
Proc. R. Soc. B (2012) 279, 2052–2061
* Autho

doi:10.1098/rspb.2011.1784

Published online 4 January 2012

Received
Accepted
Lateralization of face processing
in the human brain

Ming Meng1,*, Tharian Cherian2, Gaurav Singal3 and Pawan Sinha4

1Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
2Biological Sciences Division, Pritzker School of Medicine, University of Chicago Medical School, Chicago, IL, USA

3Massachusetts General Hospital, Boston, MA, USA
4Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Are visual face processing mechanisms the same in the left and right cerebral hemispheres? The possibility

of such ‘duplicated processing’ seems puzzling in terms of neural resource usage, and we currently lack a

precise characterization of the lateral differences in face processing. To address this need, we have under-

taken a three-pronged approach. Using functional magnetic resonance imaging, we assessed cortical

sensitivity to facial semblance, the modulatory effects of context and temporal response dynamics. Results

on all three fronts revealed systematic hemispheric differences. We found that: (i) activation patterns in

the left fusiform gyrus correlate with image-level face-semblance, while those in the right correlate

with categorical face/non-face judgements. (ii) Context exerts significant excitatory/inhibitory influence

in the left, but has limited effect on the right. (iii) Face-selectivity persists in the right even after activity

on the left has returned to baseline. These results provide important clues regarding the functional archi-

tecture of face processing, suggesting that the left hemisphere is involved in processing ‘low-level’ face

semblance, and perhaps is a precursor to categorical ‘deep’ analyses on the right.
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1. INTRODUCTION
Identifying the nature of asymmetries across the cerebral

hemispheres is a key component of understanding func-

tional organization of neural processing. Significant

left–right differences have been demonstrated in several

domains such as language [1–4], spatial ability [5,6]

and neurological disorders [7,8]. Evidence for systematic

lateralization in visual processing, however, is quite lim-

ited; the posterior to anterior hierarchy appears to be

the primary organizing principle [9]. Early visual areas

(V1 and V2) in the two sides appear to perform identi-

cal functions for the left and right halves of the visual

field. Further along the pathway, the distinction between

ipsi- and contra-field processing is steadily diminished as

neuronal receptive fields in either hemisphere include

larger and larger sections of the visual field encompassing

both sides of the midline. An implication of this organiz-

ation is that analogous higher-order visual areas on the

left and right are highly redundant. The possibility of

such ‘duplicated processing’ is puzzling given that it

suggests inefficient neural resource usage. Might there

actually be systematic functional differences in processing

within late visual areas across the two hemispheres?

Face perception provides an ideal domain in which to

frame and examine this question. Previous studies have

reported face-selective regions in the fusiform gyri of both

the left and right cerebral hemispheres [10–12]. Both of

these regions exhibit elevated responses to images of faces

relative to non-faces. Qualitatively, therefore, they appear

to have similar selectivity properties. However, fusiform
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activations for faces are often found to be greater in the

right than in the left [10,13]. Previous psychophysical

investigations with split-brain patients also suggest lateral

asymmetry in face processing or encoding [14,15]. It is

unclear whether the left and right fusiform gyri process

face information in an identical fashion, or have distinct

functional roles to process faces at different levels.

Numerous prior studies have measured fusiform acti-

vation for faces versus non-faces. However, we argue that

the basic face versus non-face contrast might be too

coarse a distinction to characterize potentially subtle hemi-

spheric differences in face processing; more precise

response functions of these regions are needed. Concep-

tually, the use of a face versus non-face contrast amounts

to sparsely sampling two very different regions in a high-

dimensional image space, with one region corresponding

to face images and the other to non-faces. Having cortical

response values at just these sparse points is insufficient

to reliably estimate the form of the response function for

a given cortical region. To overcome this problem, we

assessed responses of cortical areas in the left and right

hemispheres by using a denser, more continuous, sampling

from the image space.

