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Abstract

Epilepsy is the most common neurological disorder in dogs, with an incidence ranging from 0.5% to up to 20% in particular
breeds. Canine epilepsy can be etiologically defined as idiopathic or symptomatic. Epileptic seizures may be classified as focal
with or without secondary generalization, or as primary generalized. Nine genes have been identified for symptomatic (storage
diseases) and one for idiopathic epilepsy in different breeds. However, the genetic background of common canine epilepsies
remains unknown. We have studied the clinical and genetic background of epilepsy in Belgian Shepherds. We collected 159
cases and 148 controls and confirmed the presence of epilepsy through epilepsy questionnaires and clinical examinations. The
MRI was normal while interictal EEG revealed abnormalities and variable foci in the clinically examined affected dogs. A
genome-wide association study using Affymetrix 50K SNP arrays in 40 cases and 44 controls mapped the epilepsy locus on
CFA37, which was replicated in an independent cohort (81 cases and 88 controls; combined p = 9.70610210, OR = 3.3). Fine
mapping study defined a ,1 Mb region including 12 genes of which none are known epilepsy genes or encode ion channels.
Exonic sequencing was performed for two candidate genes, KLF7 and ADAM23. No variation was found in KLF7 but a highly-
associated non-synonymous variant, G1203A (R387H) was present in the ADAM23 gene (p = 3.761028, OR = 3.9 for
homozygosity). Homozygosity for a two-SNP haplotype within the ADAM23 gene conferred the highest risk for epilepsy
(p = 6.28610211, OR = 7.4). ADAM23 interacts with known epilepsy proteins LGI1 and LGI2. However, our data suggests that
the ADAM23 variant is a polymorphism and we have initiated a targeted re-sequencing study across the locus to identify the
causative mutation. It would establish the affected breed as a novel therapeutic model, help to develop a DNA test for
breeding purposes and introduce a novel candidate gene for human idiopathic epilepsies.
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Introduction

Epilepsy is one of the most common neurological diseases

affecting 1–3% of the human population [1]. Epilepsy refers to

a group of chronic neurological symptoms characterized by

recurrent unprovoked seizures. Seizures are transient symptoms

of abnormal, excessive or synchronous neuronal activity in the

brain and can be classified into two major types: focal-onset and

primarily generalized. In focal-onset seizures, the synchronized

activity is restricted to a single part of the cortex, and may or may

not subsequently spread to recruit the thalamocortical pathways

and result in secondary generalization. Focal motor seizures may

be characterized by elementary motor events, which consist of a

single type of stereotyped contraction of a muscle or group of

muscles or by autonomic features or paroxysms of behavioral signs

probably corresponding to disturbance of higher cerebral activity

in humans known as psychic seizures [2]. In generalized seizures,

the thalamocortical circuitry is involved in the attack and results in

synchronized firing of neurons brain-wide, unconsciousness and

often tonic-clonic seizures. In humans, epileptic syndromes are

defined by such phenotypic criteria as age of onset, survival, type

of electroencephalographic (EEG) abnormalities, seizure charac-

teristics, and the type of stimulus that induces seizures [3–7]. A

majority of epilepsies have a suspected polygenic background.

However, only a few risk genes are known to date, and a large

number of genes contributing to human epilepsy still remain to be

identified [8].

Epilepsy is also the most common chronic neurological disorder

in dogs, and has been identified by breeders as one of the top three

diseases of concern. Canine epilepsy can be classified either as
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idiopathic (genetic) or symptomatic (structural/metabolic) accord-

ing to recent ILAE recommendations in humans [9]. Epileptic

seizures are classified according to initial clinical signs either as

focal or generalized seizures [9,10]. Additionally, focal seizures

may become secondarily generalized.

The prevalence of epilepsy in purebred dogs is estimated to

range from 0.5% to 1%. However, in some breeds there is a strong

suspicion of an underlying genetic factor as there is an

accumulation of epileptic individuals within families with an

incidence as high as 20% [4,11–18]. Moreover, the majority of the

pedigree studies suggest a polygenic mode of inheritance.

Genetic homogeneity within dog breeds and heterogeneity

across breeds, together with the recent advent of genome-wide

mapping tools with high resolution provide a powerful approach

for gene mapping of both simple and complex traits in dogs [19–

22]. Naturally occurring spontaneous canine epilepsies resemble

clinically human epilepsies and provide exciting models to further

understand the genetics and the etiopathologies of seizure dis-

orders. The first canine symptomatic epilepsy gene, NHLRC1, was

found in the Miniature Wirehaired Dachshund presenting canine

Lafora disease [23]. This was followed by eight genes related to

particular forms of neuronal ceroid lipofuscinoses (NCLs) [24–31].

Most of these known canine progressive myoclonus epilepsy (PME)

genes are orthologues of the corresponding human syndromes and

two new NCL candidate genes, ARSG and ATP13A2, have been

identified for human NCLs [24,27].

The first canine IE mutation in the LGI2 gene was recently

identified in Lagotto Romagnolo dogs with focal remitting juvenile

epilepsy [32,33]. Despite efforts using either candidate gene [34]

or low-resolution genome wide approaches [35,36], the genetic

background of many focal and generalized epilepsies remains

largely unknown.

