
RESEARCH Open Access

Controlling disease outbreaks in wildlife using
limited culling: modelling classical swine fever
incursions in wild pigs in Australia
Brendan D Cowled1, M Graeme Garner2, Katherine Negus1 and Michael P Ward1*

Abstract

Disease modelling is one approach for providing new insights into wildlife disease epidemiology. This paper
describes a spatio-temporal, stochastic, susceptible- exposed-infected-recovered process model that simulates the
potential spread of classical swine fever through a documented, large and free living wild pig population following
a simulated incursion. The study area (300 000 km2) was in northern Australia. Published data on wild pig ecology
from Australia, and international Classical Swine Fever data was used to parameterise the model. Sensitivity
analyses revealed that herd density (best estimate 1-3 pigs km-2), daily herd movement distances (best estimate
approximately 1 km), probability of infection transmission between herds (best estimate 0.75) and disease related
herd mortality (best estimate 42%) were highly influential on epidemic size but that extraordinary movements of
pigs and the yearly home range size of a pig herd were not. CSF generally established (98% of simulations)
following a single point introduction. CSF spread at approximately 9 km2 per day with low incidence rates (< 2
herds per day) in an epidemic wave along contiguous habitat for several years, before dying out (when the
epidemic arrived at the end of a contiguous sub-population or at a low density wild pig area). The low incidence
rate indicates that surveillance for wildlife disease epidemics caused by short lived infections will be most efficient
when surveillance is based on detection and investigation of clinical events, although this may not always be
practical. Epidemics could be contained and eradicated with culling (aerial shooting) or vaccination when these
were adequately implemented. It was apparent that the spatial structure, ecology and behaviour of wild
populations must be accounted for during disease management in wildlife. An important finding was that it may
only be necessary to cull or vaccinate relatively small proportions of a population to successfully contain and
eradicate some wildlife disease epidemics.

Introduction
Wildlife infectious disease can have enormous ecologi-
cal, biodiversity and societal impacts [1-4]. However,
management responses required for mitigation are fre-
quently limited by poor understanding of wildlife disease
epidemiology.
Disease modelling is one approach for providing new

insights into wildlife disease epidemiology and has
allowed important conceptual advances in wildlife dis-
ease management [5]. Mathematical modelling was an
early method used (and is still widely applied) [6-9].
However, application of this method has often been

simplistic, not incorporating many of the major ecologi-
cal factors that affect disease epidemiology [10]. Further-
more, one of the key concepts in mathematical models -
the existence of a threshold level of host abundance
required for invasion or persistence of infection - origi-
nated in human health and is poorly supported by evi-
dence from wildlife disease studies [11].
With the improvement of information technology,

process models (or simulation models) have been advo-
cated by some as a method of more realistically repre-
senting the complexity of real world animal health
problems [12,13]. Process models can capture great
complexity, thus enhancing our ability to model com-
plex situations. These models have been widely applied
in animal health generally, but relatively less commonly
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in wildlife disease epidemiology, with some exceptions
[14-19].
To take advantage of the great complexity that process

models can incorporate, a good understanding of the
“process” (host-infection interaction) is required. Sus
scrofa, commonly known as wild boar, feral pig, wild
hog and wild pig (herein referred to as wild pig) is an
important international wildlife species found on every
continent except Antarctica [20]. Considerable research
has been conducted internationally on wild pig ecology
[21-25], and this research can be harnessed to construct
detailed process models to study disease epidemiology
in this species. Wild pigs have been involved in the
transmission or maintenance of many agriculturally
important infectious trans-boundary diseases such as
African swine fever [26], pseudorabies [27] and foot-
and-mouth disease [28], as well as the spread of impor-
tant endemic zoonoses such as Brucella suis [29]. Classi-
cal swine fever (CSF) is another important trans-
boundary agricultural disease of domestic and wild pigs
[30]. Outbreaks of CSF in Europe have cost many bil-
lions of dollars to eradicate [31], and cause ongoing
costs in areas where it is endemic. CSF also has a wide
geographic distribution, being found in Asia, Europe,
parts of Africa and central and South America [30], but
not Australia. Wild pigs are frequently important in the
epidemiology of CSF [32], but the issue is complex as
demonstrated by Boklund et al. [33] who investigated
the potential role of wild boar in CSF epidemics in
Denmark.
Some limited epidemiological modelling of CSF in

wild pigs has been conducted. Hone and Yip [34] esti-
mated model parameters with field data and used a
mathematical modelling approach to study CSF in wild
pig populations. They found that CSF will establish in a
small population of wild pigs. Milne et al. [35], using a
process modelling approach found that seasonality is
important in dispersal of CSF during epidemics but
made some significant logical errors in formulating their
model (for example, that wild pigs will be attracted to
water only every 4-8 days in the extremely hot Austra-
lian sub-tropics). Kramer-Schadt et al. [36] conducted a
review and used a conceptual model to putatively iden-
tify the reasons that CSF can persist in some popula-
tions. They found virulence of CSF and the size and
structure of a wild pig population to be important. They
used spatial modelling to show that individual level var-
iation in infection persistence and production of new
susceptible individuals was important for disease persis-
tence [37]. Boklund et al. [33] found a complex epide-
miology for CSF outbreaks where wild boar and
domestic herds co-exist.
The objective of the research reported in this paper

was to enhance knowledge of wildlife disease ecology

and assess some control techniques for eradicating dis-
ease in wildlife. The paper first describes a spatio-tem-
poral, stochastic, susceptible-exposed-infected-
recovered process model that simulates the potential
spread of classical swine fever through a well docu-
mented, large and free living wild pig population in
Australia (which is free of CSF). Results are then used
to explore disease ecology and control of CSF in free
living wild pigs.

