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Endoreduplication is the process where a cell replicates its genome
without mitosis and cytokinesis, often followed by cell differentia-
tion. This alternative cell cycle results in various levels of endoploidy,
reaching 4× or higher one haploid set of chromosomes. Endoredu-
plication is found in animals and is widespread in plants, where it
plays a major role in cellular differentiation and plant development.
Here, we show that variation in endoreduplication between Arabi-
dopsis thaliana accessions Columbia-0 and Kashmir is controlled by
two major quantitative trait loci, ENDO-1 and ENDO-2. A local candi-
date gene association analysis in a set of 87 accessions, combined
with expression analysis, identified CYCD5;1 as the most likely can-
didate gene underlying ENDO-2, operating as a rate-determining
factor of endoreduplication. In accordance, both the overexpression
and silencing of CYCD5;1 were effective in changing DNA ploidy
levels, confirming CYCD5;1 to be a previously undescribed quantita-
tive trait gene underlying endoreduplication in Arabidopsis.
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Endopolyploidy, defined as the occurrence of different DNA
ploidy levels within an organism, is a common feature in seed

plants. Endopolyploidy in plants is most often generated by
endoreduplication, a biological process that allows extra rounds
of genome duplication to occur without mitosis (1). Endo-
reduplicating cells increase their nuclear DNA content and size,
thereby reducing the overall production cost per tissue of cell
walls and cytoplasm, and facilitating faster growth compared
with diploid tissue (2). Though apoptotic cell death is the
mammalian response against cellular stress and DNA damage
(3), endoreduplication in plants leads to differentiation and
prohibits cells from reentry into the cell cycle, basically pre-
venting transmission of deleterious mutations (4, 5). Indeed,
endoreduplication is found more abundantly among angiosperms
that grow under environmentally challenging conditions, sug-
gesting an evolutionary advantage for endoreduplication (6).
Reverse genetics experiments have demonstrated that genes

controlling the mitotic cell cycle control the plant endocycle as well
(1). The endoreduplication onset is achieved by a decrease in
cyclin-dependent kinase (CDK) activity obtained through different
interconnected mechanisms, including the interaction of CDKs
with small inhibitory proteins (7–9) and inhibitory kinases (10), and
the selective destruction of mitotic cyclins (11–13). Surprisingly,
little is known about the molecular mechanisms controlling endo-
reduplication kinetics. CDKA;1 transcription in endoreduplicating
tissues, combined with reduced endoreduplication levels in loss-of-
function mutants, pinpoint CDKA;1 as a key regulator (14–17). In
addition, oscillations in CDKA;1 activity trigger consecutive endo-
cycles (18). Nevertheless, it remains unclear which cyclins control
CDKA;1 activity during endoreduplication.
Endoreduplication levels in Arabidopsis thaliana accessions vary

in degree (19) and, therefore, are likely controlled by the inter-

action of environmental factors and multiple genetic loci, most
probably, although not exclusively, cell cycle related. Despite the
numerous mapping populations available for Arabidopsis (http://
www.inra.fr/vast/RILs.htm), and the fact that conventional quan-
titative trait loci (QTL) linkage mapping is an effective tool for the
identification of genetic loci underlying natural variation, only one
attempt to map QTL for endoreduplication has been reported so
far (20). Recently, genome-wide association (GWA) studies have
received increased attention for the identification of QTL in plants,
and in Arabidopsis in particular (21), as an alternative to, or in
combination with, linkage mapping approaches (22–24). Associa-
tion approaches provide much higher mapping resolution than
linkage mapping, but population structure can be a strong con-
founding factor, resulting in inflated false-positive associations
(24). Recently developed GWA models (25, 26) that control for
population structure showed successful in detecting plant QTL for
flowering time (22–24), glucosinolates (27, 28), and 107 variable
A. thaliana phenotypes (29). Candidate gene association studies are
an extension to GWA, focusing the association analysis exclusively
on a selection of genes with known or potential functions in the trait
of interest, instead of anonymous genome wide markers. The
candidate gene association approach has the potential to enrich the
number of meaningful trait associations, and has proven to be
successful in the identification of genes for trait variation in wild
and cultivated maize (30–32), pine (33), and Arabidopsis (23, 34).
The objective of this study was to identify the quantitative trait