As part of our larger ongoing program to tackle the genetics of

canine epilepsies (www.eurolupa.org), we have developed further

resources to map the IE genes in Belgian Shepherds (BS) suffering

from epilepsy dominated by focal seizures with or without

secondary generalization [18]. Epileptic seizures vary from mild

to intractable and typically have an onset around 3 years of age in

this breed [18,37]. Various pedigree analyses have suggested

different modes of inheritance from simple recessive to polygenic

with a major gene or a gene with incomplete penetrance

[7,18,35,36]. A recent microsatellite-based genome wide linkage

scan with 366 dogs including 74 cases identified six tentative loci

on four chromosomes, although none of them reached a genome-

wide significance [36]. This could indicate genetic or phenotypic

heterogeneity of epilepsy in BS. However, due to lack of power

and resolution these results are not conclusive.

We have performed clinical characterizations including EEG

recordings and a high-resolution genome-wide association study

(GWAS) in a case-control cohort of BS dogs to identify IE loci. We

successfully mapped a locus at CFA37 and defined a ,1 Mb

region containing novel candidate IE genes. This study establishes

the first locus for the most common forms of seizures in dogs.

Results

Summary of the epilepsy cases collected for the
investigation

To identify the genetic cause of IE in Belgian Shepherds (BS) we

collected altogether 307 samples including 159 cases and 148

controls collected in Finland, Denmark and USA. Characterization

of the Finnish study cohort was based on clinical examination of

selected dogs and analysis of the owner-filled epilepsy questionnaires.

To describe the Finnish cohort we analyzed 94 questionnaires from

epileptic dogs as summarized in the Table S1. The vast majority of

the dogs with only questionnaire data (78%) had also been diagnosed

with epilepsy by a practicing veterinarian. The epileptic dogs showed

a highly variable age of onset ranging from 3 months to 9 years with

a mean at 3.3 years. The median seizure frequency was 5.25 per year

with some dogs having less than one seizure per year and others

having up to 10 seizures per day. The epileptic dogs had experienced

on average 10 seizures (range 2–100) and one third presented

clustered seizures (more than one seizure in a day). The typical

duration of seizure was 2–4 minutes although ranging from 0.5–

60 min. Almost half of the owners (42.7%) were able to identify

phenomenology preceding convulsions as a sign of focal seizure

activity. The typical clinical signs included restlessness, seeking of the

owner’s attention, drooling and nausea, which suggest a focal onset.

Secondary generalization of focal seizures was commonly charac-

terized by stiffening of limbs and neck, muscle fasciculation, tremor,

drooling, staring, falling, tonic-clonic convulsions and urination. One

third of the dogs did not react to owners’ calls indicating a severely

impaired consciousness. Postictal recovery time varied from minutes

to hours.

The seizure types of the dogs were defined based on the seizure

description. The majority of the dogs (37%) showed focal seizures

with secondary generalization, one third of the dogs (34%) showed

generalized seizures with unknown onset, 18% showed primarily

generalized seizures and 7% of the dogs seizures were focal

without secondary generalization. The seizure type of three dogs

remained unclassified.

In the Finnish study cohort, 48 dogs out of 94 dogs (51%) were

on anti-epileptic medication. Based on the 33 response reports,

anti-epileptic medication was effective and prevented seizures in

18 (55%), halved the frequency in 10 (30%) and decreased it in 4

dogs (12%). Only one dog (3%) did not respond to medication.

Seizure medication consisted mainly of Phenobarbital (88%) or

potassium bromide (10%).

Clinical studies
Clinical examinations were performed on 17 Finnish cases and 4

controls (Table 1). All examined dogs were normal with regards to

neurological examination, MRI, blood and CSF tests. These results

exclude possible external causes of epilepsy and further support the

presence of IE in the breed. At the visual examination of the EEG

recordings, all dogs exhibited high-voltage low-frequency back-

ground activity. Background activity was superimposed with

spindles or focal beta bursts in control dogs and in 2 dogs with

epilepsy (dog 4 and dog 9). The standard descriptions used in

human neurophysiology were adapted to describe all the EEG

patterns [38]. Paroxysmal activity was observed in epileptic dogs,

and it was characterized by sharp waves, spikes, and spike-and-slow-

wave complexes in variable derivations (Table 1, Fig. 1). Two of

the dogs exhibited midline spikes (dog 30 and dog 33), one had

volley of sharp waves in centro-temporal-posterior right derivations

(dog 9) and the other epileptic dogs exhibited spikes and spike-and-

wave complexes in variable derivations. BETS and sleep spindles in

healthy and epileptic dogs under medetomidine sedation were

described previously [39]. Beta bursts are very similar to sleep

spindles. They differ in having higher frequency, longer duration,

and do not begin and end abruptly [40]. Both of these transients

occur in the frontal, central, and parietal derivations. In humans,

midline spike is supposed to represent epileptiform activity of

uncertain clinical relevance [41,42]. Spikes and spike-and-slow-

wave complexes are considered as specific findings in many human

epileptic syndromes [42,43]. These findings were the only interictal

abnormal EEG patterns detected in the dogs with epilepsy,

suggesting a variable focal paroxysmal discharge.

Novel Idiopathic Epilepsy Locus

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33549



The Danish epilepsy cases were investigated with interview

questionnaires, clinical and neurological examination and para-

clinical tests and has been characterized with respect to clinical

epilepsy phenotype and semiology reported in previous publica-

tions [7,18]. In general the clinical epilepsy phenotype displayed

by the Finnish and the Danish cohorts were similar.