Towards this goal, we compiled a novel stimulus set

comprising several images that together spanned a range

of facial semblance from being very unlike faces to genu-

ine faces. We accomplished this through the use of a

computational face-detection algorithm [16]. This detec-

tor, on occasion, generates false-alarms—incorrectly

declaring a non-face image region to be a face. Typically,

this happens when the image region fortuitously has some

face-semblance (say, a face-like pattern of light and

dark in foliage). We collected 180 such false-alarms.
This journal is q 2012 The Royal Society
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Figure 1. Examples of our stimuli. (a) Patterns in the green box were erroneously signalled as faces by a computational face
detection system (developed by Pittsburgh Pattern Recognition Systems). Based on human observers’ perceptual ratings,

these false-alarms were divided into low face-like and high face-like patterns. (b) Sample stimuli that show the range of
face-semblance used in the present study. Rows from top to bottom show images with increasing level of similarity, from
no face-semblance to genuine faces, as rated by human observers.

Lateralization of face processing M. Meng et al. 2053
To human observers, some of these images look more like

a face than the others. This collection of images was aug-

mented with 60 randomly selected non-face images and

60 genuine faces to yield a stimulus set of 300 images

(figure 1).

This stimulus set provides the foundation for probing

the primary question for this study: are brain activations

in the left and right hemispheres (specifically the fusiform

gyri) redundantly identical or qualitatively different for

stimuli along a densely sampled trajectory from non-

faces to faces? We adopted a three-pronged approach

towards addressing this question.

— Comparison of activation profiles in the left and right

fusiform gyri across the stimulus spectrum.
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— Comparison of response modulation induced by the

inclusion of local contextual information in each

image of the stimulus set.

— Comparison of temporal dynamics of responses to the

stimulus set in the left and right fusiform gyri.

If the left and right fusiform gyri process faces at dif-

ferent levels (say, the superficial level of image structure

and the deeper level of image category), activation

patterns in one side should be relatively more stimulus-

driven, whereas the other side should be more closely

correlated with perceptual judgements. Similarly, one

side should be less affected by top-down modulations

(e.g. whether contextual information can modulate

the activation) than the other side. Finally, if the left
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and right fusiform gyri process faces serially, tempo-

ral dynamics of responses should be sequential rather

than simultaneous.
2. MATERIAL AND METHODS
(a) Participants

Thirty-six volunteers (aged 17–49 years, 13 females) were

recruited from the MIT community to participate in the be-

havioural experiments. Another six right-handed adults

(aged 23–31 years, three females) volunteered for the func-

tional magnetic resonance imaging (fMRI) experiments. All

participants had normal or corrected-to-normal visual

acuity. All participants gave informed written consent.

(b) Stimuli collection

One hundred and eighty false-alarm images were selected

using the Pittsburgh Pattern Recognition face-detection

algorithm [16]. Sixty non-face images collected from natural

scenes devoid of faces and 60 genuine faces were also added

to the stimulus set. Each image was made monochrome and

normalized for scale and luminance.

(c) Elo rating

Eighteen observers naive to the purpose of this study were

each shown 600 pairs of images and in each case were

asked to choose the more face-like of the two images pre-

sented. Each image was presented on the screen for 300 ms

followed by a 100 ms visual mask. The images were drawn

at random from the 300 collected stimuli, such that each

image was shown to each observer four times against other

images from the stimulus set. Every image was initially

assigned a rating of 1000. Following each pairwise compari-

son, the ratings of both images were updated using the Elo

rating algorithm [17],

Rating0A ¼ RatingA þKðSA � EAÞ

and

EA ¼
1

1þ 10ðRB�RAÞ=400
;

where the subscripts A and B denote the two images being

compared, SA is the outcome of the comparison (1 if A is

more face-like and 0 if B is more face-like), and EA is the

expected probability that A would be chosen as more face-

like based on prior ratings. Finally, K is a volatility constant

that was set to 100 based on simulation results. Based on

the ratings, the false-alarm images were divided into a high

face-semblance group and a low face-semblance group

(referred to as NFL and NFH, respectively, in the rest of

this paper; the 60 randomly chosen non-faces are called

NF0 and the 60 genuine faces are called F).

(d) Psychophysics classification experiment

Eighteen observers who did not participate in the Elo rating

experiment participated in the classification experiment. Each

observer was shown 300 images, one at a time. Each image

was presented on the screen for 300 ms, after which the obser-

ver had to categorize the image as a face or non-face image.

