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Humans consistently make suboptimal decisions involving random
events, yet the underlying neural mechanisms remain elusive.
Using functional MRI and a matching pennies game that captured
subjects’ increasing tendency to predict the break of a streak as it
continued [i.e., the “gambler’s fallacy” (GF)], we found that a
strong blood oxygen level-dependent response in the left lateral
prefrontal cortex (LPFC) to the current outcome preceded the use
of the GF strategy 10 s later. Furthermore, anodal transcranial di-
rect current stimulation over the left LPFC, which enhances neuro-
nal firing rates and cerebral excitability, increased the use of the
GF strategy, and made the decisions more “sticky.” These results
reveal a causal role of the LPFC in implementing suboptimal de-
cision strategy guided by false world models, especially when such
strategy requires great resources for cognitive control.
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The ability to perceive patterns and to use them to guide
decisions is an important aspect of human cognition. During

the long history of evolution, the human brain has been well
adapted to the statistical regularities in the environment (1, 2).
Nevertheless, humans have been consistently shown to be bad at
making decisions involving “independently and identically dis-
tributed” random events generated by the Bernoulli process,
exhibiting suboptimal behaviors such as probability matching and
the “gambler’s fallacy” (GF) (3–5). In particular, the GF is an
increasing tendency to predict the break of a streak generated by
a random process (e.g., flipping a fair coin) when the streak gets
longer (6), and has been observed in many laboratory and real-
life situations (6–9).
Behavioral research has suggested that the GF is a cognitive

bias generated by a false perception of the random process (e.g.,
the small number law) (6, 10), which is probably formed through
years of evolution in response to the pattern-rich world (1, 2).
Consistently, the subjective beliefs about the specific generating
mechanisms (i.e., the world model) could significantly affect
participants’ predictions (6–9). Computational models show that
a rational mind guided by a false “world model” (i.e., outcome
dependency) could well generate this type of suboptimal deci-
sions, which can be changed by alternations of the world model
(11). Nevertheless, the neural mechanisms of the GF have not
been clearly addressed.
Several lines of research have suggested the involvement of

the prefrontal cortex (PFC) in several decision processes that
could contribute to the GF strategy. First, the PFC is good at
detecting and constructing patterns, especially out of random-
ness (12). Second, the PFC plays an important role in decision
making by encoding a particular state of the environment and the
desirability of the outcome expected from such a state (13, 14).
During the pennies-matching gamble, PFC neurons have been
shown to encode multiple types of information related to de-
cision making (including animals’ past decisions, payoffs, and
their conjunction), suggesting its role in updating the animal’s
decision-making strategy as well as determining the animal’s
choice in a given trial (15, 16). Consistently, functional imaging

studies also showed that the PFC is involved in probability
matching behavior (17). Anodal transcranial direct current
stimulation (tDCS) over the left PFC has led to faster probability
matching strategies and slower maximizing strategies (18). Fi-
nally, a recent study shows that the GF-like decision (e.g., more
risk-taking behavior after losses than after wins) was correlated
with the activation of the left PFC (19). Nevertheless, the exact
role of the PFC (e.g., working memory, novelty detection, or
decision-making) in these tasks is not clear (20), and a causal
relationship between activities in the PFC and the use of the GF
strategy is yet to be established. We addressed these questions by
using a combination of functional MRI (fMRI) and tDCS
technologies. In particular, we tested whether activities in the
PFC can predict the use of the GF strategy, and whether tDCS
over the PFC can alter the use of this strategy.

Results
Behavioral Results. We used a pennies-matching gamble imple-
mented in a card-guessing task (Fig. 1A). Subjects (P2) were
asked to predict the computer’s (C1) choice of a black or red
card. The computer’s choices followed a predetermined, ca-
nonical random sequence generated by a Bernoulli process
characterized by (i) equal numbers of black and red cards, (ii)
switch of card choice on half the trials (Fig. S1), and (iii) streak
length in an exponential distribution (Fig. 1C). The procedure
guarantees that at any streak length, the probability that a streak
will continue or break is 50%. The optimal strategy (i.e., Nash
equilibrium) is to predict the computer’s choice randomly.
Nevertheless, previous studies showed that neither monkeys (15,
16) nor human subjects (21) played according to this strategy,
and were thus beaten by a computer opponent that was able to
detect the patterns in their choices.
A subject using the GF strategy would predict that the com-