GWAS, replication and fine mapping
To map the epilepsy genes we performed a GWAS with 40

cases and 44 seizure-free controls (27 cases and 27 controls from

Finland and 13 cases and 17 controls from Denmark). The

controls were .7 years old and country- and variant-matched to

the cases. A significant association was detected around SNPs on

CFA37 with the best SNP BICF2P890779 at 18,123,961 bp

(praw = 1.361026, pgenome = 0.017) (Fig. 2A). Other putative loci

were found on chromosomes 3, 4, 9, 18, and 23 although not at a

genome-wide significant level (Fig. 2A).

As a replication study we genotyped the SNP BICF2P890779

showing the strongest association with IE at CFA37 in an

independent sample cohort of 81 cases and 88 controls

(p = 3.761025, OR = 2.6, 95% CI 1.6–4.1). A combined analysis

of all genotyped samples including the original GWAS and the

replication cohorts yielded a p-value of 9.7610210 and OR = 3.3

(95% CI 2.2–4.9) (Table 2). Homozygosity with respect to the

allele A increased the risk of epilepsy by 5.4-fold (95% CI 3.1–9.3,

p = 6.8610210). The frequency of the AA genotype was 0.62

among cases and 0.24 among controls. The nominal association

signals on chromosomes 3, 4, 9, 18, and 23 were followed up by

replication of the best-associated SNPs in each locus using 54 cases

and 62 controls. None of these loci showed evidence for

association in the replication cohort (Table 2).

To fine map the associated locus we genotyped 83 BS cases and

99 BS controls with 96 SNPs from a 8.3 Mb region at CFA37

(12,660,614–20,989,289 bp). Fine mapping defined a ,1 Mb

region with the strongest association to a SNP BICF2P890779 at

18,123,961 bp (praw = 6.661028, p10006perm = 1.061023) (Fig. 2B).

Candidate gene sequencing
The associated 1 Mb region at CFA37 contains 12 genes of

which two, ADAM23 and KLF7, have functions in neuronal

systems (Fig. 2C). Mutations in ADAM23 have not been found in

epileptic patients, but it interacts with LGI1, a gene associated with

familial temporal lobe epilepsy-1 (ETL1) in human [44] and with

LGI2, which is the causative gene for benign focal epilepsy in dogs

Table 1. Summary of clinical examinations performed on 17 epileptic and 4 healthy Finnish BS dogs.

Dog
ID

variation/
sex age

age of
seizure
onset

overall
clinical
examination

neurologic
examination

blood
chemistry MRI CSF

EEG
activity

Regions where
EEG activity
were detected

Seizure type
based on
questionnaire1 diagnosis2

Dog 4 ter/female 13 y 2 y norm norm norm norm norm focal Left anterior
derivations

CFG IE

Dog 6 gro/male 6 y 5,5 y norm norm norm norm norm NA CFG IE

Dog 7 gro/female 4 y 3 y norm norm norm norm norm NA CFG IE

Dog 8 gro/male 6 y 2 y norm norm norm norm norm NA CF IE

Dog 9 gro/female 7 y 3 y norm norm norm norm norm focal Central (entire
right hemisphere)

CFG IE

Dog 11 gro/female 8 y 7 y norm norm norm norm norm NA CFG IE

Dog 12 gro/female 6 y 5 y norm norm norm norm norm NA CFG IE

Dog 13 gro/female 4 y 3 y norm norm norm norm norm focal Right temporal
posterior
derivations

CFG IE

Dog 17 ter/male 5 y 2,5 y norm norm norm norm norm NA CFG IE

Dog 18 ter/female 4 y 0,5 y norm norm norm norm norm NA CFG IE

Dog 20 ter/male 8 y 5 y norm norm norm norm norm NA GUO IE

Dog 22 ter/male 3 y 2,5 y norm norm norm norm norm focal Right and left
posterior
derivations

CFG IE

Dog 26 ter/female 3 y 2 y norm norm norm norm norm focal Right central
and posterior
derivations

CFG IE

Dog 27 ter/male 3 y 2 y norm norm norm norm norm NA CFG IE

Dog 30 ter/female 4 y 2,5 y norm norm norm norm norm focal Midline CF IE

Dog 33 gro/female 5 y 1,5 y norm norm norm norm norm focal Midline CFG IE

Dog 34 gro/male 6 y 3,5 y norm norm norm norm norm NA NA IE

Dog 1C ter/female 3,8 y norm norm norm norm norm NA healthy

Dog 2C ter/male 6,9 y norm norm norm norm norm NA healthy

Dog 3C mal/female 7,5 y norm norm norm norm norm NA healthy

Dog 4C gro/female 6,3 y norm norm norm norm norm norm healthy

1CFG = complex focal generalized, CF = complex focal, GUO = generalized with unknown onset, NA = not available.
2IE = idiopathic epilepsy.
doi:10.1371/journal.pone.0033549.t001
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[33]. KLF7 is a neuronal transcription factor, which is required for

neuronal morphogenesis and axon guidance in selected regions of

the brain [45]. Sequence analysis of KLF7 did not reveal any

coding variants. Screening of the ADAM23 exons revealed a non-

synonymous variant in exon 12 (G1203A according to predicted

mRNA XM_844759) at 18,113,688 bp causing an amino acid

change (R387H according to XP_849852.1) in four affected dogs.