genes (QTGs) underlying natural variation of endoreduplication
in A. thaliana, using traditional linkage mapping complemented
with a candidate gene association analysis. We phenotyped 82
recombinant inbred lines (RILs) derived from a cross of Columbia
carrying a glabrous1 allele and Kashmir-1 (Col-gl1 × Kas-1), and
mapped two large QTL for endoreduplication. Because the genetic
network underlying the cell cycle in A. thaliana is very well char-
acterized and known to be involved in endoreduplication, we
nominated the mitotic cell cycle genes underlying the identified
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QTL as candidate genes for local associationmapping in a set 87A.
thaliana accessions. Statistical and genetic evidence for the gene-
trait associationwas obtained forCYCD5;1, suggestingCYCD5;1 as
aQTG for variation in endoreduplication. Both overexpression and
silencing of CYCD5;1 effectively changed the rate of DNA ploidy
accumulation, demonstrating its role in endoreduplication kinetics.
These results shed light on the unique role of theCYCD5;1 protein,
for which a function in endoreduplication was not assigned before.

Results
Endoreduplication Analysis. To quantify variation in endoredupli-
cation, we evaluated a set of 87 accessions for variation in DNA
ploidy levels and the endoreduplication index (EI) (6), calculated
as the weighted number of endoreduplication cycles per nucleus
[EI = (0 ×%2C)+ (1 ×%4C)+ (2 ×%8C)+ (3 ×%16C)+ (4 ×
%32C)]. The endoploidy profile was determined by flow cyto-
metric analysis on nuclei isolated from the first leaf pair at growth
stage 1.06 (35). The accessions varied considerably in the extent
of EI (Fig. S1A and Table S1), most notably at higher DNA
ploidy levels (Fig. S1 B–E and Table S1). Broad sense heritability
(H2)—the proportion of phenotypic variation attributed to genetic
effects—was 0.52 for EI and ranged from 0.43 to 0.72 for the in-
dividual DNA ploidy levels.

QTL Analysis. To identify QTL underlying the variation for EI, we
accessed an existing F6 RIL mapping population derived from
a Col-gl1 × Kas-1 cross (36). The choice for the Col-gl1 × Kas-1
cross was motivated by the large difference measured in EI be-
tween Kas-2, having the highest EI value, and Col-0, having an
EI level close to the median, in the screen of 87 accessions (Fig.
S1A and Table S1). EI values measured in Kas-1 and Kas-2 are
comparable, and the glabrous (gl1) mutation, located on chro-
mosome 3, did not affect the EI of Col-gl1 compared with Col-
0 (Table S1 and Figs. S1A and S2A). We examined DNA ploidy
levels and calculated the EI on 82 RILs (Fig. S2), followed by
a multiple QTL linkage method using 119 markers. The loga-
rithm of the odds (LOD) significance threshold (P = 0.05) for
the detection of QTL cosegregating with variation in EI was 2.33.
Two genome-wide significant QTL for EI were identified on
chromosomes 5 (ENDO-1; marker 16259183; LOD = 4.51) and
4 (ENDO-2; marker 18336634; LOD = 2.92; Fig. 1). ENDO-1
accounted for 19.2%, and ENDO-2 for 11.8%, of the EI vari-
ance. Both QTL did not exhibit epistasis, suggesting that each
QTL contributed additively to EI (Fig. S3). At both QTL, the
Kas-1 allele inferred an increase in EI. For the individual DNA
ploidy levels, ENDO-1 coincided with a QTL for %8C (LOD =
5.18; Table S2), explaining 23.2% of %8C variance. ENDO-2
coincided with a %16C QTL (LOD = 3.75; Table S2), ac-
counting for 16.7% of %16C variation, and overlapped a QTL
for %4C (marker chr4-14936282; LOD = 5.77).
Reverse genetics experiments have demonstrated that genes

controlling the mitotic cell cycle, such as cyclins, most likely
control the endocycle as well (7, 8, 11, 15, 17, 37–40). Hence, we
focused on 61 previously described cell cycle genes (41) as pri-
mary candidate genes for natural variation in endoreduplication,
and nominated those residing in a 2-Mb [∼10 centimorgans
(cM)] interval surrounding the QTL peaks. The ENDO-1 QTL
contained CYCA3;1 (AT5G43080), whereas ENDO-2 contained
CYCB2;2 (AT4G35620), CYCB1;1 (AT4G37490), and CYCD5;1
(AT4G37630).