Materials and methods
Method summary
This study focused on a large wild pig population in a
remote area of north-west Australia. It simulated the
introduction of a virulent CSF virus into the population
to explore epidemic behaviour, disease ecology and var-
ious epidemic control options. Three simulation models
were developed. Model 1 was a non-spatial within-herd
model in which the unit of interest was individual wild
pigs (this model is summarised in Additional file 1;
results are presented in Table 1). This model was simply
used to estimate herd-based epidemiological parameters
(i.e. convert individual parameters such as individual
infectious period to a herd based parameter). These
herd based parameters were then used in a between-
herd model (Model 2) which was the main focus of the
paper. Model 2 simulated the spread of CSF across a
population of wild pig herds in time and space. In
Model 2, herds ranged from individual boars to a group
of co-mingling wild pigs occupying a territory or home
range. The logic of Model 2 was structured on the
recommendations of Cowled and Garner [38] who sta-
ted that a number of factors should be accounted for
during disease modelling in wild pigs, including distribu-
tion and habitat connectivity, density, movements, social
and group structure and age structure. Model 3 was a
non-spatial herd model designed to replicate model 2,
except that model 3 assumed no spatial relationships
between wild pig herds. Comparison between model 2

Table 1 Epidemiological parameters estimated for the
between-herd model (parameters derived from the
within herd model except arbitrary transmission
probability)

Parameter Lowest Estimate High Distribution

Latent period 5 NA 9 Uniform

Infectious period 15 27 42 Triangular

Immune period 88 NA 475 Uniform

Probability of transmission
between herds

NA 0.75 NA NA

Proportion of herds where all
members killed by CSF
infection

NA 42% NA NA
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and 3 allowed consideration of the importance of spatial
relationships during simulated epidemics. See Additional
file 1 for a method summary of model 3.

Study area, biology and distribution of wild pigs
The between-herd model was structured on a popula-
tion of wild pigs in the Kimberley region of north-west
Australia. The Kimberley region is a large (approxi-
mately 300 000 km2), remote and sparsely populated
pastoral (cattle) region. Pigs were introduced by Eur-
opean settlers during the late 19th century and subse-
quently became wild [39]. Questionnaire surveys were
conducted across the Kimberley region to estimate wild
pig distributions and densities and have been previously
reported [40,41]. Wild pigs are currently found across
approximately 26 000 km2 of the Kimberley region. The
population chosen for disease introduction was located
in the Fitzroy River area (see study area and introduc-
tion site in Figure 1). Other researchers have investi-
gated the biology of wild pigs in the region [42] and the
population structure was typical of other wild pig popu-
lations, for example with groups comprised mostly of
solitary boars or herds containing adult females and
juveniles [42,43]. Average group sizes were generally
small (mostly herds of 12 or less, but up to 30 pigs). In
high density habitat, wild pigs may be present at
approximately 3-8 pigs per km2 (the range in density
depending on whether an edge effect is taken into
account) [42].

Population at risk and habitat contiguity
Within the known wild pig distribution, permanent
water sources (either linear water sources such as riv-
ers or point sources such as dams) were identified and
buffered (by 2 km) within a GIS (Mapinfo® v. 10.5).
These polygons represented the core habitat of wild
pigs in the study area. Thus, a 16 701 km2 area of
“core” habitat was identified in the overall distribution
of wild pigs (of 26 000 km2). This method was chosen
to refine the distribution of wild pigs because the Kim-
berley region is a tropical ecosystem, is very hot
(November mean maximum and minimum daily tem-
perature are 41.0 and 25.6°C respectively [44]), and in
accordance with field observations it is recognised that
wild pigs in these conditions require at least daily
access to water for survival [24]. Saunders and Kay
[45] demonstrated daily home range lengths of
approximately 2 km, and it was therefore assumed that
wild pig home ranges must be located within 2 km of
permanent water for survival (that is, a large wild pig
home range must contain some of this high quality
water habitat). Permanent water was identified using a
spatial dataset from Geoscience Australia [46], with
additional data layers of artificial water sources (stock
water) supplied from the Department of Agriculture
and Food, Western Australia (unpublished data).
The total number of wild pigs within each polygon

was estimated by classifying the polygon as having a
high, medium or low density of wild pigs [40]. Thus

Figure 1 Feral pig distribution in the Kimberley. The red dots represent simulated pig herds within known wild pig distributions. The black
arrow indicates the introduction site for all simulations. The inset displays the location of the Kimberley region in North West Australia.
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the 16 701 km2 area was divided into three polygons
of 7563 km2 (low density), 469 km2 (medium density)
and 8639 km2 (high density). Relative densities were
then quantified using published estimates. Choquenot
et al. [24] reviewed wild pig densities in various habi-
tats in northern Australia. These ranged from 1-20
pigs km-2. Twigg et al. [42] estimated 3 pigs km-2

within a high density region of this study site. Given
our study site was in a semi-arid region it was assumed
that densities would be at the lower end of the range
listed in Choquenot et al. [24]. Thus, estimates used
for population densities were 1, 2 and 3 pigs per km2

in low, medium and high density pig habitat, respec-
tively. Our upper estimate is thus consistent with an
edge effect modified estimate from prior work in our
study area [42] and consistent with the lower estimate
of Choquenot et al. [24].
The total population in each polygon was divided into

groups. Group sizes and structure were estimated based
on both published literature and unpublished data from
the study area. Caley [47] found approximately 12% of a
trapped population were males greater than 18 months
of age. Thus 12% of the population was assumed to be
solitary males. The remaining population was divided
into social groups (female groups) with simulation using
a B pert distribution of group sizes (minimum group
size = 5, most likely = 7, maximum = 45) based on
prior research on group sizes [24,42] and allowing for a
slightly greater range due to the limited size of the
study in Twigg et al. [42]. These groups were dispersed
randomly in the core habitat (2 km buffered permanent
water) whilst maintaining low, medium and high relative
density classifications. This formed the final population
data base for use in Model 2. The simulated distribution
of wild pig herds (and solitary males) throughout the
Kimberley region is shown in Figure 1.