To further investigate the frequency of the variant, we genotyped a

total of 159 cases and 148 controls. The risk allele A frequency was

72% in the cases compared to 49% in the controls (p = 3.161029,

OR = 2.7, 95% CI: 1.9–3.8). Homozygosity for the A allele

increased the risk (p = 3.761028, OR = 3.9, 95% CI: 2.4–6.4).

However, 22% of controls were also homozygous. Comparison of

frequency of the R387H variant in different epilepsy types did not

show enrichment to specific seizures (data not shown). This

variation was also screened in three epileptic dogs from 38 other

breeds (altogether 114 epileptic dogs), and we found that the

homozygous AA genotype was present in some of the three

affected dogs in altogether 12 breeds (19% of tested dogs) (Barbet,

Beagle, Border Collie, Dachshund, Dalmatian, Golden Retriever,

Irish Water Spaniel, Miniature Pinscher, Petit Basset Griffon

Vendeen, Miniature Poodle, Rottweiler and Whippet). In 15

breeds, the risk allele was present in heterozygous form in some of

the individuals (32%). Furthermore, Panther and PolyPhen-2

programs predicted that R387H is not pathogenic. Overall, these

results suggest that the observed variation is not a causative

mutation but rather a polymorphism, which is likely in the vicinity

of the actual predisposing mutation. Indeed, we identified the

highest risk of epilepsy among individuals homozygous for the

haplotype composed of the risk-conferring alleles of the G1203A

and BICF2P890779 variants (p = 6.28610211 OR = 7.4, 95% CI:

3.9–14.0) which are in strong linkage disequilibrium (LD) with

each other (D9 = 0.87). This suggests that the functional variant lies

within this haplotype block but is neither one of the two SNPs.

We investigated ADAM23 as a candidate gene also through

RNA expression studies. Expression level of ADAM23 was

compared between three healthy and three epileptic Belgian

Shepherds from Denmark. All dogs were clinically examined. A

difference in expression level between the two groups of dogs was

not observed.

Association of the CFA37 locus in other IE breeds
As part of our ongoing clinical and genetic studies on epilepsies,

we have established well-characterized sample cohorts for many

breeds presenting IE. To test whether the identified epilepsy locus

at CFA37 associates with epilepsy in other breeds, we genotyped

the best associated BS SNP (BICF2P890779) in an epilepsy cohort

of 303 cases and 316 controls including samples from Lagotto

Romagnolo, Miniature Pinscher, Kromfohrländer, Whippet,

Border Terrier, Schipperke, Finnish Spitz and Finnish Lapphund

(Table 3). Almost all tested Finnish Spitz and Schipperke dogs

were homozygous for the A-allele and therefore no association

could be calculated in these two breeds. Kromfohrländers

(p = 0.003) and Whippets (p = 0.02) showed a tentative association

(Table 3). These results in both breeds need to be confirmed in a

larger sample cohort with additional markers before further

conclusions.

Discussion

We describe here the second IE locus in dogs. A locus at CFA37

predisposes Belgian Shepherds to focal epilepsy with seizures

originating from multiple cerebral lobes and without any

detectable cerebral lesions on MRI studies. The first canine IE

mutation was described in the Lagotto Romagnolos. This

mutation causes a breed-specific focal epilepsy with remission

[33], whereas BS dogs suffer from seizures that are commonly seen

across breeds. Therefore our results may suggest a genetic locus for

the most common forms of IE in dogs.

The clinically examined BS dogs had normal blood biochem-

istry, CSF, MRI and neurological examination and symptomatic

epilepsy and seizures of extracranial origin was therefore not

suspected. In the cases where interictal EEG was performed we

detected paroxysmal activity originating from different cerebral

lobes. The most common seizure type was a focal-onset with

secondary generalization. The seizures in the minority of the dogs

remained focal and some dogs had primarily generalized seizures.

The fact that only half of the affected dogs received anti-epileptic

medication suggests that epilepsy in the BS has a relatively mild

course. Our study cohort included samples from several countries

including a previously described cohort from Denmark [7,18].

The onset and clinical features in different populations are similar.

There are some differences in proportion of seizure types which

may arise from the fact that a focal seizure onset may be

challenging to observe and describe retrospectively by the owners.

This is most likely the explanation why seizure distributions differ

in the Danish and Finnish cohorts.

The CFA37 locus identified in this study is syntenic with the

region on human chromosome 2q33 (206.8–208.2 Mb). Overlap-

ping interstitial deletions in 2q24–31 have been described in many

human epilepsies often associated with other developmental

defects [46]. Our locus is close to these deletions but not syntenic.

In addition, our clinical characterizations indicate that epileptic

BS dogs present only a seizure disorder without developmental

abnormalities. Another type of human epilepsy called familial

partial epilepsy with variable foci (FPEVF) has also been mapped

to 2q [47]. FPEVF is an autosomal dominant epilepsy with

incomplete penetrance and characterized by epileptic seizures

originating from different cerebral lobes [47,48]. Affected

individuals respond well to antiepileptic drugs and have no brain

lesions. Causative mutations have not been found for FPEVF [47–

51]. Although the clinical features in our dogs resemble the

characteristics of human FPEVF, the most significant region in

dogs is ,10 Mb from the strongest association signal in human

patients. Besides human, an overlapping epilepsy region has been

found in WAG/Rij rats representing a model for human

childhood absence epilepsy [52]. However, the syntenic region

in rats covers an extensive region of the chromosome with many

possible candidate genes.