Candidate Gene Association Mapping.Next, we resequenced the four
candidate genes at four 600-bp amplicons covering promoter, 5′-
UTR, exonic, intronic, and 3′-UTR regions for 87 accessions. We
selected relevant tag sequence polymorphisms (SPs) for each gene
[minor allelic frequency (MAF) > 0.04] to moderate the number of
SPs while preserving genetic information. Rather than testing for
each individual tag SP association with EI, and hence running into

multiple testing issues, we applied a haplotype–EI association
analysis using all tag SP data simultaneously (i.e., haplotype) by
fitting a semiparametric regression model using the least-squares
kernel machine procedure (42, 43). This mixed-model approach
also allows for population structure adjustment (24–26), and the
kernel used incorporates a weight that upweights tag SPs with a rare
MAF and downweights tag SPs with more common MAF. For
ENDO-1, no significant haplotype–EI association was identified for
CYCA3;1 (P = 0.67). Across the ENDO-2 QTL, we identified
a significant haplotype–EI association for CYCD5;1 (P= 8 × 10−4)
and CYCB2;2 (P = 0.03), but not for CYCB1;1 (P = 0.88). The
CYCD5;1 haplotypes also associated strongly with %4C (P =
0.003), %16C (P = 2 × 10−7), and, to a lesser extent %8C (P =
0.01), reflecting our observations from the QTL analysis, i.e.,
colocalization of QTL for EI, %4C and %16C but not for %8C. In
contrast, CYCB2;2 haplotype variation associated with %4C (P =
0.003) and %8C (P = 0.009), but not with %16C (P = 0.11). Fur-
ther investigation of the CYCD5;1-EI association using G-estima-
tion identified an 8-bp insertion (INDEL17681135; Fig. 2A) in the
CYCD5;1 3′-UTR region of the Kas-2 haplotype (frequency =
9.2%), contributing the most (P = 2 × 10−4) to the CYCD5;1
haplotype–EI association, accounting for 20.0% of the EI variance.
In the case of CYCB2;2, a single tag SP (SNP16901259) residing in
the promotor region of the gene (Fig. 2B) was identified as con-
tributing the most (P = 0.006) to the CYCB2;2 haplotype–EI as-
sociation, explaining 8.4% of the EI variance.
An analysis of the full-length CYCD5;1 sequence showed no

sequence polymorphisms between Col-0 and Kas-1 at the coding
level (http://signal.salk.edu/atg1001/3.0/gebrowser.php). In con-
trast, CYCB2;2 showed two nonsynonymous (NS) substitutions
between Col-0 and Kas-1 (amino acids 135 and 147), flanking the
CDKA binding site of CYCB2;2 (44). However, analysis of 261
A. thaliana alleles at CYCB2;2 revealed low linkage disequilibrium
(LD; r2 = 0.050 and 0.055, respectively) between SNP16901259 and
the haplotypes comprising the twoNS substitutions.We concluded,

Fig. 1. QTL likelihood map for EI in the Col-gl1 × Kas-1 F6 RIL population. The
x axis corresponds to the genetic map in centimorgans, with tick lines showing
the relative position of geneticmarkers per linkage group; the y axis corresponds
to the LOD value as calculated by MQM. The dashed line indicates the 5% sig-
nificance LOD threshold = 2.33. Two significant QTL were located on two chro-
mosomes: ENDO-1 at marker 16259183 (LOD = 4.51) located on chromosome 5,
and ENDO-2 at marker 18336634 (LOD = 2.92) located on chromosome 4.
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therefore, that both analyses suggest that any quantitative effect
from CYCD5;1 and CYCB2;2 on EI is regulatory in origin.

Haplotype Expression Analysis. To test the regulatory variant hy-
pothesis, we measured CYCD5;1 and CYCB2;2 gene expression
following a leaf development course in Col-0 and Kas-2. As early
as leaf developmental stage 1.02, CYCD5;1 expression was sig-
nificantly higher (P < 0.001) in Kas-2 than in Col-0 (Fig. 3A).
This difference, however, disappeared over later growth stages.
In contrast, we found no evidence for differential expression
of CYCB2;2 (P = 0.99) between Col-0 and Kas-2 (Fig. 3B).