puter’s choice is more likely to switch in the next trial when the
streak gets longer. Thus, the GF is defined as a strategy to de-
viate from the computer’s last choice, which can be used under
both short and long streaks. This is in contrast to the win–stay,
lose–shift (WSLS) strategy in stochastic decision-making, which
refers to the strategy to follow the computer’s last choice (15,
16). Although this definition of WSLS is different from its tra-
ditional definition, the two definitions are essentially equivalent.
That is, with this strategy, if the player’s choice matches the
computer’s choice in this trial (i.e., win), he or she will stick to
this (also the computer’s) choice in the next trial (i.e., stay);
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otherwise (i.e., loss), he or she will switch (i.e., shift) to the other
choice, which is the computer’s current choice.
Consistent with previous observations (6–9), subjects’ use of

the GF strategy increased with streak length [F(5,85) = 15.46,
P < 0.001; Fig. 1B]. They also exhibited probability matching be-
havior, choosing both cards with equal probability [t(17) = 0.18,
P = 0.86; Fig. S1A]. However, they switched significantly less
often than the computer [44.8% vs. 50%, t(17) = −2.74, P =
0.01; Fig. S1B]. In other words, their choices contained longer
streaks than that generated by the canonical random process
used by the computer (Fig. 1C), although they predicted that
a long streak was more likely to break in a random sequence.
Interestingly, when subjects were asked to write down a random
sequence, they were less likely to generate a long streak (1, 5).
For a predetermined sequence with a given length, a long

streak of a particular card would increase its local cumulative
probability, which should be eventually reduced in a long run. As
a result, it would be rational to track the cumulative probability
and use that to guide decisions. It is thus important to separate
the two strategies [the one relying on the streak length, (i.e., the
GF, and the one relying on the cumulative probability)] because
they both lead to the same decision. In our study, we carefully
selected sequences in which the streak length was not correlated
with the cumulative probability (r = 0.12, P = 0.18). The use of
the GF strategy would be obvious if subjects increasingly kept
away from the computer’s most recent choice with longer streaks
even after controlling for the effect of cumulative probability. To
examine this issue, a lagged logistic regression analysis was con-
ducted by using subjects’ next strategy [keeping away from (value
1) vs. following (value 0) the computer’s current choice] as the
dependent measure, and streak length (i.e., 1–6), current out-
come [win (i.e., 1) vs. loss (i.e., −1)], their interaction, and the
cumulative probability of the current card as independent
measures. This analysis still revealed significant effect of streak
length (β = 0.18, t = 4.69, P < 0.001), suggesting that subjects
used the GF strategy more often as the streak gets longer, al-
though cumulative probability also had a significant impact on
subjects’ decisions (β = 2.64, t = 5.42, P < 0.001). However, we
found no effect of current outcome (β= 0.11, t= 1.34, P= 0.18).

Using this model on each individual subject, we could on average
correctly predict 62.4% of subjects’ choices (t= 9.00, P < 0.0001).
Subjects’ response times were not affected by the outcome

from the previous trial [win vs. loss: t(17) = 0.84, P = 0.41],
subjects’ current choices [switch vs. stay: t(17) = 1.34, P = 0.20],
subjects’ current strategy [GF vs. WSLS: t(17) = 0.28, P = 0.78],
or streak length [F(5,85) = 0.9, P = 0.48]. It should be noted
switches of card choices were decoupled from switches of motor
responses because the positions of the red and black cards were
randomly switched from trial to trial.