Previous epidemiological studies have demonstrated a high

prevalence of IE in the BS breed and various inheritance models

have been suggested [7,18,35–37]. We found a major locus at

CFA37 overlapping a previous tentative QTL [36], but with only

a modest disease risk suggesting that still other susceptibility loci

exist. Alternatively, the mildest focal seizures may have been

missed and it is therefore possible that some controls are actually

Figure 1. An example of interictal EEG recording for an epileptic (A) and for a healthy (B) BS dog. The epileptic and healthy dogs
correspond to dogs 26 and 4C in Table 1, respectively. The Epileptic dog shows spike and slow waves in right central and posterior derivations. The
control dog exhibits a high-voltage low-frequency background activity. Background activity is superimposed with focal beta bursts in frontal
derivation. The EEG pattern is consistent with the sedation protocol used. Bipolar montage, time constant = 0.3 s; high filter 70 Hz; notch filter
inserted.
doi:10.1371/journal.pone.0033549.g001
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cases, which would result in the underestimation of the disease

risk. This assumption is supported by a genealogical study

performed in an extended family of dogs investigated over several

years [7]. Our GWAS was performed in a relatively small sample

cohort and with the older version of SNP chip arrays including

,50,000 markers. It is possible that additional loci could be dis-

covered with a larger sample size and higher resolution available

today.

The 1 Mb region showing the strongest association includes 12

genes of which none encode ion channels commonly mutated in

human IEs or other known epilepsy genes [53]. We screened two

genes, ADAM23 and KLF7 for coding and splice site mutations.

ADAM23 represents an excellent candidate gene. It encodes a member

of the disintegrin and metalloprotease domain (ADAM) family and

belongs to a neuronal subfamily of ADAMs together with ADAM22

and ADAM11 [54]. ADAM23 binds two epilepsy-associated proteins,

Figure 2. A genome-wide association study reveals a locus at CFA37. Genomic control –adjusted p-values are shown (A). Fine-mapping of a
8.3 Mb region with 96 additional SNPs on chromosome 37 defines a 1 Mb associated region (B). The region showing strongest association with
epilepsy (17,525,804–18,623,591 bp) contains 12 genes including two neuronal candidates, ADAM23 and KLF7 (C).
doi:10.1371/journal.pone.0033549.g002

Novel Idiopathic Epilepsy Locus
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LGI1 and LGI2. LGI1 is mutated in familial temporal lobe epilepsy-

1 (ETL1) in humans, and LGI2 is mutated in benign familial juvenile

epilepsy (BFJE) in Lagotto Romagnolo dogs [33,44]. The truncating

mutations of LGI1 or LGI2 prevent their secretion and interaction

with the ADAM23 complexes. The LGI1-ADAM23 complex is

involved in the stimulation of neurite outgrowth and dendritic

arborisation [55]. ADAM23 containing complex plays a role in

pulling together both pre- and post-synaptic membranes, stabilizing

and strengthening synaptic neurotransmission [56]. Furthermore,

homozygous removal of Adam23 from mice results in a seizure

disorder and even heterozygous mice have lowered seizure

thresholds [56]. We identified only a single non-synonymous

variant from ADAM23 gene, R387H, which is in strong LD with

the associated intronic marker identified in the GWAS. The coding

variant is highly associated and increases the epilepsy risk by 4-fold.

However, given that the homozygous risk allele is common (22%) in

controls, present frequently in 27 other breeds, and unlikely

pathogenic, these results suggest that it is a polymorphism rather

than a causative mutation. Based on our haplotype association

analysis, the causative mutation is likely located in the same

haplotype block tagged by these two variants. The fact that there

were no changes in the expression of ADAM23 in epileptic dogs

suggests that the possible disease causing variant, if present in

ADAM23 at all, does not affect its transcript levels in the brain.

KLF7 belongs to a large family of KLF transcription factors.

KLF7 is the only family member with a neuronally restricted

expression during development. KLF7 is required for neuronal

morphogenesis and axon guidance in hippocampus, olfactory

bulbs and cortex [45,57]. We could not find any variants in the

coding regions of KLF7. The identified locus contains also three

other candidate genes, DYTN, NDUFS1 and FASTKD2, that

function in the CNS or have been associated with neuronal

phenotypes. DYTN is poorly characterized but expressed in the

CNS [58]. NDUFS1 is a core component of the mitochondrial

complex I system, and mutations in this system has been associated

with neurodegenerative disorders [59]. FASTKD2 is a cytochrome

oxidase deficiency related gene and its mutations cause various

neurological phenotypes including convulsions [60]. However, the

phenotypes related to the latter two mitochondrial genes or

systems are not restricted to CNS but affect other organs as well.

There are several possibilities where the actual predisposing

mutation may be located. First, mutation may still lie in the

regulatory regions of the ADAM23 or KLF7 genes. Second,

mutation is present in the other candidate genes not screened yet.

Third, we focused here only on the 1 Mb region showing strongest

association, while our genotype data indicates a remarkable signal

outside the most significant locus. This ,2 Mb region contains

also several candidate genes. To identify the causative variant we

Table 2. The summary of the results in GWAS, replication and combined datasets.

