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Abstract
Until recently, the study of microbial diversity has mainly been limited to descriptive approaches,
rather than predictive model-based analyses. The development of advanced analytical tools and
decreasing cost of high-throughput multi-omics technologies has made the later approach more
feasible. However, consensus is lacking as to which spatial and temporal scales best facilitate
understanding of the role of microbial diversity in determining both public and environmental
health. Here, we review the potential for combining these new technologies with both traditional
and nascent spatio-temporal analysis methods. The fusion of proper spatio-temporal sampling,
combined with modern multi-omics and computational tools, will provide insight into the
tracking, development and manipulation of microbial communities.

Introduction
Microorganisms are ultimately responsible for the health of all other organisms.
Communities of microbes decompose materials, recycle nutrients, break down pollutants,
and aid in the digestion of food in “higher” animals -- they are the “ubiquitous janitors of the
Earth” (1). Microbes can also cause disease, destroy our food sources, and degrade our
structures (as reviewed in (1)). Early studies characterized a limited snapshot of microbial
diversity. However, to predict or manipulate microbially mediated processes, we must
understand spatial and temporal patterns of diversity at multiple levels, Figure 1.

Because of the astounding diversity of microbial communities(2), the ability to characterize
their fine-scale temporal and spatial variation has only become achievable within the past 5
years. Next-generation “-omics” technologies such as high-throughput amplicon,
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metagenome, and metatranscriptome sequencing (3, 4) allow collection of thousands to
millions of sequences at prices the average researcher can now afford. Recent research using
next-generation technologies has focused on temporal and spatial associations(5-8) of
microbial communities, concentrating on clustering (e.g. microbial communities from
different body habitats cluster separately(9)) or correlations (e.g. soil bacterial diversity is
correlated with pH(10)) However, unifying theories linking overall spatial and temporal
variation in microbial community structure to system functional processes have remained
elusive. Under similar environmental conditions, microbial communities can have strikingly
different composition and function(11, 12); conversely, different community configurations
can function similarly(13, 14).

Here, we discuss how community statistics from ecology can increase understanding of
microbial community structure-function relationships. This review covers recent advances in
molecular, culture-independent studies, and highlights advances in statistical methods for
detecting and explaining spatially and/or temporally explicit patterns in microbial
community composition. We conclude that combined spatial and temporal studies that
exploit inexpensive DNA sequencing, together with improved bioinformatics tools and
large-scale automated sampling techniques, will aid in understanding and predicting both the
temporal and spatial patterning of microbial communities, and the processes that underlie
these patterns.

Foundations of Modern Microbial Community Ecology
Advances in sequencing technology and analytic tools to quantify differences between
communities have enabled the recent boom in microbial diversity studies. Limitations in
sequencing cost and coverage have largely been overcome with next generation sequencing
technologies that directly read single-nucleotide additions to DNA strands (454 and
Illumina)., Analytic obstacles due to issues of species identification were conceptually
harder to overcome. For example, the traditional definition of “species-level” Operational
Taxonomic Units (OTUs) at 97%, although useful for an overview of diversity, is
problematic because it assumes that rates of evolution and inherent genetic variation are
equivalent across species, and excludes phylogenetic information contained in sequence
data(15-17). Phylogenetic community distance metrics such as UniFrac(18) reduce the
impact of arbitrary OTU thresholds and often provide better community clustering than
taxon-based methods, because even an imperfect phylogenetic tree gives a far better picture
of relationships among microbes than does the “phylogeny” where all taxa are equally
related implicitly assumed by taxon-based approaches(19).

Spatial studies of microbial diversity
Understanding how microbial communities vary at different spatial scales is important
because diversity hotspots and deserts can be identified, correlations with environmental
factors can be detected, and hypotheses about dispersal limitation or stochasticity of
community assembly can be tested. These issues of spatial scaling can be critical in
downstream applications; for example, it is essential to know the scale at which microbial
diversity varies when designing a bioprospecting sampling campaign to maximize the
diversity of organisms or genes surveyed(20-22).

Central to the investigation of microbial spatial patterns is one of the most-contested
hypothesis in microbial ecology: “everything is everywhere, but the environment selects”
(23); i.e. that local environmental conditions, or ‘filters’, select for community assemblages
that can best exploit or survive. Although several important environmental filters have been
well-studied (e.g. (18, 24-27), historical filters (i.e. traces of past events or community
states) are also important in structuring communities (28, 29). Thus, a primary goal of
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spatial analysis techniques should be to measure the separate contribution of history (e.g.
community assembly and patterns of microbial dormancy) and environment as a function of
the spatial configuration of the dataset. Ultimately, spatial pattern analysis improves our
ability to predict microbial diversity hotspots, and where microbes and their associated
functions are abundant in a given habitat.