fMRI Results: Left PFC Activity Preceded Use of GF Strategy.We used
fMRI to examine the neural activities that could predict the use
of the GF strategy. To this end, we focused on the neural
responses in the feedback stage and examined whether the
activations could predict subjects’ next choice (switch vs. stay)
and/or their strategy in the next choice (GF vs. WSLS), and how
it was modulated by streak length, as suggested by the behav-
ioral data. Trials were categorized according to streak length
(short vs. long), outcome (win vs. loss), and subjects’ next choice
(stay vs. switch), and the cumulative probability of the current
card was added as a covariate of no interest. We found no sig-
nificant activation at the whole brain level that was predictive of
subjects’ next choice (switch vs. stay) approximately 10 s later. In
contrast, the blood oxygen level-dependent responses in several
regions could predict subjects’ strategy, which was modulated by
streak length. In particular, in the long streak condition in which
the GF strategy was dominant, stronger activation in the left
lateral PFC [LPFC; x/y/z values in the Montreal Neurological
Institute (MNI) coordinate system of −36, 26, and 18; Z = 3.76]
preceded the use of the GF strategy in the next trial (Fig. 2A).
Other regions that showed the same response profile included
the left middle/inferior temporal gyrus, right thalamus, and
cerebellum (Table S1). The left LPFC region was not involved in
the GF strategy under short streaks, but showed a trend toward
WSLS strategy [F(1,17) = 3.65, P = 0.07], and there was a sig-
nificant three-way interaction [F(1,17) = 10.43, P = 0.005].
Whole-brain analysis of three-way interaction also revealed an
overlapping cluster in this region (MNI coordinates of −34, 24,
and 22; Z = 4.08; Fig. S2), providing strong evidence that the

Fig. 1. Experimental paradigm and behavioral results in the fMRI study.
Subjects were asked to guess the computer’s choice of black or red card. Not
shown here, the computer’s most recent five choices were shown on the top
of the computer screen to reduce working memory load. (B) Behavioral
results: bar graph shows the percentage of using the GF strategy in the next
trial as a function of the length of streak computer made. The GF was de-
fined as the strategy to not follow the computer’s most recent choice, which
increased monotonically with streak length. (C) The number of short and
long streaks subjects made in their choice. The log of occurrence against
streak length was fitted by a linear function.

Fig. 2. Activity of LPFC predicted the GF strategy under long streaks. A
stronger activation to feedback in the LPFC preceded a GF strategy in the
next trial. The results (i.e., GF > WSLS) are overlaid on the (A) sagittal and
axial slices of the group mean structural image. All activations were
thresholded by using cluster detection statistics, with a height threshold of
z > 2.3 and a cluster probability of P < 0.05, corrected for whole-brain mul-
tiple comparisons. (B) Plots of percentage signal change in left LPFC shows
that it was specifically involved in the GF under a long streak, and was not
sensitive to reward. Error bars denote within-subject error.
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LFPC was specifically involved in the GF strategy under long
streaks. The left LPFC was not sensitive to gains or losses [F
(1,17) = 0.05, P = 0.82; Fig. 2B].
In the short streak condition, stronger activations in the

frontal pole (FP; MNI coordinates of 12, 72, and 6; Z = 3.35)
and posterior cingulate cortex (PCC; MNI coordinates of 0, −30,
and 36; Z = 3.92) preceded the use of the WSLS strategy in the
next trial (Fig. 3A). Further analysis indicated that this result was
primarily driven by the observation that a strong response to the
current loss was associated with switching to an alternative
choice in the next trial [FP, t(17) = 2.62, P= 0.018; PCC, t(17) =
1.99, P = 0.06], but no difference was found under the win
condition (P > 0.16; Fig. 3 B and C).
In addition, a wide network of cortical areas showed stronger

activations to gains than to losses (Fig. S3). Focusing on the
three regions that has been implicated in reward processing (22,
23), including the ventral medial PFC (VMPFC; MNI coor-
dinates of −4, 48, and −8; Z = 5.40), left (MNI coordinates of
−6, 10, −10; Z = 5.57) and right (MNI coordinates of 8, 8, and
−8; Z= 5.58) ventral striatum, we found that activations in these
regions simply coded the outcome, but not subjects’ next choice
or strategy. In addition, the reward signal in the VMPFC was
reduced under long streaks [streak-by-outcome interaction: [F
(1,17) = 9.84, P = 0.006]).

tDCS Results: Anodal Stimulation of Left LPFC Increased GF. To fur-
ther identify the causal relationship between the left LPFC and
the GF strategy, a tDCS study was conducted on a separate
group of 18 college students. Anodal tDCS has been shown to
increase neuronal firing rates and thus enhance cerebral excit-
ability, whereas effects of cathodal tDCS are less stable (24).
Based on the fMRI results, we predicted that anodal tDCS over
the left LPFC, compared with the control site [i.e., visual cortex
(VC); Fig. 4A], would enhance the use of the GF strategy, in
particular under long streaks.
Our data supported this hypothesis. Consistent with the fMRI

study, the use of the GF strategy increased with streak length [F
(5,85) = 18.32, P < 0.0001; Fig. 4B]. More importantly, we found
a significant streak length–by–tDCS interaction [F(1,17) = 8.67,