Classical swine fever
There are several reports detailing mortality and mor-
bidity rates associated with CSF outbreaks in wild pigs.
There appears to be a wide spectrum of clinical out-
comes seen, with some outbreaks in wild pigs leading to
very high mortality and morbidity, [34,48-50] with other
caused by low or moderate virulence strains, especially
in Europe [51-54].
South-east Asia has regions that are endemically

infected with CSF but is also in relatively close proxi-
mity to our Australian study site. For geographical rea-
sons south-east Asia may thus represent a potential
source of an outbreak of CSF in wild pigs at our study
site. The virulence of South-east Asian CSF strains are
largely undocumented, but outbreaks in some islands
with highly susceptible pig populations have lead to sub-
stantial mortality events and may therefore be due to

moderate or highly virulent strains (Jenny-Ann Toribio,
personal communication, July 2011).
Therefore, in this study, it was assumed that the virus

was highly virulent, although a sensitivity scenario
assuming a lower virulence was also conducted. In the
highly virulent simulations, an individual case fatality
rate of 90% associated with highly virulent CSF infection
was assumed (within-herd model-see Additional file 1).
This resulted in 42% of herds having all members die.
Table 1 summarises the key epidemiological parameter
estimates used in Model 2.

Model 2: description of between-herd model
Model software
The model was reminiscent of a previous disease model
in domestic animal populations [55-57]. Applications
were coded in MapBasic®, and implemented in
Mapinfo® [58]. These software environments together
represent a sophisticated and customisable geographical
information system (GIS).
Classical swine fever transmission
The model’s treatment of virus transmission can be con-
sidered in two ways, transition of individual herds
between disease states temporally, and between herd
transmission.
When a susceptible herd becomes exposed to virus it

may become infected whereby it will progress through a
latent, infectious and recovered sequence, although the
herd may cease to exist if all members are killed by the
infection (in the model this is simulated according to a
probability derived from Model 1). The time spent in
each state is stochastically determined using probability
distributions. The time step used in the model is one
day. To represent disease transmission between herds it
is necessary to consider the spatial distribution of the
wild pig population (see sections below). Local herds
have the chance of coming into contact where their
daily home ranges overlap, and if one of these herds is
infected then there is a probability of virus transmission
between an infected and un-infected herd. In the
absence of good field information, this probability was
arbitrarily set at 0.75, with a thorough sensitivity analysis
undertaken to determine how the model outcomes
change in response to changes in this parameter. Figure
2 shows diagrammatically how disease transmission
between a single infected herd and neighbouring suscep-
tible herd occurs. In this way, CSF can spread through a
wild pig population comprising contiguous herds. How-
ever, CSF (particularly virulent strains) frequently pro-
duces severe clinical disease [59] that could be expected
to affect the activity of feral pigs [60]. To allow for this,
when wild pig herds are in the infected state, their
mobility is assumed to decline to just 10% of their nor-
mal daily movement and home range (but sensitivity
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analyses occurred) (see Figure 2). This limits the prob-
ability of overlapping home ranges and thereby reduces
the chance of transmitting virus to nearby uninfected
herds.
Model logic (movements and home ranges)
Most ecological studies in Australia have demonstrated
that wild pigs are relatively sedentary, within fixed home
ranges, displaying little or no dispersal but moving small
distances daily within their larger home range [24,61].
Females move smaller distances than males. However, a
small but potentially epidemiologically important pro-
portion of pigs may disperse longer distances [61-63].
To capture movements, each pig herd (including soli-

tary males) was assigned an annual home range. This
was simply a circle (buffer) around each location. There
was considerable overlap in annual home ranges, reflect-
ing the overlap that occurs in the field [45]. Pig herds

were randomly moved a linear distance each day within
each home range. Ninety-five percent of pig herds were
constrained to movements within their own home
range. It was assumed that since pig herds usually con-
sist of females and offspring then published daily move-
ments of females will represent the movements of
groups, whilst the published daily movements of males
will represent the movements of solitary pigs. Daily
movement distances were estimated from the daily
home ranges described by Caley [47]. After their daily
movement, a daily home range of approximately 1 km2

was structured around the herd’s final location for the
day [45,47]. See Table 2 for a description of ecological
parameters used in Model 2.
A small percentage (5%) of pig herds were allowed to

move a normal daily distance but were unrestrained by
their home range and were able to move to adjacent

 

Legend 

 

Figure 2 Representation of a typical disease transmission event and subsequent daily movements of the newly infected herd in the
process model. Explanation: an infected herd (red square) and susceptible herd (blue circle) have overlapping daily home ranges (red and blue
circles respectively). Classical Swine Fever transmission may occur according to an arbitrary probability. Following infection the incubating herd
continues to move normally for several days (yellow dots) before becoming clinically affected (red dots) with shortened daily movements and
eventually having all herd members killed (black cross). This infected herd does not contact another herd and CSF is not transmitted to another
herd.
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core water habitat. In effect, this allowed a small pro-
portion of pigs to disperse or display extraordinary
movements. Giles [62] showed that groups of wild pigs
can move 20-30 km during short periods in response to
natural events such as flooding. Saunders and Bryant
[64] showed that wild pigs can move from a study area
in response to persecution, and that long range dispersal
can occur. Caley [61] showed that a small proportion of
wild pigs may move 20-30 km over several years
(although the majority stay within their home ranges).
Model logic (surveillance)
A surveillance module was included to allow assessment
of the surveillance of wild pigs for disease after an out-
break was discovered. The aim of surveillance was to
delineate the infected area of the pig population follow-
ing detection of the disease incursion [65]. Surveillance
was simulated using realistic surveillance strategies and
assumptions, and integrated with the control modules
(see below).
A time to first detection of the outbreak was

selected. At that point an index case was randomly
chosen to be found, from all the infectious or recov-
ered herds present at that time. A six week time to
detection was arbitrarily chosen for simulations – this
is similar to other published estimates of potential
time to first detection of FMD in Australian wild pigs
[66] and detection of The Netherlands domestic out-
break [67]. Surveillance was assumed to begin three
days after detection of the index case to allow organi-
sation of surveillance resources. Surveillance was then
structured around a user defined grid (a 10 × 10 km
grid structured across the wild pig distribution in the
Kimberley region was used). Surveillance was assumed
to be conducted by aerial shooting from helicopters.