Indeed, there are some strongly predictive patterns in spatial microbial diversity. For
example, taxa-area analysis (regression of taxa observed vs. sampling area) has been
adopted from island biogeography(30). As with macroorganisms, larger areas harbor more
microbial lineages, and the taxa-area relationship has been referred to as one of the only
‘laws’ of ecology(31). In contrast, other spatial patterning of microbial alpha diversity
deviates from patterns observed for macroorganisms. For example, the well-established
pattern in macroorganisms that diversity decreases with latitude seems to apply to marine
(32)but not soil microbes (10), and significant relationships between elevation and microbial
diversity have not been observed (33).

As noted above, phylogenetic beta diversity has been widely applied: it has been shown to
vary systematically at scales ranging from between continents(17, 27, 34) to within a single
hand or computer keyboard(35). Whether communities of similar composition cluster
together in space can be detected using variograms, which graphically represent the
relationship between two distance matrices(7, 17); the statistical significance of these
associations can explored with the Mantel test(36). These representations also allow
researchers to fit models that explicitly determine the range of spatial autocorrelation (37)
and produce input for spatially explicit prediction algorithms, such as kriging or spatial-
partial regression(38), which explain the overall patterns of variation and faithfully
interpolate community structure at sites not directly observed.

Although community-level measurements and associations provide useful tools for
microbial biogeography, studies of individual taxa that are key players in an ecosystem are
also critical: for example, knowing that cyanobacteria are early colonizers because they fix
nitrogen and act as primary producers provides a level of insight that cannot be obtained
purely from patterns of similarity and difference at the whole community level. Recently
employed methods that refine overall spatial patterns in microbial communities include
subdividing analyses by taxon (ranging from species to phylum-level), which can be used as
inputs for niche modeling (7, 39), and using ordination techniques to identify indicator taxa
(these include SAMOVA, DFA, and SIMPER), Table 1. These methods allow the user to
identify an individual clade or consortium, and, when applied to metagenomic data, specific
genes, that affect function (e.g. the ability of gut Bacteroidetes in Japanese people to degrade
polysaccharides found in seaweed, presumably horizontally transferred from marine
Bacteroidetes consumed along with sushi(40)). These newer methods share similar goals
and often-statistical methodologies, but detailed comparisons on the same data have not yet
been performed and there is not yet consensus about their strengths and weaknesses (41).

Temporal studies of microbial diversity
Like spatial studies, temporal studies can identify taxa shared at different times, correlations
with environmental conditions that affect the communities, and the relative contribution of
different processes, including stochastic processes and priority effects, to community
structure (14, 42). However, unlike spatial studies, temporal studies have provided greater
insight into processes. Recent studies in different environments have shown that some
communities exhibit cyclical patterns (26), others exhibit a monotonic trajectory (e.g. the
development of the gut microbial community from the newborn to the adult (43)), and others
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remain relatively stable over time (e.g. the human mouth community (44), or the
hypolimnion of stratified bog lakes(45)).

Temporal studies are now moving beyond observing temporal patterns using ordination or
other visualizations of community associations. A growing toolbox of descriptive, non-
parametric statistics for temporal microbial dynamics exists. These techniques include
correlation networks and analysis of community rate of change over time, and can be used
for exploring temporal patterns, then relating these patterns to specific biotic or abiotic
drivers. For example, temporal associations between commonly occurring OTUs in aquatic
microbial time series have be uncovered using correlation-based networks analyses, such as
local similarity analysis (46-48). Specifically, different ecosystems sharing a regional or
climactic driver were shown to exhibit similar changes in their microbial communities (e.g.
(46, 49)). In addition, aquatic bacterial communities correlate far better with phytoplankton
communities than with physical and chemical properties of the system (50). There are also
non-parametric methods that specifically test for temporal structure such as cycles,
trajectories, and serial objects (e.g. (36, 51)). Finally, measuring rates of change in the whole
microbial community or in specific taxa over time allows comparisons of these rates across
ecosystems or experimental treatments(52).

An extensive legacy of aquatic timeseries observations exists due to routine limnological
and marine sampling efforts, and timeseries are now becoming available in other systems
such as wastewater treatment (e.g. (53, 54)), host-associated systems(44), and air (e.g. (55)).
The accumulation of more of these rich time series datasets for microbial communities
across different ecosystems will likely provide essential the first baseline for the expected
nature and scale of variability in microorganisms. An added benefit will be improved
detection of responses to disturbance events in microbial communities outside of the
expected variation, such as those observed after episodic typhoon events in a sub-tropical
lake (56)or in the human gut after antibiotic treatment(57). Such studies of response to
perturbation are critical for developing an understanding of factors that lead to resilience in
different communities, and for predicting microbial responses to a changing planet.