P= 0.009; Fig. 4C]. Additional planned post-hoc t tests indicated
that LPFC stimulation significantly increased the GF strategy
under long streaks [t(17) = 4.03, P = 0.008], but had no effect
under short streaks (P = 0.74). The tDCS effect was most robust
under streak 4, although the size of the effect was not statistically
different from those under streaks 5 and 6 [F(2,34) = 0.38, P =
0.68]. LPFC stimulation also increased the stickiness of the
choices (i.e., subjects committed more long streaks but fewer
short streaks in their choices) as indicated by the marginally
significant streak by site interaction [F(1,17) =3.74, P = 0.07;
Fig. 4D]. Under both conditions, subjects switched less than 50%
(43% and 46%; P = 0.007 and P = 0.04), and there was a slight
trend that subjects switched less often after LPFC stimulation
than after VC stimulation [t(17) = 1.51, P = 0.15].
A similar lagged logistic regression analysis was used to con-

trol the effect of cumulative probability, with the stimulation site
[LPFC (value of 1) vs. VC (value of −1)] and its interaction with
streak length as additional variables. Consistent with the be-
havioral data in the fMRI study, this analysis revealed significant
effects of streak length (β = 0.034, t = 5.51, P < 0.001), cumu-
lative probability (β = 0.147, t = 2.03, P = 0.04), but no effect of
current outcome (β = 0.005, t = 0.37, P = 0.72). More impor-
tantly, we found a significant effect of stimulation site–by–streak
length interaction (β = 0.008, t = 2.42, P = 0.016), indicating
that LPFC stimulation increased the GF under long streaks, even
after controlling the effect of cumulative probability. Neverthe-
less, tDCS did not change subjects’ preference for black or red
cards [t(17) = 0.61, P = 0.55].
Previous studies have shown that training significantly reduced

the GF (18, 25), probably by updating the world model. To re-
duce practice effects, the two sessions were administered at least
7 d apart. As a result, we only found a small trend of practice
effect across the two test sessions [F(1,17) = 2.38, P = 0.14; Fig.
S4]. To exclude any possible stimulation site–by–practice in-
teraction, we performed an additional between-subject t test us-
ing the data from the first session, in which half the subjects were
under LPFC stimulation and the other half were under VC

Fig. 3. FP and PCC encoded the value of alternative options under short
streaks. The results (i.e., WSLS > GF) are overlaid on the (A) coronal, sagittal,
and axial slices of the group mean structural image. All activations were
thresholded by using cluster detection statistics, with a height threshold of
z > 2.3 and a cluster probability of P < 0.05, corrected for whole-brain
multiple comparisons. B and C show the percentage signal change for the
PF and PCC ROIs, respectively, which suggest that this result was primarily
driven by a stronger response to loss when subjects were to switch to al-
ternative choice in the next trial. Error bars denote within-subject error.

Fig. 4. Anodal tDCS over the LPFC, compared with the VC, increased the
use of the GF strategy. (A) Schematic representation of the locations of the
tDCS. (B) Percentage of using the GF strategy as a function of tDCS site and
streak length. (C) The same result is plotted again by dividing the streaks
into short streaks (≤3) and long streaks (≥4), revealing a clear streak length–
by–stimulation site interaction. (D) The number of short and long streaks
subjects made in their choices as a function of tDCS. The legend to Fig. 1
provides further details. Error bars represent within-subject error.
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stimulation. With only nine subjects in each group, we still found
a significant tDCS effect [F(1,32) = 5.1, P = 0.03], and a mar-
ginally significant stimulation–by–streak length interaction [F
(1,32) = 2.29, P = 0.14]. A further t test revealed a strong tDCS
effect under long streaks [t(16) = 2.33, P = 0.03], but no effect
under short streaks [t(16) = 0.64, P = 0.53; Fig. S5].