Aerial shooting from helicopters is a well researched,
effective and humane wild pig control and surveillance
tool used in Australia [64]. The number of helicopters
to be used (3), how many individual pigs that could be
sampled by one helicopter team each day (70) and the
area a helicopter can search each day (200 km2) were
selected (based on author experience). Assuming 4-5
pigs are selected from each sampled herd (to give 95%
confidence of detecting disease, where prevalence is
assumed 50% [68]), the number of pig herds that can
be sampled each day was determined. A sampling
intensity was thus calculated, based on the number of
herds that can be sampled each day and the average
population of herds within a grid. Whether any given
herd within a grid cell was actually sampled was prob-
abilistically determined from the sampling intensity
using Monte Carlo methods. A sampled herd was
probabilistically categorised as infected based on
defined test sensitivity (95%).
A circle two grid cells in radius surrounding an index

cell (i.e. the index cell is the grid cell that contains the
index case) was buffered and grid cells within this circle
selected for surveillance. These cells were progressively
sampled from closest to the index cell to furthest, each
day depending on resources available. When all cells
were sampled within the initial buffered region, and dis-
ease was present in at least one cell, the search area was
expanded by another two grid cells and all grid cells
were again sampled. This progressed until a final buf-
fered area underwent surveillance and no infected cells
were discovered. At this point an assumption was made
that the epidemic was delineated.
Model logic (control)
Two control strategies were implemented in the model
(aerial culling or vaccination) although only one of these
methods could be selected during a single epidemic
simulation. Control was assumed to begin after surveil-
lance had finished delineating the infected area. For
each control strategy, the infected area delineated during
surveillance was buffered. The buffered area of land sur-
rounding the infected area (herein control zone) was
thus at least several pig home ranges wider than the
“known” infected area. The control zone was con-
structed in this way to prevent migration of incubating
or infected pig herds outside the infected area, and
hence prevent spread of the epidemic to neighbouring
susceptible populations.
To implement this, all grid cells within the control

zone were ordered from the centre of the infected area
outwards. If culling was the chosen control method, for
each simulated day a portion of herds (priority from clo-
sest to the centre of the infected area to furthest) was
culled. The proportion of the herds culled was defined
by both the availability of control resources and the

Table 2 Ecological parameters estimated for the
between-herd model

Parameter Estimate Highest Lowest Probability
Distribution

Density (pigs km-2) 1-3 NA NA NA

Herd sizei 7 45 5 B pert

Male home range (km2)
ii

12 31.2 3.7 Triangular

Female home range
(km2)ii

7 19.4 2.5 Triangular

Male daily home rangeii 1.5 9.99 0.2 Triangular

Female daily home
range (km2) ii

0.9 3.6 0.06 Triangular

Male daily linear
movements (km)ii

1 2 0.1 Triangular

Female daily linear
movements (km)ii

0.7 1.8 0.1 Triangular

i12% of individuals were assumed to be solitary (mostly males), the rest of the
population were distributed into female groups.
iiCaley [51].
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probability that a herd would be detected during aerial
culling operations. The availability of control resources
was measured by two parameters, the number of heli-
copters used for culling (4) and how many individual
pigs could be culled each day (300) by each helicopter.
The probability that a herd would be detected and
culled during culling operations was user defined, with a
default of 0.8 [64], meaning that 80% of herds would be
randomly culled during baseline model simulations. The
effect of culling a range of proportions of the population
was assessed during experimentation and sensitivity
analysis.
For the vaccination control option it was assumed an

oral CSF vaccine that could be distributed aerially was
available in Australia. In contrast to the culling option,
pig herds were prioritised from furthest to closest to
the zone centre. This approach was assumed to ensure
that incubating pig herds had less opportunity to
migrate infection beyond the immune buffer, before
immunity developed. Similar to culling, there was a
probability that each herd would be vaccinated, and
the time to vaccinate herds in the control zone was
determined by control resources available. A delay of
7-14 days until full herd vaccine immunity develops
following vaccination was assumed [69,70]. Once
immune, it was assumed that herds could not transmit
virus.
During each simulation in which control was insti-

gated, epidemics were classified as successfully or unsuc-
cessfully contained and eradicated. In each control
simulation the total infected area of a controlled epi-
demic was calculated and compared with the identical
but uncontrolled scenario. If the final epidemic area
during a controlled scenario was less than the same epi-
demic without control, and if eradication occurred, it
was assumed that control measures had contained and
eradicated an epidemic.

Number of simulations
A vexed question for simulation modelling is how many
simulations (or model runs) are required to produce a
result of sufficient precision? Too many simulations are
computationally inefficient. However, outputs from a
stochastic simulation model have variability. If each
simulation is considered one observation in a sample, it
is important to have enough simulations (or a large
enough sample size) to ensure that the estimate of the
parameter of interest (θ̂n) approaches the true popula-
tion value for the model (θ). If the sample size is large
enough, the parameter estimate (θ̂n) generated from the
model simulations converges with the true population
value (θ) [71] for the model. Consistency (or conver-
gence) can therefore be stated in relation to how the

variance of the sample reduces to zero as the sample
size approaches a theoretical infinity [71]:

limn→∞V(θ̂n) = 0.