Combining spatial and temporal studies of microbial communities towards
predictive models

Combining spatial or temporal series can reveal key features of a system. For example
Caporaso et al. (44) combined both spatial and temporal components in a microbial study to
assess the variation of microbial communities of the human microbiome. The addition of
extensive temporal sampling to a previous study(9) led to a novel perspective: although each
spatially explicit location on the human body retains a compositional difference from other
locations, the communities within each location shift over time. That is, each location retains
only a small ‘temporal core’ of species-level phylotypes within a community over time.

Analysis tools developed for spatial studies can sometimes be applied to temporal studies, or
vice versa. For example, in(58), variograms were used to identify the temporal scales at
which E. coli concentrations increased within a watershed. Similarly, wavelet analysis, a
method to find the dominant periodic phenomena in a time series by decomposing those
signals on a local timescale, was used in an in vitro gut microbial community analysis which
revealed the strongest population cycles in Bacteroidetes and Firmicutes(59). Creative
applications of techniques developed for one type of study to others will likely yield
additional benefits in future, as will merging the two types of studies. For example, samples
taken along a spatial gradient that vary due to time, known as chronosequences, e.g.
ecosystem succession (60), glacial recession(61), spoil heap development (62) inherently
have both spatial and temporal components. However, spatial and temporal patterning are
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conflated in such studies; techniques such as niche modeling could potentially assist in
resolving these issues. Similarly, studies that track timeseries at multiple sites or in multiple
subjects will be essential for understanding factors that affect community dynamics as well
as structure. Describing different resolutions of microbial community spatial variability,
from microns to continents, and temporal variability, from hours to decades, will inform
prediction of dynamics and responses to novel events.

Conclusion
Our review has described issues concerning the description of microbial communities and
their relevant impact on the systems in which they reside. We have also described the use of
existing and nascent analytical tools. In the past, studies of spatial and temporal dynamics of
microbial communities have been limited to descriptions, rather than predictive models (7,
22). The advent of high-throughput multi-omics tools and the decreasing cost of automated
sampling equipment enables adoption by the scientific community. Eventually, model-based
approaches will be a key goal of future studies of microbial communities, and will allow us
to test and appropriately apply what we think we have learned.
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Highlights

Microbial community studies with spatial or temporal axes have become more
common due to the democratization of sequencing technologies

Current analysis tools allow us to statistically test our hypothesis but give few
insights into causal relationships or the development of predictive models

There are multiple scales of temporal and spatial dynamics in microbial communities
that have yet to be described in many systems, but will inform prediction.

Future spatial or temporal analysis must use both spatial and temporal components
with model-based algorithms to properly assess and predict microbial community
divergence between health states
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Figure 1. Improving our understanding of the variability of microbial communities
Spatial and temporal studies ranging in scale from that of individual taxa to communities
have allowed us to detect patterns of distribution. However, in order to be able to fully
understand the nature and ranges of variability in microbial systems, research focusing on
improving our ability to predict whole communities across heterogenous space and time is
much needed. Building upon existing studies and tools of analysis will help us move from
simply describing statistical patterns to developing better predictive models. The
accumulation of spatio-temporal studies for microbial communities across different
ecosystems will provide essential information about the expected scales of variability,
allowing for better biological and ecological interpretations of deviations from normal
ranges of variability.
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Table 1
Different types of spatial and temporal analysis, and their applications

This table highlights the deep connections between spatial and temporal studies, and the frequent applicability
of techniques developed for one type of analysis to the other. Further spatial and temporal sampling in projects
such as the Earth Microbiome Project will likely highlight additional deep connections.

Original use
(developed for)

Analysis type Analytical method / tool Information provided when
applied in spatial studies

Information provided when
applied in temporal studies

Spatial studies Correlative Variograms Indication of spatial
autocorrelation

Identification of the appropriate
time scale for sampling

Spatial studies Correlative Taxa-accumulation plots An indication of how many more
taxa are detected by sampling
larger areas (i.e. taxa-area curves)

An indication of how many more
taxa are detected by sampling
additional time points

Spatial studies Predictive Kriging Interpolation of data at locations
missing direct observation (e.g.
continuous chloropleth maps)

Interpolation of data at time points
missing direct observation

Temporal studies Correlative Frequency transformations NA (or not yet determined?) Identification of cyclical or
periodic fluctuations in community
structure/composition over time

Both Correlative Ordination methods Geographic structuring of taxa/
communities based on a metric of
similarity

Temporal structuring of taxa/
communities based on a metric of
similarity

Both Correlative Network analyses Association or co-occurrence
patterns of taxa and/or
communities over space

Association or co-occurrence
patterns of taxa and/or
communities over time

Both Predictive Niche modeling Prediction of expected taxon/
community distributions in space,
indication of important
environmental filters

Forecasting of taxon/community
distributions with changing
conditions over time, assessment
of niche conservation
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