GWA1 Replication2 Combined3

Chromo-
some SNP Position F_A4 F_U5 Praw PGC Pgenome OR F_A4 F_U5 Praw OR F_A4 F_U5 Praw OR

3 BICF2P397912 82766251 0.60 0.33 3.91E-4 0.001 0.96 3.11 0.49 0.40 0.14 1.41 0.51 0.39 0.014 1.65

4 TIGRP2P58276 13088720 0.43 0.16 1.39E-4 5.25E-4 0.76 3.91 0.39 0.29 0.07 1.55 0.40 0.26 0.004 1.86

9 BICF2P1288768 18597315 0.43 0.47 4.71E-4 0.001 0.98 0.31 0.43 0.47 0.53 0.86 0.38 0.47 0.078 0.69

18 TIGRP2P239410 15846321 0.15 0.47 1.68E-5 8.95E-5 0.18 0.21 0.30 0.39 0.10 0.67 0.27 0.43 0.001 0.49

23 BICF2G630382382 22138085 0.20 0.48 1.60E-4 5.91E-4 0.79 0.27 0.25 0.31 0.22 0.73 0.24 0.37 0.005 0.53

37 BICF2P890779 18123961 0.53 0.18 1.34E-6 1.09E-5 0.02 5.41 0.72 0.50 3.72E-05 2.59 0.76 0.49 9.70E-10 3.29

1GWAS dataset: 40 cases, 44 controls.
2Replication dataset: chromosomes 3, 4, 9, 18, 23: 54 cases, 62 controls; chromosome 37: 81 cases, 88 controls.
3Combined dataset: chromosomes 3, 4, 9, 18, 23: 94 cases, 106 controls; chromosome 37: 116 cases, 130 controls.
4Frequency of the minor allele (based on GWAS controls) in affected individuals.
5Frequency of the minor allele (based on GWAS controls) in unaffected individuals.
doi:10.1371/journal.pone.0033549.t002

Table 3. Association of ADAM23 intronic SNP (BICF2P890779 at 18,123,961 bp) with epilepsy in 9 different breeds.

Breed N cases+N controls F_A1 (allele A) F_U2 (allele A) P OR

Belgian Shepherd 116+130 0.76 0.49 9.70E-10 3.3

Kromfohrländer 23+18 0.93 0.67 3.44E-03 6.5

Whippet 24+26 0.81 0.60 0.018 2.9

Finnish Spitz 62+81 1.00 0.98 0.13 NA

Lagotto Romagnolo 23+23 0.35 0.48 0.20 0.6

Miniature Pinscher 22+20 0.89 0.80 0.27 2.0

Border Terrier 42+40 0.93 0.89 0.36 1.6

Schipperke 63+48 0.99 1.00 0.38 NA

Finnish Lapphund 44+60 0.79 0.82 0.58 0.8

1Frequency of the minor allele (based on GWAS controls) in affected individuals.
2Frequency of the minor allele (based on GWAS controls) in unaffected individuals.
Frequencies of allele A are shown for each breed. P-values,0.05 are bolded.
doi:10.1371/journal.pone.0033549.t003
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have initiated a targeted re-sequencing project to capture a 4 Mb

locus on CFA37.

As part of our larger canine epilepsy research program we have

collected samples from IE dogs in several breeds. To test the

association of the CFA37 locus in other breeds, we screened the

ADAM23 intronic variant in eight additional breeds. We used

Lagotto Romagnolos as a control breed in the study since we

recently identified the causative mutation in the LGI2 gene on

CFA3 [33]. Our across breed analysis found some evidence for

association in Kromfohrländer and Whippet breeds. However, a

single marker association in a small sample cohort should be

interpreted cautiously and confirmed with replication using more

samples and markers.

The high prevalence of IE among BS dogs causes a severe

health issue in the breed [37]. Although many dogs respond well to

treatments, still almost every fifth epileptic dog is euthanized

within three years after the onset [18]. There is a clear need for

genetic counseling and for the development of marker-assisted

breeding programs. Our study identifies a significant risk allele for

IE. However, since the majority (75%) of the unaffected dogs also

carries one or two copies of the risk allele, it cannot be used for

efficient diagnostics. The identification of the causative mutation

remains as an important task to improve breeding plans, to reveal

a new candidate gene for human IEs, to identify novel IE

pathways, and to establish the breed as a large therapeutic animal

model for IEs. This study makes a breakthrough by mapping a

novel IE locus and paves the way towards the discovery of the first

mutation in the most common seizure type in dogs.

Materials and Methods

Study cohort
A cohort of Belgian Shepherd dogs including 159 epileptic cases

and 148 unaffected controls collected in Finland (178 dogs),

Denmark (65 dogs) and USA (64 dogs) was used in this study.