Discussion
The role of the LPFC in suboptimal decision-making involving
random events was investigated by a combination of fMRI and
tDCS techniques. We found that subjects showed increased
tendency to use the GF strategy when the streak continued,
which was predicted by activations of the left LPFC approxi-
mately 10 s before the decision was made. Anodal stimulation
using tDCS over the left LPFC, which has been shown to in-
crease cerebral excitability (18, 24), increased the use of the GF
strategy. These results established a causal relationship between
activities of the left LPFC and the implementation of suboptimal
decision strategies such as the GF.
The LPFC plays several important roles in decision-making

that may contribute to decision biases involving random events,
including short-term memory, pattern detection and construction
(20), and integration of contextual information to guide deci-
sions (13). In addition to these critical functions, our results
suggest that the LPFC plays a unique role in implementing
decisions guided by the world model, especially when such
implementation requires conflict resolution. In contrast to the
WSLS strategy that is likely guided by a model-free, reinforce-
ment learning mechanism, the GF strategy represents a case in
which subjects showed a Win-Shift, Loss-Stay pattern. As shown
by many computational and behavioral studies, this counterin-
tuitive behavior might be guided by a false world model that
posits dependency in outcomes that are in fact random (6–11,
26). To implement this decision thus requires subjects to hold the
prepotent WSLS response and switch to the opposite response.
The strong activation that preceded the GF strategy is thus in
concordance with the role of the LPFC in conflict resolution (27)
and set switches (28, 29). The LPFC is also involved in expressing
the new behavior under the prolonged interference of the old
behavior (30). This is also consistent with recent behavioral data
showing that a longer intertrial interval (6 s vs. 2 s) increased the
use of the GF strategy, contradicting the traditional heuristic
account (31). This result could not be attributed to short-term
memory or pattern detection, because they were matched in our
experiments independent of the strategy (WSLS vs. GF) subjects
used. Moreover, the requirement for short-term memory and
pattern detection was greatly minimized in this experiment by
presenting the computer’s most recent five choices on the screen.
A salient pattern of FP and PCC responses is that a strong

response to the current loss was associated with switching to the
other card in the next trial. Other than that, they overall showed
very little sensitivity to the current outcome. The characteristics
of the FP response are in contrast to the activations in the
VMPFC that primarily track the current reward value (22, 23).
This is quite consistent with human functional imaging studies
showing that, whereas the VMPFC tracks the current reward, the
FP and PCC track the reward probability of the unchosen option
(i.e., counterfactual prediction error) (32) and the potential
value of switching to alternative actions (33). This observation is
also in agreement with the animal literature showing that the FP
(34, 35) and PCC (36, 37) are involved in monitoring and eval-
uating self-generated decisions and deciding on when to switch
to an alternative option for a better outcome. Taken together,
our results suggest a triple dissociation of PFC in decision-
making: the LPFC in implementing the decision guided by
a world model, the FP in computing the value of alternative
options especially when a loss is experienced, and the VMPFC in
tracking the current reward value. The triple dissociation pro-

vides additional evidence to suggest that the PFC contains
multiple mechanisms for decision making (38).
Cumulative evidence has shown that human decisions are

guided by multiple mechanisms, including, but not limited to,
a model-free, reinforcement learning mechanism that guides
exploitation and a “model-based” mechanism that guides ex-
ploration (39, 40). It has been argued that this model-based
decision-making mechanism might well contribute to the ob-
served decision biases involving random events, such as proba-
bility matching (11). At the neural level, distinct neural systems
are involved in the two mechanisms (40, 41), and recent evi-
dence suggests a more integrated computational architecture of
the two systems (42). Model-based decision plays an important
role under complex situations in which contingency is not readily
apparent to the subjects (e.g., tree search) (41). Consistently,
our result suggests that, for decision under maximum un-
certainty in which there is no consistent stimulus–reward con-
tingency (reward probability for either option is 50%), the
decisions are more guided by the part of PFC that is involved in
model-based decision, such as the LPFC, rather than the model-
free regions, such as the VMPFC and striatum. Strikingly, under
long streaks, the reward signal in the VMPFC was reduced.
Presumably, the diminished reward signal under long streaks
would also facilitate the implementation of the GF strategy. This
is consistent with the observation that patients with damage in
the VMPFC were more likely to engaged in the GF strategy (43,
44). Future studies are required to understand the interaction of
the two decision mechanisms.
The fMRI-guided tDCS stimulation results provide support