Thus in practical terms, when a sample size increases
such that the variance is minimised, θ̂n is close to the
true θ. To estimate our sample size, we calculated the
mean of the parameter-of-interest (after each simula-
tion). We then determined the co-efficient of variation
of this mean. At the point when the co-efficient of var-
iation was less than 15% for 30 consecutive simulations
we considered that convergence had occurred and that
this number of simulations was adequate to estimate the
parameter with precision. We repeated this process for
every output parameter of the simulation model, and
determined the maximum number of model simulations
required across all output parameters. This number
became our sample size (the number of simulations
required).

Sensitivity analyses and detection of interaction
Best estimates (as assumed following the literature
review and detailed above) for all input parameters were
assessed during baseline runs. For all baseline runs,
sensitivity and experimental analyses, infection was
introduced into the same wild pig herd (see Figure 1) to
ensure a valid comparison of outputs. The major ecolo-
gical, epidemiological and population parameters were
varied systematically, by multiplying the best estimates
one at a time by 0.25, 0.5, 0.75, 1 (best estimate) 1.5 and
2. An exception was made for transmission probability,
in which the 1.5- and 2-times factors were excluded and
1.33-times (probability = 0.99) included to ensure the
probability remained less than one. Parameters selected
for sensitivity analyses were:

CSF transmission probability (between herds with
overlapping home ranges)
Herd mortality rate (proportion of herds with all
individuals dying of CSF)
Home range size
Daily linear movement distances
Proportion of population that can move extra-ordin-
ary distances
Density (pigs km-2)
Reduction in movement of a clinically affected herd
(proportion)

Outputs measured are listed in Table 3. All output
measures underwent pair-wise linear regression against
the area of the infected land to determine whether
parameter outputs were correlated and whether a single
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output measure could be used for comparison during
sensitivity analyses. Subsequently, the total area infected
was used as the output parameter to represent the scale
of the epidemic.
Sensitivity analysis used an iterative process [72]: first

input parameters were screened to identify influential
and non-influential parameters, and then influential
parameters for interaction were identified. Scatter plots
and regression (linear and polynomial) were used to
identify influential parameters. The most influential

parameters identified during one at a time sensitivity
analyses underwent factorial experiments and were
tested for interactions by ANOVA. A full factorial
experiment was conducted in which the total area of the
epidemic (km2) was the response variable and explana-
tory variables identified in one at a time analyses were
varied at three different levels (half, baseline and double
parameter estimates). The factorial experiments
occurred during simulations in which disease was
assumed detected at 6 weeks post-introduction and

Table 3 Model outputs recorded during Classical Swine Fever simulations in wild pigs in north-west Australia

Output measure Description Best model prediction Median
(95% probability intervals)

Outbreak description of highly virulent strain (without control or
surveillance)

Proportion of
introductions established
(%)

The proportion of all simulations where a single point introduction leads to
disease establishment (disease spreads to more than one herd)

0.98 (0.95-1.00)

Days to disease fade out The number of days in which infected herds are present 759 (180-1424)

Infected herds The total number of herds infected throughout the simulation 1302 (293-2707)

Total herds extirpated The number of herds where every member died due to infection with CSF 563 (138-1146)

Incidence rate The number of herds infected/day 1.86(1.14-2.73)

Area infected (km2) The area of a minimum convex hull established around every infected herd
throughout the epidemic

5979 (580-20537)

Area per day (km2/day) The area of a minimum convex hull established around every infected herd
throughout the epidemic/days of epidemic

9 (3-17)

Cumulative incidence Proportion of herds infected (%) = The total number of infected herds/total herds
in contiguous population

33 (14-70)

Low Virulence strain of CSF (without control or surveillance)

Proportion of
introductions established
(%)

As above 0.97 (0.94-1.00)

Days to disease fade out 976 (468-1442)

Infected herds 1829 (951-2825)

Total herds extirpated 184(96-288)

Incidence rate 1.84(1.24-2.63)

Area infected (km2) 11061 (2741-24393)

Area per day (km2/day) 11 (0-18)

Cumulative incidence 46 (23-84)

Non-spatial model

Proportion of
introductions established
(%)

As above 100%

Days to disease fade out 87 (86-90)

Infected herds 5304

Total herds extirpated 2234 (2205-2267)

Incidence rate 61 (58-62)

Area infected (km2) NA

Area per day (km2/day) NA

Cumulative incidence 100%

Best parameter estimates (most likely scenario), low virulence and non-spatial CSF scenarios shown.
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control using aerial culling was instigated after delinea-
tion of infected areas (see culling scenarios for more
information). ANOVA included testing for effects and
for pair-wise and three way interactions.

Scenarios analysed and model experimentation
Experimentation was conducted to examine the effects
of disease ecology, surveillance and control options on
the scale of an outbreak. Table 4 details the scenarios
that were simulated.

Results
Simulations required
Sample sizes required to achieve a low coefficient of var-
iation for 30 consecutive simulations were calculated for
all outputs. The maximum number of simulations
required was 59 (for the output measure, total infected
area). See Figure 3.

Simulation results using best parameter estimates (and a
highly virulent virus)
Using the best estimates for parameters, CSF generally
established (98% of simulations) following a single
point introduction. CSF generally progressed in an epi-
demic wave down contiguous habitat for several years,
before dying out (when the epidemic arrived at the
end of a contiguous sub-population or at a low density
pig area). The daily herd incidence rate was low,
despite epidemics that lasted several years, across
thousands of square km and cumulatively infecting
thousands of herds.
Table 3 lists and defines outputs and the results of the

simulations. Figure 4 is a typical epidemic curve for one
simulation. Additional file 2 is a PowerPoint presenta-
tion that shows a week by week progression of a typical
simulated epidemic (Model 2).