The Finnish cohort included mainly Finnish dogs (64%) but also

dogs from Sweden, Poland, Australia, Switzerland, Austria,

Germany and the Netherlands. The Danish cohort has been

described previously by Berendt et al. [7,18] and the US cohort by

Oberbauer et al. [35,36] and the Finnish cohort in this paper

(Table 1, Table S1). All study cohorts were collected through Breed

Clubs, breeders and owners and epilepsy diagnoses were based on

questionnaires, telephone interviews and clinical, neurological and

para-clinical examinations on selection of dogs. The clinical char-

acterization of the Finnish cohort was based on clinical examina-

tion on 17 affected dogs and 4 healthy controls from Finland

and detailed owner-filled epilepsy questionnaires from 94 dogs

(http://koirangeenit.fi/Tiedostot/EpilepsyQuestionnaire.doc). Ep-

ilepsy questionnaire requested information about the age of onset,

the number, duration and frequency of seizures, anti-epileptic

medication, and typical characteristics of the ictal, pre- and post-

ictal phases of seizures.

Inclusion criteria for the case in all cohorts required that the dog

had experienced at least two seizures. The age of onset was

reported by the owners and was not used as exclusion criterion due

to possible inaccuracies. The average age of onset was between 3.1

to 4.1 years in different cohorts (ranging from 3 months to 9 years

in the Finnish cohort, from 1.5 years to 11 years in the Danish

cohort and from 2 years to 5 years in the US cohort). None of the

epileptic dogs were known to be affected by other diseases. The

control dogs had no history of seizures and were over 7 years of

age in all cohorts.

The cohort in the GWAS included selected dogs from the

Finnish and Danish cohorts. The GWAS cohort did not include

first degree relatives. The replication cohort was independent from

GWAS and included samples collected in Finland, Denmark and

USA. Fine mapping cohort contains samples collected in Finland

and Denmark. It includes the GWAS samples and overlaps with

replication study cohort (50 cases and 59 controls of the fine

mapping study were included in the replication). The controls

were matched to the cases according to country of origin and

breed variant.

The Finnish Kennel Club’s breeding database, KoiraNet, was

utilized for Finnish pedigrees. EDTA-blood samples were collected

for each dog with the owner’s consent in the genetic analyses and

genomic DNA was extracted using a commercially available kit

(Puregene, Gentra Systems, Minneapolis, MN). We have a valid

ethical permit (ESLH-2009-07827/Ym-23, expiring Oct 2012).

Clinical studies
Clinical studies included clinical and neurological examination,

blood and in selected cases CSF, MRI, EEG tests and were

performed at the Referral Animal Neurology Hospital Aisti,

Vantaa, Finland and Department of Small Animal Clinical

Sciences, University of Copenhagen, Denmark. Blood examina-

tion included complete blood count and serum biochemistry

(sodium, potassium, calcium, phosphorus, magnesium, glucose,

total protein, albumin, globulin, cholesterol, blood urea nitrogen,

creatinine, total bilirubin, alanine aminotransferase, aspartate

aminotransferase, alkaline phosphatase, and creatine kinase). MRI

examinations of Finnish dogs were performed as described

previously [61]. CSF samples were collected from the cerebello-

medullary cistern after MRI examination. Total cell count,

cytology and protein concentration were evaluated.

EEG in Finnish dogs was performed under medetomidine

sedation (0.04 mg/kg IM). An additional 0.02 mg/kg of medeto-

midine was given IM if the dog was not ready for examination

15 minutes after the initial injection. EEG examinations were

performed in a quiet, darkened room. Dogs were placed in sternal

recumbency and electrodes were placed transcutaneously in a

14 channel montage, modified from a 17-channel montage as

described previously [62]. To assure good electrical contact with the

electrodes, the scalp was defatted by rubbing vigorously with ethyl

alcohol. Referential and bipolar montages (F7, F3, F4, F8, T3, C3,

Cz, C4, T4, P3, Pz, P4, O1, O2 ;F4-C4, C4-T4, T4-P4, P4-O2, F3-

C3, C3-T3, T3-P3, P3-O1, F4-F8, F8-T4, F3-F7, F7-T3, Cz-Pz,

O2-Pz, Pz-O1; odd number = left hemisphere; even number = right

hemisphere) were used. The acquisition parameters to record bio-

electrical activity were set as follows: sensitivity = 5 mV/mm; time

constant = 0.3 s; high filter (Hf) = 70 Hz; notch filter inserted;

reference: on the bridge of the nose; ground: caudally to the

external occipital protuberance; electrode impedance ,3 KV;

sampling rate 256 Hz. Sixteen EEG needles (thirty-gauge 15 mm

monopolar stainless steel needle electrodes, Bionen S.a.S., Italy)

were used as active, reference, and ground electrodes. No local

infiltration of lidocaine was performed around electrode placement

sites. Electrocardiogram and respiratory rates were recorded via

polygraphic electrodes (EKG: sensitivity = 70 mV/mm, time con-

stant = 0.1 s, Hf = 30 Hz; respiration - CHEST - : sensitivity =

20 mV/mm, time constant = 0.3 s, Hf = 30 Hz) connected to

alligator clips (thin cable for bridge electrode, Bionen S.a.S.,

Firenze, Italy) and to a respiratory effort system (thoracic respiratory

transducer, Bionen S.a.S., Firenze, Italy). EEG recording started

when electrode placement was completed, and the total recording

time was 20 min, including calibration and the initial impedance

check. The EEG data were stored in the acquisition station (Halley

Galileo, EBNeuro, Firenze, Italy) for later analysis.
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Genome-wide association analysis and fine-mapping
To map the epilepsy locus, 40 cases and 44 controls were

genotyped using the Affymetrix Canine Genome 2.0 Array

platinum set (Affymetrix, Santa Clara, CA, USA) containing

49,663 SNP markers. The genotyping was performed as a part of

the LUPA project at the Centre National de Génotypage, Paris,

France. The case-control association analysis was performed with

PLINK v1.07 [63] with the criteria of MAF ,0.05, call rate

.75% and ,25% of missing genotypes in individual dogs. After

applying these filters 43,378 SNPs remained in the analysis for all

dogs. Genome-wide significance was ascertained through 100 000

random permutations of the epilepsy phenotype. The genomic

inflation factor for the population was 1.13 and the association p-

values were adjusted for it.