for the hypothesis that anodal stimulation facilitated the use of
the GF strategy by enhancing the left LPFC function. They also
provide additional evidence that tDCS could noninvasively
modulate participants’ decision strategy (18, 45, 46). It has been
shown that the left LPFC anodal/right LPFC cathodal DC
stimulation reduced risk-taking behaviors (45, 46), and caused
subjects to be faster in using the maximizing strategy in a prob-
abilistic guessing task (18). Partly consistent with these results,
we found that left LPFC anodal stimulation, compared with VC
stimulation, increased the use of the GF strategy, especially
under long streaks in which the use of the GF strategy starts to
increase significantly. Although the effect was not significantly
diminished at streaks 5 and 6, the smaller effect could be a result
of the ceiling effect and measurement errors caused by smaller
number of observations under longer streaks. Presumably, the
tDCS effect could be stronger under other conditions when
subjects are less likely to use the GF strategy, such as under short
intertrial intervals (31). This remains to be examined in future
studies. Still, by combining tDCS and fMRI, future studies can
elucidate how tDCS stimulation affects the dynamic interactions
of multiple decision systems and lead to changes in decision
strategies.
In summary, although the LPFC is essential for goal-directed,

flexible decision-making, our data suggest that this region also
contributes to suboptimal decisions involving random events. In
particular, the LPFC might play an important role in imple-
menting decisions guided by a world model, real or false. The
findings provide a unique perspective on the role of LPFC in
rational and irrational decision-making.

Experimental Procedures
Subjects. Eighteen healthy adults (11 men; mean age, 21.6 y) participated in
the fMRI study, and another 18 subjects (nine men; mean age, 23 y) partici-
pated in the tDCS study. All subjects were free of neurological or psychiatric
history. Informed written consent was obtained from the subjects before the
experiments. The fMRI study was approved by the institutional review board
of the National Key Laboratory of Cognitive Neuroscience and Learning at
Beijing Normal University in China, and the tDCS study was approved by the
local ethical committee at the National Central University in Taiwan.
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Experimental Paradigm. Subjects were asked to guess the computer’s choice
of red or black cards to win money (Fig. 1A). They won one Chinese Yuan or
the equivalent in New Taiwan Dollars (4 dollars) each time they guessed
correctly but otherwise lost one Yuan or 4 New Taiwan Dollars. They were
told explicitly that the computer chose the card randomly. Each trial lasted
13 s: first, two cards (red and black) were presented on the left and right
sides of the screen, respectively. The position of the red or black card varied
randomly from trial to trial to dissociate decision switch from motor switch.
The computer (C1) made the choice after 1 s. The subjects (P2) were then
asked to make a guess within 2 s. One half second after the subjects’ choice,
both the computer and subjects’ choices were revealed, and feedback was
delivered for 1 s. The next trial started approximately 9 s later. To reduce
short-term memory load, the computer’s most recent five choices were
presented on the top of the screen. There were 63 trials in each 13-min run.

fMRI Procedure. Imaging data were acquired on a 3.0 T Siemens MRI scanner
in the MRI Center at Beijing Normal University. A single-shot T2*-weighted
gradient-echo echoplanar imaging sequence was used for functional imag-
ing acquisition with the following parameters: repetition/echo times, 2,000
ms/30 ms; θ, 908, field of view, 200 × 200 mm; matrix, 64 × 64; and slice
thickness, 4 mm. Thirty contiguous axial slices parallel to the anterior/pos-
terior commissure line were obtained to cover the whole cerebrum and
partial cerebellum. Anatomical MRI data were acquired by using a T1-
weighted, 3D, gradient-echo pulse-sequence (MPRAGE). The parameters for
this sequence were as follows: repetition/echo times, 2,530 ms/3.39 ms; θ, 78;
field of view, 256 × 256 mm; matrix, 192 × 256; and slice thickness, 1.33 mm.
One hundred twenty-eight sagittal slices were acquired to provide high-
resolution structural images of the whole brain.