Sensitivity analyses
In general, output parameters were highly correlated
with one another (r > 0.94), except for the number of
immune animals and incidence rate (r < 0.1). Subse-
quently, the total area infected was arbitrarily chosen as
the single output variable for comparison of parameter
estimates during sensitivity analyses.
Four parameters appeared influential (Figure 5 and

Table 5). As the density of herds, the daily linear dis-
tance that a herd could move and probability of disease
transmission between herds with overlapping daily
home ranges increased, epidemics were larger. However,
as the probability that all members of a herd would die
from CSF infection (a proxy for CSF virulence)
increased, epidemics became smaller. Parameters that
had little predictable effect on epidemic size were the
proportion of the herds that moved extraordinary dis-
tances, the yearly home range size of a pig herd and the
reduction in the movements of a herd when it became
clinically affected.

Table 4 Model experimentation and scenarios analysed

Scenarios tested Summary Parameters varied from baseline

Baseline Baseline parameters used. No surveillance or control
used.

NA

Aerial culling Baseline parameters used but culling introduced at
variable intensities and culling zone widths.

Size of culling zone width: 10, 20, 30, 60, 100 km.
Probability of culling a herd: 20, 40, 60, 80, 99%

Aerial vaccination Baseline parameters used but vaccination introduced at
variable intensities and vaccination zone widths.

Size of vaccination zone width: 10, 20, 30, 60, 100 km.
Probability of vaccinating half a herd: 20, 40, 60, 80, 99%

Low virulence CSF A CSF strain of moderate virulence was introduced. The within herd model (Model 1) was used with 30%
mortality assumption to generate new parameters for the
between herd model.

Herd immune period increased to 135, 666 4003 days
(lowest, most likely, highest). Probability that all individuals
in a herd die of CSF decreased (0.10).

Comparison between non-
spatial and spatial
modelling assumptions

A non-spatial model was parameterised as for the spatial
modelling, except non-spatial disease transmission was
assumed using a non-spatial, homogenously mixing
population.

Disease transmission occurred homogenously using a
probability derived from an equation rather than through
spatial proximity (see Additional file 2). A baseline and
culling scenario was conducted.

Figure 3 Number of simulations plotted against coefficient of
variation of the total infected area. Approximate consistency
(coefficient of variation < 15%) was achieved at 59 simulations.
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Interaction
Four influential factors were identified during one at a
time sensitivity analyses. Since the density of herds and
the daily linear distance a herd can move were highly
correlated and changes in these variables produced near
identical effects (see Figure 5), and to reduce the

number of scenarios investigated during the factorial
experiments the density of herds was not included dur-
ing factorial experimentation. Thus, three influential
variables (the daily linear distance a herd can move,
probability of a herd dying due to CSF and probability
of transmission of infection between overlapping herds)

Figure 4 A typical epidemic curve for one Classical Swine Fever simulation in wild pigs in north-west Australia.

Figure 5 Parameters with a large influence on Classical Swine Fever outbreaks in wild pigs identified during one at a time sensitivity
analyses. The figure shows the effect of changing each influential parameter on outbreak size. The correlation between outbreak size and the
level of parameter was greater than 0.9 for all parameters (data points not shown). Multiplication factor of 1 was the best estimate/baseline.
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were varied at three levels resulting in 27 permutations
for inclusion in analyses of the factorial experiment. The
response variable (area of the epidemic) was not nor-
mally distributed and was log transformed, with the
resulting transformed distribution being approximately
normal (skewness = 0.298, kurtosis = 2.48).
In ANOVA all three main effects were significant and

were significantly different from each other (P < 0.05)
but no interactions were detected (P > 0.05).

Scenarios and experimental results
Aerial culling
Based on the assumptions made, the surveillance pro-
gram was able to consistently delineate the infected area
within 1-2 weeks.
Culling was most successful at controlling the incur-

sion when high proportions of herds were culled and
control zones sizes were relatively large (see Table 6 and
Figure 6), or when at least one variable was high (either
a very wide culling zone or very high proportion of
herds culled). Conversely, where culling proportions
were low and control zone sizes small, containment and
eradication attempts were less successful. If a realistic
proportion of the herds could be culled - for example, >
60% of herds [64] - containment and eradication was

achieved in all simulations in which the culling zone
was sufficiently large (> 30 km width). Table 6 shows
that there were critical combinations of culling propor-
tion and control zone size above which disease could be
contained and below which disease escaped in some
simulations.
Vaccination
Similarly to culling, vaccination was most successful in
scenarios in which a high proportion of herds were able
to be vaccinated and vaccination zone widths were large
(see Table 7 and Figure 6). Comparison of Table 6 with
Table 7 shows similarities between the success of culling
and vaccination. However, it was also evident that vacci-
nation was less effective at containing and eradicating
epidemics than culling, with a greater number of combi-
nations of buffer sizes and widths resulting in some out-
breaks unable to be contained. For example, assuming
99% cull at a buffer width of 10 km culling was success-
ful but a 99% vaccination proportion with a 10 km vac-
cination zone was not. This is supported by Figure 6 in
which the size of an epidemic was always smaller if cul-
ling was used rather than vaccination, even if contain-
ment and eradication was still achieved.
Low virulence strain
Outbreaks of a lower virulence CSF were longer in
duration, spreading across a larger land area and infect-
ing more herds (with a higher cumulative incidence).
The lower virulence strain resulted in lower herd mor-
tality but a similar incidence rate (see Table 4).
Non-spatial modelling
Under non-spatial modelling assumptions the epidemic
progressed much more quickly than during spatial mod-
elling (Table 3) - incidence rates of 61 versus approxi-
mately 2 herds/day, respectively. Outbreaks were of
shorter duration (median 87 days versus several years,
respectively), but with all herds being infected (100%
versus 33% cumulative incidence, respectively). Control
(assuming an 80% probability of herds being culled) was
able to shorten the duration of epidemics (70 days until
disease fadeout) but this required that a median of 3857