Fine mapping and replication was performed with 96 selected

SNPs from a 8.3 Mb region (12,660,614–20,989,289 bp) on

CFA37. The SNP density was 1 SNP/100 Kb. All base pair

positions mentioned in this article are based on CanFam 2.0.

Genotyping was performed using the Sequenom (San Diego, CA,

USA) iPLEX methodology at the Centre of Integrated Genomic

Medical Research, University of Manchester, UK. A total of 201

samples were genotyped including samples from Finland (54 cases,

63 controls) Denmark (32 cases, 28 controls), Sweden (11 cases and

13 controls) and Middle Europe. After quality control (MAF

,0.05, SNP call rate .0.75, individual call rate .0.75), a total of

58 SNPs and 83 cases and 99 controls were included in the

association analysis with PLINK v1.07 using a single-marker

association analysis and haplotype sliding window analysis with 3–

5 markers at a time [63].

To confirm the nominal associations in the other chromosomes

single SNPs on chromosomes 3 (BICF2P397912 at 82,766,251 bp),

4 (TIGRP2P58276 at 13,088,720 bp), 9 (BICF2P1288768 at

18,597,315 bp), 18 (TIGRP2P239410 at 15,846,321 bp) and 23

(BICF2G630382382 at 22,138,085 bp) were genotyped in 54

Belgian Shepherd cases and 62 controls in addition to the samples

genotyped in the GWAS. The genotyping was performed using

Custom Taqman SNP Genotyping Assays (Applied Biosystems by

Life Technologies Corporation, Carlsbad, CA, USA). The poly-

merase chain reactions were performed according to the standard

protocol provided by the manufacturer in 10 ml reaction volume,

and run and analyzed using the Applied Biosystems 7500 Fast Real-

Time PCR System (Foster City, CA, USA). The SNP genotype data

was analyzed for association using PLINK v1.07 [63]. All the

markers were in HWE (p.0.05) and the genotyping call rates

ranged from 96–100%.

Association in other breeds
A SNP located at 18,123,961 bp (BICF2P890779) on CFA37

was screened in 8 other breeds with epilepsy including Lagotto

Romagnolo (23 cases, 23 controls), Miniature Pinscher (22 cases,

20 controls), Kromfohrländer (34 cases, 20 controls), Whippet

(24 cases, 26 controls), Border Terrier (42 cases, 20 controls),

Schipperke (63 cases, 48 controls), Finnish Spitz (62 cases,

81controls) and Finnish Lapphund (44 cases, 60 controls). The

genotyping was performed using Custom Taqman SNP Genotyp-

ing Assays (Applied Biosystems by Life Technologies Corporation,

Carlsbad, CA, USA) according to the standard protocol provided

by the manufacturer in 4 ml reaction volume, and run and

analyzed using the Applied Biosystems 7900HT Fast Real-Time

PCR System (Foster City, CA, USA). The SNP genotype data was

analyzed for association using PLINK v1.07. The genotyping call

rates within breeds ranged from 91–100%, and there was no

deviation from HWE in any of the breeds (p.0.05).

Sequencing and mutation analysis
Exons and splice junctions were amplified by PCR with ADAM23-

specific primers available upon request. The PCR products were

purified with ExoSAP-IT kit (USB Corporation, Cleveland, Ohio)

and sequenced with an ABI Prism 3730xl DNA analyzer (Applied

Biosystems, Foster City, CA). The exon 12 variant (R387H) was

sequenced in 155 BS cases and 111 controls and in three epileptic

dogs in 38 other breeds. Pathogenicity of the mutation was predicted

by programs Panther [64] and PolyPhen-2 [65].

Gene expression analysis
Expression level of ADAM23 was analyzed in three healthy

Belgian Shepherds and three Belgian Shepherds with epilepsy.

Samples from cortex cerebrum and cerebellum were taken

immediately after euthanasia and snap-frozen in liquid nitrogen.

Messenger RNA extraction, cDNA synthesis and quantitative PCR

were performed as previously described [66]. RNA quality was

ascertained and the RQI number determined by analysis on an

Experion System (Bio-Rad, Hercules, CA, USA). Two primer sets

for qPCR were designed; set 1: forward primer 59-CCTGGCA-

GATGAAGACAACA, reverse primer 59- GAGCCAAAGGCTT-

CAATCTG; set 2: forward primer 59- AGCCACCTGCATC-

TGTGATT, reverse primer 59- GTGCCCCCAAGGACAATAG.

The gene RPL4 was used as a reference gene in the expression level

analysis. Expression data were analyzed using REST v2.0.7 [67].

Supporting Information

Table S1 Summary of the clinical features of 94 epileptic

Belgian Shepherds collected through the owner-filled epilepsy

questionnaires.

(XLS)
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