tDCS Procedure. tDCS was delivered with a Magstim Eldith DC stimulator and
a pair of electrodes housed in 4 × 4 cm saline solution-soaked sponge cov-
erings. The center of the stimulation electrode was placed over the left LPFC,
which was localized using the EEG 10–20 system, with the center of the tDCS
electrode placed over the intersection of the F3–T3 line and the F7–C3 line
(Fig. 4). For the control condition, the electrode was placed over the VC. The
accuracy of this localization method was confirmed in six subjects by using
an MRI-guided frameless stereotaxy system (Brainsight; Rogue Research).
The reference electrode was placed over the left cheek of the subject. In the
tDCS conditions the current was applied for 10 min with an intensity of 1.5
mA, or 0.0937 mA/cm2. The total charge in our current experiment was
0.0056 C/cm2. Both are far lower than the safety criterion according to Nit-
sche et al. (47), which suggested 25 mA/cm2 for densities and 216 C/cm2 for
total charge. The LPFC and VC conditions were fully counterbalanced across
subjects. The interval between the two conditions was least at 7 d to reduce
the learning effect.

Lagged Logistic Regression Analysis of Behavioral Data. We did a lagged lo-
gistic regression analysis to examine the effect of previous outcome (i.e., gain
vs. loss), streak length (i.e., 1–6), their interaction, and the cumulative
probability of the current card on subjects’ next strategy (i.e., GF vs. WSLS).
In the overall logistic regression model, participant-specific dummies (e.g.,
dummy 1, coded as 1 for participant 1, 0 otherwise; dummy 2, coded as 1 for
participant 2, 0 otherwise, and so on) were added. We also used this model
to predict each individual’s choice. The accuracy of the model was de-
termined by using the following equation:

y ¼ 1
1þ e− fðXÞ [1]

where f(x) represents the regression function and y is the model prediction.

A similar lagged regression was conducted on the tDCS data to control
the effect of cumulative probability. tDCS site [LPFC (value of 1) vs. VC
(value of −1)] and its interaction with streak length were included as
additional regressors.

fMRI Data Analysis. Image preprocessing and statistical analysis were carried
out by using the FMRI Expert Analysis Tool (version 5.98; part of the FSL
package; FMRIB software library, version 4.1; www.fmrib.ox.ac.uk/fsl). The
first four volumes before the task were automatically discarded by the
scanner to allow for T1 equilibrium. The remaining images were then real-
igned to correct for head movements (48). Translational movement param-
eters never exceeded one voxel in any direction for any subject or session.
Data were spatially smoothed by using a 5-mm full width at half maximum
Gaussian kernel, and filtered in the temporal domain by using a nonlinear
high-pass filter with a 100-s cutoff. All images were denoised by using ME-
LODIC independent-components analysis within FSL (49). EPI images were
registered to the MPRAGE structural image, and into standard (i.e., MNI)
space, by using affine transformations (48). Registration from MPRAGE
structural image to standard space was further refined by using FNIRT non-
linear registration (50).

The data were modeled at the first level by using a general linear model
within FSL’s FILM module. The analysis focused on the feedback response
and the goal was to use that activation to predict subjects’ next choice in
10 s. A full factorial design was used, which included the following three
factors: streak length (short vs. long), current outcome (win vs. loss), and
subjects’ next choice (switch vs. stay). The event onsets were convolved with
the canonical hemodynamic response function (double-γ) to generate the
regressors used in the GLM. Temporal derivatives were included as cova-
riates of no interest to improve statistical sensitivity.

A higher-level analysis created cross-run contrasts for each subject for
a set of contrast images by using a fixed-effect model. These were then
input into a random-effect model for group analysis by using ordinary least
squares simple mixed-effect with automatic outlier detection (51). Group
images were thresholded by using cluster detection statistics, with
a height threshold z of more than 2.3 and a cluster probability of P < 0.05,
corrected for whole-brain multiple comparisons by using Gaussian
random-field theory.

Region-of-Interest Analyses. To explore the complex interactions in these
regions identified by whole brain analysis, regions of interest (ROIs) were
created by drawing a 3-mm sphere around the local maxima of the activa-
tion. For each subject, parameter estimates (i.e., β values) of each event type
from the fitted model were extracted and averaged across all voxels in each
ROI. Percent signal changes were calculated by multiplying [β/mean] by
ppheight by 100%, where ppheight is the peak height of the hemodynamic
response versus the baseline level of activity (which is determined by the
event length and the convolved hemodynamic response function), and the
mean is the average blood oxygen level-dependent signal of that ROI over
time. Full details regarding percentage signal change calculation can be
found in the online guideline by Jeanette Mumford (http://mumford.bol.
ucla.edu/perchange_guide.pdf).
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