Together, these data suggested that increased expression of
CYCD5;1, but not of CYCB2;2, early on in the development of
leaf tissue, instigates increased DNA duplication in Kas-2.
To further substantiate the association between CYCD5;1

expression levels and variation in endoreduplication, CYCD5;1
expression was measured in the first leaf pair at stage 1.02 in a set
of accessions having either the 8-bp insertion (Kas-2 haplotype;
Bor-1, Kas-2, Kondara, Omo2-1, Shahdara, Sorbo) or not (Col-
0 haplotype; C24, Col-0, Cvi, Ws-1). Expression of CYCD5;1
transcripts was 35% higher (P < 0.001) in accessions having
the Kas-2 haplotype compared with accessions having the Col-
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Fig. 2. The haplotype structure maps and LD
plots for (A) CYCD5;1 and (B) CYCB2;2. In the
haplotype structure map, each column repre-
sents a polymorphic site with minor alleles in
yellow, major alleles in blue, andmissing data in
gray. Accessions (represented by rows) are clus-
tered by haplotype. The tag SPs most strongly
contributing to the significant CYCD5;1 and
CYCB2;2 haplotype–EI association (respectively,
INDEL17681135and SNP16901259) are indicated
by vertical rectangles. The LD plot reflects r2

estimates for each pair of polymorphic sites vi-
sualized by a color matrix, with red indicating
strongest LD between a pair of markers.
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Fig. 3. Progression of relative (A) CYCD5;1
and (B) CYCB2;2 expression through first
leaf pair development in Col-0 and Kas-2.
Mean values± SE (n = 3) (y axis) for first leaf
pair of Col-0 (solid line) and Kas-2 (dashed
line) sampled at a series of leaf de-
velopmental stages (x axis). ***P < 0.001
pairwise contrast tested after ANOVA. The
developmental stages are shown along the
x axis. (C) Endoreduplication levels through
first leaf pair development in an amiRNA
line (▲), Col-0 (◆), and Kas-2 (■). A simple
linear regression model was fitted for each
genotype (amiRNA line: dotted line; Col-0:
solid line; and Kas-2: long dash line). An analysis of parallelism was performed to test for differences: *P < 0.05; **P < 0.01; ***P < 0.001 (compared with the
amiRNA-CYCD5;1 line using Student t test); ++P < 0.01 (compared with Col-0 using Student t test).
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0 haplotype (Fig. 4). According to the Arabidopsis Information
Resource release no. 10 annotation (http://www.arabidopsis.org/),
CYCD5;1 expresses two transcript variants, of which only the long
variant contains the 8-bp insertion.Using quantitativeRT-PCR, we
specifically measured the abundance of the long transcript across
the same set of 10 accessions, but found no significantly higher
expression (P = 0.181) in the Kas-2 compared with the Col-0 hap-
lotype group (Fig. S4). The amplification levels of the long
CYCD5;1 transcript variant have threshold cycle (Ct) values three-
to fourfold higher than those of both transcripts together, sug-
gesting that the proportion of the long transcript variants in the
total transcript is ∼10% and, hence, of minor significance. To-
gether, these data further supportCYCD5;1 as theQTGunderlying
the ENDO-2 QTL for endoreduplication, and indicate that the
joint expression of bothCYCD5;1 transcript variants are important.

Transgenic Experiments. We next used a transgenic strategy to
confirm thatCYCD5;1 expression variation contributes to variation
in endoreduplication. We measured DNA ploidy levels and a
number of cell parameters in three independent transgenic lines
(OE2, OE7, and OE10) constitutively overexpressing CYCD5;1 in
a Col-0 genetic background. The three OE lines, having a 3- to 18-
fold up-regulation (P < 0.05) of CYCD5;1 expression compared
with Col-0WT (Fig. 5A), showed EI levels increased by∼20% (P<
0.05; Fig. 5B). Analysis of the effect ofCYCD5;1 overexpression on
leaf cell number and cell size showed a doubling of pavement cell
number (P < 0.001; Fig. S5B) and a ∼40% (P < 0.001; Fig. S5A)
reduction in cell size in OE2 and OE10 compared with WT, which
is likely the result of a higher mitotic activity rather than endocycle
activity. The smaller cell size observation is in disagreement with
previous observations that endoreduplication is positively corre-
lated with cell size (39, 45–47). A possible explanation for this
discrepancy is that cell number and cell size jointly control total leaf
size, where the increase in one parameter can to some extent be
compensated by the reduction of the other parameter.
Given the role of CYCD5;1 overexpression on EI, we also in-

vestigated the effect of CYCD5;1 silencing on endoreduplication
in three independent transgenic artificial microRNA (amiRNA)-
CYCD5;1 lines in a Col-0 genetic background. A reduction to
∼70% (P < 0.001) of the WT CYCD5;1 expression levels (Fig. 5C)
increased %2C and %4C ploidy levels (P < 0.001 and P < 0.05,
respectively), while decreasing %8C ploidy levels (P < 0.001) (Fig.

