state is robust.
The steady-state core network is conserved among different

biological processes and across organisms. This result is consis-
tent with previous studies showing that essential genes display
lower variability (37, 38). We expect that the conservation of the
core transcripts is essential for survival. On the other hand, we
find that the transcription patterns that deviate from the steady
state can vary significantly in the different types of cancer or even
among different patients with the same type of cancer. Further-
more, we have found a remarkable convergence between our
predicted structure of a steady-state network and the experimen-
tally validated protein-interaction network in all the biological
systems that we examined.
Functional analysis of the steady-state transcripts establishes

that the protein network (which includes ribosomal RPS pro-
teins, RPL proteins, and eukaryotic initiation and elongation
factors) and energy metabolism networks (such as the oxidation
phosphorylation chain network, including NDUF, COX tran-
scripts, and ATP synthases) are the main contributors to the
steady-state core set. Signal transduction and cell communica-
tion pathways that do not contribute significantly to the steady
state and whose level is lower can vary in response to pertur-
bations and are better able to respond to changing external
stimuli. This set potentially would contain a larger number of
therapeutic targets than the more stable core sequences.
In conclusion, surprisal analysis is able to predict the func-

tionally connected stable steady-state network of a biological
process by determining the free energy values of the mRNA

molecules. The steady-state pattern remains largely unchanged
in different biological processes and across organisms and pro-
vides a baseline for measuring deviations caused by a perturba-
tion or a disease. The deviations are software-like gene patterns
that are uncorrelated with the steady state and that vary even
among different individuals with tumors of the same type.

Experimental Procedures
Surprisal analysis identifies the steady state and also the transcription pat-
terns that represent the biological change. Each transcription pattern is an
enumeration of the participating transcripts. Surprisal analysis shows that all
the transcripts belonging to the same pattern act in concert, contributing in
the same manner over time. Each transcript contributes to a transcription
pattern with its characteristic, time-independent weight. In Box 1, Giα is the
weight of transcript labeled i to the transcription pattern α. We use α = 0 to
designate the steady state; α = 1, 2, . . . are the transcription patterns of the
disease. A key practical point is that very few (two or three) transcription
patterns suffice to represent accurately the changes in the expression levels
of transcripts caused by the biological process. We use the number λα(t) as
the value of the contribution of transcription pattern α at the time t. Sur-
prisal analysis shows that very few λα(t) values are not zero, so only a few
transcription patterns contribute (22, 23). Surprisal analysis also identifies
the steady state as the pattern whose value, λ0, does not vary with time.

The steady-state pattern and the patterns of the disease are distinct from
one another (Box 2). Technically we express this dissimilarity by a sum, over all
transcripts, of the respective weights. The same considerations also imply
that the Giα weights of the individual transcripts in pattern α are inherently
standardized (Box 2).

Surprisal analysis uses the same core assumption that can be applied to
characterize time-evolving physico-chemical systems. We illustrate this hy-
pothesis here by reference to a system of coupled chemical reactions (e.g.,
metabolism). When such a system is initiated, reactions take place, and the
concentrations of different species change. At any instant we can freeze the
evolving system by adding or removing a catalyst (e.g., an enzyme) so that
the system remains at its current composition. Upon such freezing, reactions
stop, and the system is stable. Therefore for each transcript we can de-
termine the work required to bring the expression to its value in the frozen
state. This calculation gives us a quantitative value for each transcript.

Free Energy and the Expression Level of a Transcript. Surprisal analysis
determines the free energy of the transcripts in the cell and the changes
caused by thework done by the biological process. Free energy is measured in
units of work or, equivalently, of energy. The fold value is a dimensionless
number. The steady-state fold value of a transcript, In X0

i ¼ −Gi0λ0 (Box 1), is
the thermodynamic free energy measured in units of kT per transcript where
k is Boltzmann’s constant, and T is the temperature. The free energy is the
(reversible) work required to bring the level of expression to its steady-state
value. A negative value means that the transcript is very stable, because a lot
of work is needed to change the level.

The biological process does work, and, using the point of view of a frozen
equilibriumwe can identify thework done on the genome at each time point t.
The fold value of a transcript is the work required to bring the level of ex-
pression to its present value. Thus the change in fold value between two time
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Fig. 4. Predicting the connectivity of transcripts as determined for carci-
noma development in mice. (A) Connectivity of 250 transcripts (the 210 most
stable and the 40 least stable transcripts) is shown. (B) A heatmap of the
corresponding Gi0Gj0 values. The transcripts are labeled according to Gene
Ontology categories. The transcripts with high Gi0 values, groups 3 and 4, are
sparsely connected.

Box 1. Surprisal Analysis Defines the Steady State.

ln XiðtÞ
|fflfflfflfflffl{zfflfflfflfflffl}

measured expression level

of transcriptiat time point t

¼ ln Xo
i|fflffl{zfflffl}

expression level of transcript i

at the steady state

�
X

α¼1
Giα λαðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

deviation from the steady state
due to the biological process

In X0
i ¼ −Gi0λ0 the fold level of transcript i at the steady state α = 0.

λ0 does not depend on time. In refs. 22 and 23 we provide full details
on how the steady state and the values of λα(t) and of the transcription
patterns Giα are determined from the measured values of the expres-
sion levels Xi(t) of different genes.
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points is the work done by the biological process. Quantitatively (Experimental
Procedures, Box 1),Giαλα(t) is thework required by disease transcription pattern
α to bring transcript i from the steady state to its expression level at the time t.
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Box 3. Different Patients with the Same Symptoms Can Have Quite
Different Patterns of the Disease. GðnÞ

iα where i is the variable is a linear
array comprised of many components (the number of transcripts). The
value of each component is the expression level at the pattern α for all
transcripts for a particular patient n. The overlap of two different arrays
is

P
iG

ðnÞ
iα GðmÞ

iβ where the summation is over all transcripts. In vector al-
gebra the overlap is known as the “scalar product.” It is the cosine of the
angle between the two directions.

Box 2. Transcription Patterns Are Distinct. The different transcription
patterns of the same process are distinct from the steady state. Tech-
nically, when summed over all transcripts, the weights are orthogonal:P

iGi0Giα ¼ 0. Also, different transcription patterns of the same process
are distinct from one another:

P
iGiαGiβ ¼ 0;α≠ β. The weights are

normalized:
P

iGiαGiα ¼ 1; α ¼ 0; 1; 2; . . ., ensuring that the values of
the weights are bounded. The value of all of these sums follow because
the weights of the transcripts are components of eigenvectors of
a symmetric matrix that is determined from the microarray data (22, 23).
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