Table 5 The influence of changing parameters relative to baseline (multiplication factor, 1 = best estimate) on
Classical Swine Fever outbreak size (000 km2) in wild pigs in north-west Australia

Parameter

Multiplication
factor

Probability of
Transmission

Mortality
probability

Density Movers2 Linear
distance

Home
range

Reduction in movement
when sick

0.25 1.522 12.097 0 6.578 0.023 9.793 7.236

0.5 3.362 12.393 0.004 8.393 0.196 3.176 8.406

0.75 5.170 8.470 1.360 10.502 0.126 8.667 7.324

1 (baseline) 5.979 5.979 5.979 5.979 5.979 5.979 5.979

1.5 8.4991 5.960 20.46 10.242 25.180 16.832 9.645

2 NA 2.009 28.513 8.509 31.352 8.824 11.088
1Multiplication factor = 1.33 to ensure probability remained less than 1 (probability = 0.99).
2Proportion of herds able to disperse away from their starting home range.

Table 6 Containment and eradication success following
establishment of culling zones of varying intensity and
size around surveillance delineated outbreaks of CSF in
wild pigs

Culling zone width (km)

10 20 30 60 100

Proportion of herds culled (%) 20 O O O O X

40 O O O X X

60 O O X X X

80 O X X X X

99 X X X X X

Scenarios in which combinations of culling level and culling zone width resulted
in CSF containment and eradication of all outbreaks are marked with X, and
scenarios where infection was not always contained are marked with O.
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herds (73% of herds) be culled for eradication to occur
(compared with 419 herds or 11% of herds required to
be culled for disease eradication during spatial
modelling).

Discussion
This study highlights the critical importance of ecology,
behaviour and spatial structuring of wildlife populations
on the management of wildlife disease. It also provides

some useful guidelines for containing and eradicating
epidemics from widespread terrestrial vertebrate species
such as the wild pig.
The spatial structuring evident in the wild pig popula-

tion in our study area [40] had a large influence on
simulated epidemics. For example, in our simulations,
epidemics typically travelled in waves along the larger
river systems along which wild pig meta-populations
were located (see Additional file 2). This spatial popula-
tion structuring resulted in a very low daily incidence
rate (< 2 herds each day). In contrast, epidemics in non-
spatial populations progressed much more quickly (~61
herds per day). This occurred because epidemics were
not confined to that proportion of the population in the
immediate vicinity of infected herds during non-spatial
simulations, but instead could infect herds randomly
throughout the entire population. That is, models that
do not take realistic spatial structures into account may
overestimate the rate at which a disease will spread and
overestimate the size of an outbreak.
The spatial nature of epidemics is of critical impor-

tance when planning surveillance for wildlife disease.
Despite typical epidemics infecting thousands of wild
pig herds, across thousands of square kilometres and

Figure 6 A comparison between the median size of a classical swine fever epidemic in wild pigs in which no control, culling or
vaccination was used. Combinations displayed are the lowest proportion of culling or vaccination and lowest control zone widths in which
successful containment and eradication was achieved in every simulation.

Table 7 Containment and eradication success following
establishment of vaccination zones of varying intensity
and size around surveillance delineated outbreaks of CSF
in wild pigs

Size of vaccination buffer (km)

10 20 30 60 100

Proportion of herds vaccinated (%) 20 O O O O O

40 O O O X X

60 O O O X X

80 O X X X X

99 O X X X X

Scenarios where combinations of vaccination level and vaccination zone
width resulted in CSF containment and eradication are marked with X, and
scenarios where infection was not contained are marked with O.
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lasting several years, the spatial structure of the popula-
tion meant the number of currently infected herds was
just a handful each day and new infections were limited
to those herds directly adjacent to the narrow epidemic
front. This highlights potential difficulties in attempting
to detect active infection in wild populations using
agent identification techniques (such as culture or PCR)
in which no carrier state exists and immunity to an
infectious agent is long lived (e.g. FMD and CSF in wild
pigs). This is in accordance with prior research [73]. In
addition, given the rapid turnover of individuals in
many wild populations (especially wild pigs [74]) the
decline in herd immunity may be rapid, leaving a rela-
tively narrow window to conduct even serological inves-
tigations. Taken together this suggests that surveillance
based on detection and investigation of clinical events is
likely to be an efficient approach to finding short lived
infections. Alternatively, in situations in which passive
detection and reporting cannot be relied upon (e.g. little
or limited opportunity to observe the population) then a
more structured surveillance approach would benefit
from a very good understanding of risk to allow targeted
and therefore efficient sampling.
These simulation results also suggest that the spatial

structuring and behaviour of wild animal populations
should have an influence on the design of containment
and eradication programs. Wild pigs are relatively
sedentary with a high fidelity to a home range [61]; only
short daily movements are observed [45,47]. Populations
in Australia are also predictably associated with riverine
habitat [40,75]. Our findings indicate that epidemics
would only spread relatively slowly across the landscape
(~9 km2 each day) and are containable with some rela-
tively simple and well researched control methods such
as aerial shooting [64]. An adequate design in our mod-
elling was a control zone width of approximately 30 km
around the infected area, in which 60% of herds could
be culled (although other combinations of control zone
width and proportions able to be culled were also ade-
quate). Indeed, following simulated introductions of dis-
ease into the largest and highest density sub-population
of wild pigs in the Kimberley region (Fitzroy River
populations), disease could be eradicated by culling just
a median of 419 herds per outbreak (representing
approximately 11% of herds in the sub-population of
interest - the Fitzroy River population).
In comparison, when culling was instigated in the

non-spatial model, very large numbers of wild pig herds
(median 3857 herds) were required to be culled for dis-
ease fadeout to occur. This was because culling was not
targeted to the immediate vicinity of the epidemic but
was randomly implemented across the wild pig popula-
tion. This is likely the reason that our findings differ
from those of earlier mathematical modelling studies in