S6 B–D). Collectively this resulted in a reduction to 67–71% of the
WT EI (P < 0.001) (Fig. 5D). We further observed a decrease (P <
0.001) in cell number (Fig. S5D), which is again more likely the
result of less mitotic than endocycle activity upon silencing of
CYCD5;1. Cell sizes in the amiRNA lines were comparable (P =
0.231) to those of the WT (Fig. S5C).

CYCD5;1 Controls Endoreduplication Kinetics. To test whether
CYCD5;1 controls the kinetics of endoreduplication over time,
we measured DNA ploidy levels of the first leaf pair following a
detailed development course in Col-0, Kas-2, and a transgenic
amiRNA-CYCD5;1 line, and performed an analysis of parallelism
by fitting a simple linear regression with the three genotypes as
groups. The endoreduplication levels were significantly (P < 0.001)
slowed down in the amiRNA-CYCD5;1 line compared with Col-
0 and Kas-2, whereas the DNA content increased significantly (P <
0.004) faster in Kas-2 compared with Col-0 (Fig. 3C). These data
suggested a role for CYCD5;1 as a rate-determining factor of
endoreduplication during the endoreduplication process. These
observations were further substantiated by promoter β-glucuroni-
dase (GUS) analysis. At the 1.02 developmental stage, CYCB1;1
promoter activity, marking mitotic activity, was exclusively detected
at the basal part of the first leaf pair (Fig. S7), corresponding with
the observation that at the proliferation-to-expansion transition of
the leaf, cell division ceases along a longitudinal gradient from the
leaf tip to the base (48, 49). In contrast,CYCD5;1 promoter activity
could be observed throughout the complete leaf blade, marking
both dividing and endoreduplicating cells (Fig. S7).

Discussion
Nearly 30 genes and functional polymorphisms underlying natural
variation in plant development and physiology have been identified
inArabidopsis, of which only a few had not been found previously in
mutant screens (50). The genes identified aremainly involved in the
timing of germination and flowering, plant growth andmorphology,
primary metabolism, and mineral accumulation. Although the cell
cycle machinery displays a variety in natural allelic variation with
signatures of natural selection (51), so far, natural alleles of cell
cycle genes underlying variation in cell cycle-related processes, such
as cell differentiation, cell proliferation, mitotic arrest under stress,
and endoreduplication, have not been identified yet. In this study,
we describe two QTL with a moderate effect on endoreduplication
in A. thaliana, one of which could be identified as CYCD5;1 using
candidate gene association mapping. The failure to identify the
causal gene underlying the QTL ENDO-1 might have been com-
promised by an incomplete list of candidate genes. Beside more
extensive linkage mapping and/or GWA mapping, identifying the
QTG underlying the QTL ENDO-1 could also profit from recently
published lists of novel genes suggested to be (indirectly) involved
in the mitosis, obtained by, e.g., protein interaction data generated
by tandem affinity technology (52).
Nucleotide polymorphisms underlying QTL shed a light on the

nature of mutations that generate natural variation. A large
proportion of natural alleles carry loss-of-function mutations,
which are often produced by indel or structural nonsense
mutations (53). A second type of common allele is a change-of-
function allele produced by a missense or splice-site mutation,
altering protein structure and function, or by regulatory muta-
tions affecting spatiotemporal expression. Lack of CYCD5;1
coding variants between Col-0 and Kas-2, and the higher
CYCD5;1 expression in the accessions carrying the Kas-2 allele,
clearly suggest a change-of-function allele carrying regulatory
mutations. The 8-bp insertion in the 3′-UTR genomic region of
the CYCD5;1 could be easily hypothesized to either have a reg-
ulatory effect on CYCD5;1 expression or to be in very strong LD
with a nearby regulatory polymorphism.
So far, CDKA;1 was pinpointed as being essential for endor-