wild pigs indicating that very high culling levels (e.g.
95%) may be required over short time periods or that
relatively high culling rates may be required for a num-
ber of years (e.g. 49% per annum) to eradicate a disease
such as FMD in wild pigs [8]. However, our modelling
results are in agreement with other simulation model-
ling studies informed by empirical field trials in other
species. For example, in the Ethiopian wolf only small
vaccination corridors were required to reduce disease
transmission in spatially structured wildlife populations
[76].
Disease control using vaccination was generally less

effective than aerial culling in our simulations. Specifi-
cally, in every culling or vaccination combination (width
of control zone and proportion of herds culled or vacci-
nated), culling lead to smaller epidemics than vaccina-
tion (see Figure 6) (although slight differences in
program implementation should be noted: namely vacci-
nation occurred from the outside in, culling from the
inside out). Additionally, infection was routinely con-
tained at lower combinations of control zone width and
probability in the culling scenarios than the vaccination
scenarios (Table 6 c.f. Table 7). The reasons for this
could include the time taken for immunisation to
become effective, resulting in pig herds continuing to
become infected and continuing to transmit disease dur-
ing vaccination programs compared to culling (in which
a proportion of pig herds are immediately removed
from the population). The effectiveness of culling pro-
vides countries like Australia, where wild pigs are a
damaging, introduced invasive species and where control
is mandated, a great advantage for controlling disease in
wild pig populations. In other continents such as Europe
where wild boar are a valued endemic species and effec-
tive aerial culling may not be as acceptable, there is
greater reliance on less effective tools such as vaccina-
tion. This may be equally true during outbreaks in
domestic pigs, in which ethical concerns force consid-
eration of vaccination over culling [77].
Other authors have reviewed the factors contributing

to persistence of CSF in wild boar populations [36].
They found that attenuation of CSF viruses to moderate
virulence, as well as the size and structure of wild boar
populations may affect persistence, and recommended
further spatially explicit modelling. Our modelling sup-
ports their hypothesis, with epidemics induced under
assumptions of lower virulence resulting in longer and
larger epidemics with higher cumulative incidences.
However, in both low virulence and high virulence sce-
narios, without further introductions infection always
died out after several years because as an epidemic front
reached the end of a contiguous wild pig population
there were insufficient susceptible hosts to maintain the
infection. Infection could not spread back along the
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previous route of the epidemic because these herds had
either died from CSF or were immune. These results
concur with the majority of published studies investigat-
ing the nature of CSF outbreaks in European wild boar
populations, in which CSF outbreaks generally fade out
after several years [32,50].
This research may assist in the elucidation or confir-

mation of some important factors that influence the
size, scale and behaviour of epidemics. Our results sug-
gest density, the daily linear distance a herd can move,
the probability of herd death from CSF and the prob-
ability of transmission between herds can have a large
influence on the size and scale of an epidemic. Addres-
sing each of these in turn, it appears that density and
daily movements are highly correlated. This indicates
that at higher densities, or with greater daily move-
ments, larger epidemics occur because infectious herds
are more likely to come into contact with other suscep-
tible herds. Arbitrarily increasing the probability of
transmission also increased the size of epidemics for
similar reasons. In contrast to this, as the probability
that a herd will die following infection increased, epi-
demics declined in size. This was likely because herds
were eliminated before they had a chance to transmit
infection to nearby herds. However, having a small pro-
portion of the population that are unrestrained by
assumptions of home range fidelity or varying the size
of a herd’s annual home range made little difference to
the overall scale of the epidemic. Several authors have
found that Australian wild pigs have a high home range
fidelity [61,62,78], but have also found that a small pro-
portion of pigs can move much greater distances and
are unrestrained to home ranges [61,62]. Based on these
modelling results it appears that these individuals would
have little influence on disease spread, potentially
because the probability that one of these individuals is
incubating disease is low, and because clinical impacts
of CSF reduce long range, aberrant movements anyway.
As with any simulation modelling, our results are very

much dependant on the assumptions made. One of our
main assumptions was that there are no artificial,
human derived movements of infected wild pigs or con-
taminated fomites in the study area. Given that the
Kimberley region is one of the least densely human
populated regions in the world, and that there is no
commercial pig production, we believe this assumption
to be valid. However, were human mediated movements
found to be important for transmitting infection, it is
likely that control and surveillance programs would be
made considerably more difficult. Although there is no
field or published evidence of wild pigs chronically
infected with CSF [37], Kramer-Schadt et al. [37] sup-
posed that this may have been missed and assumed

chronically infected pigs for the purposes of modelling.
They used modelling to demonstrate that the existence
of chronically infected wild boar may be a plausible
mechanism to explain persistence of infection in a
region. Other evidence [79] suggests that persistently
infected piglets are critical in sustaining infection. Our
modelling assumed chronically infected wild pigs, but
only allowed for the longest recorded wild boar piglet
infectious periods of 39 days, [80] which is shorter than
has been recorded in domestic pigs [50].
In conclusion, our modelling has captured many of

the important factors that are likely to influence epi-
demic behaviour in wild pig populations. Our results
indicate that spatial structuring of wild pig populations
is an extremely important feature. Density, daily move-
ment distances, disease-induced herd mortality rates and
transmission probabilities between adjacent herds are
also important. It is also evident that control and sur-
veillance programs should account for the spatial struc-
turing of wild populations, and that it may only be
necessary to cull or vaccinate relatively small propor-
tions of a population to successfully contain and eradi-
cate wildlife disease epidemics.

Additional material

Additional file 1: A description of model 1 (within herd model) and
model 2 (non-spatial model). This section provides a description of the
model logic, parameters, references and coding steps used to
parameterise models 1 and 3 [81-96].

Additional file 2: A time series of a typical simulated epidemic. This
is a PowerPoint presentation of a typical simulated epidemic produced
by model 2 (the spatial model).
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