eduplication in Arabidopsis (15, 16). The observed decrease in cell

Col-0 haplotype Kas-2 haplotype

Fig. 4. CYCD5;1 expression variation per CYCD5;1 haplotype group. Means ±
SE (n = 6) for CYCD5;1 expression measured in first leaf pair sampled at de-
velopmental stage 1.02 of natural accessions carrying either the Col-0 haplo-
type (C24, Col-0, Cvi, Ws) or the Kas-2 haplotype [Bor-1, Kas-2, Kondara,
Omo2-1, Shahdara (Sha), and Sorbo] at the CYCD5;1 locus.
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number and EI in the amiRNA-CYCD5;1 lines suggests CYCD5;1
to be a rate-determining factor forDNA replication. This previously
undescribed role for CYCD5;1 is further supported by the associ-
ation between CYCD5;1 transcript level and the DNA ploidy level
across different accessions. In addition, CYCD5;1 and CDKA;1
were found to interact in vivo (51), suggesting that the CYCD5;1/
CDKA;1 complex determines the pace ofDNA replication through
the phosphorylation of yet-to-be-identified substrates.
Here, we identifiedCYCD5;1 as a QTG that controls endoploidy

in nature by modulating the progression of successive endocycles
during leaf development. The partial confounding of the pop-
ulation structure with the genetic variation for CYCD5;1 suggests
an adaptivemechanism to an environmental gradient that results in
differential endopolyploidy and organ growth over a broad geo-
graphic range. With only eight accessions possessing the CYCD5;1
allele effecting increased endoreduplication, the identification of
an obvious adaptive response to an environmental gradient was not
evident. Therefore, there is every reason to believe that GWA
studies for endoreduplication involving larger samples will be more
fruitful in identifying a potential selective environmental gradient
for variation in endoreduplication. Uncovering the QTGs and, ul-
timately, the nucleotide polymorphisms that underlie adaptation to
environmental gradients will lead to a better understanding of the
mutation types and gene functions that constitute the bulk of nat-
ural phenotypic variation.

Materials and Methods
A. thaliana genotypes, growth conditions, and experimental design; measure-
ment of DNA ploidy levels and EI calculation; cell imaging and cell size meas-
urements; sequencing data, SP detection and tag SP selection; statistical and
genetic analysis of data; and map construction and QTL mapping are described
in SI Materials and Methods.

Linkage and QTL Mapping. The genotypes for the 82 RILs at each of the 119
markers can be found at http://naturalvariation.org/KasCol. Genetic maps for

each linkage group were constructed using JoinMap 4.0 (54). A multiple QTL
mapping (MQM) approach was followed to identify QTL. First, unconditioned
QTL mapping was conducted using the MQM scan of R/QTL (55) to identify
putative QTL. Next, forward stepwise cofactor selection was performed to
select a marker as cofactor at each suggestive (LOD > 2; P < 0.10; 1,000 per-
mutations) QTL region identified. Third, a MQMmodel including the selected
cofactors was fitted to the data to optimize LOD scores and minimize QTL
intervals. Mapping was conducted with an interval size of 5 cM.

Association Mapping. We applied a two-stage association analysis (56). First,
endoreduplication datawere analyzed on the basis of the linearmodel yijk = μ +
Gi + Rk + GRik + eijk, where yijk is the phenotypic observation of the jth sample of
the ith accession of the kth replicate; Gi, Rk, and GRik represent the fixed ge-
notype, replicate, and genotype × replicate effect, respectively; and eijk repre-
sent the error effect. Second, the obtained adjusted entrymeanswere analyzed
by a semiparametric linear mixed model (42, 43). Given Gis as the genotype of
phenotype i at tag SP s (s = 1, . . . , S) coded as the number of copies of theminor
allele, andGi = (Gi1, . . .,GiS). The semiparametric model is subsequently given by
(random terms underlined) yi = μ + h(Gi) + genotypei + ei, where μ is the in-
tercept, genotypei is the random factor to account for population structure, ei
the randomerror term, and h(Gi) is the joint effect of all S tag SP genotypes, i.e.,
the haplotype. All random effects are assumed to be zero-mean normally dis-
tributed. This model accounts for population structure by including the ge-
nome-wide estimates of genetic similarities to correct for genetic relatedness.
The genetic similarities were calculated as the proportion of shared haplotypes
for each pair of individuals at 5,000 SNPs (1,000 SNPs per chromosome) ran-
domly selected from the 250,000 SNP data set (29).

We used G-estimation (57), a propensity score-based estimation technique
from the field of causal inference (58), to detect association between an
individual tag SP and the trait while considering all possible interactions
among all tag SP genotypes. The semiparametric linear mixed model and the
generalized linear mixed model used in the G-estimation procedure were
fitted by a restricted maximum likelihood approach as implemented in SAS
(59). Further information about the semiparametric linear mixed model and
the G-estimation procedure can be found in SI Materials and Methods.
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in first leaf pair sampled at developmental stage 1.06.
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