(e) Functional magnetic resonance imaging

experiments

Six right-handed adults participated in two sessions of the

fMRI experiments (corresponding to two different context

conditions as described below) on two separate days. Scanning

was performed on a 3.0 T Siemens scanner using a standard
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head coil at the Martinos Imaging Centre at MIT. A high-

resolution T1-weighted 3D-MPRAGE anatomical scan was

acquired for each participant (field of view (FOV) 256� 256,

1 mm3 resolution). To measure BOLD contrast, 33 slices paral-

lel to the anterior and posterior commissure (AC/PC) line were

acquired using standard T2*-weighted gradient-echo echopla-

nar imaging (repetition time (TR) 2000 ms, echo time (TE)

30 ms, flip angle 908, slice thickness 5 mm, in-plane resolution

3 � 3 mm). Stimuli were rear-projected onto a screen in the

scanner bore.

For the ‘without-context’ experiment, 12 scan runs were

performed with each participant. Each run began and

ended with 12 s of fixation-rest and contained 120 trials of

image presentation. Three runs (360 trials) constituted a

stimulus presentation cycle, which included 60 no-face-

semblance images (NF0), 90 low face-semblance images

(NFL), 90 high face-semblance images (NFH), 60 genuine

faces and 60 fixation-only trials, all randomly distribu-

ted. Each trial was 2 s long and each stimulus image was

presented for 300 ms followed by 1700 ms ISI. Four cycles

of presenting the stimuli, each with a different random

sequence, constituted the 12 runs in total. During the exper-

iments, either the horizontal arms or the vertical arms of the

fixation cross randomly changed their length. Participants

were instructed to monitor these changes and report

accordingly by button presses.

In addition to the above scan runs, two block-design

runs were used to functionally localize regions of interest

(ROIs). Each of these localizer runs lasted 336 s. In these

runs, faces and random non-face images (that were also col-

lected from natural scenes but were not used in the above

mentioned experimental runs) were presented in alternating

blocks of 16 s each. These blocks were separated by 16 s

long fixation periods. Images were presented at a rate of

1 Hz. Each block type was shown five times in a run using

different images. A fixation cross was always presented at

the centre of the screen. Participants were instructed to

perform a change detection task of the fixation cross as

described above.

All the six participants came back for the ‘with-context’

experiment on a different day (at least one week later). In

this scan session, we used the stimuli with contextual infor-

mation by including neighbourhoods of the image patches

that had been used in the without-context experiment.

These ‘context added’ stimuli were presented to observers

while all other aspects of the experimental set-up and pro-

cedures were the same as in the without-context experiment.

(f) Functional magnetic resonance imaging analysis

All fMRI data underwent three-dimensional motion correction,

slice time correction and analysis using SPM2 (http://www.

fil.ion.ucl.ac.uk/spm/software/spm2/) and custom-routines in

MATLAB. Slow drifts in signal intensity were removed by linear

detrending, but no other temporal smoothing was applied.

ROIs were defined anatomically and functionally. For the ana-

tomically defined ROIs (i.e. calcarine sulcus, fusiform gyrus,

parietal and frontal lobes), the Talairach Daemon database

was used to generate the ROI masks [18]. The fMRI data of

each participant were normalized into Montreal Neurological

Institute space for analysis that used these ROIs. Magnetic reso-

nance (MR) signals were averaged across the six participants

who each completed four repetitions of each trial that corre-

sponds to each of the 300 images and 60 fixation-only trials.

To eliminate the impact of absolute signal magnitude, we

http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
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used per cent MR signal change to perform further analyses.

MR activity at the stimulus onset was used as a baseline to cal-

culate the per cent signal change. As reflected by the per cent

haemodynamic signal changes, in total, we had brain activation

patterns corresponding to the 300 face/non-face images and 60

fixation-only trials.

To gain better statistical sensitivity, we used multivariate

pattern analysis (MVPA) [19] rather than the univariate

mean-of-ROI analysis. To minimize any biases of region

selection in our analyses, we included the patterns of visually

driven voxels across the entire fusiform gyri in both the left

and right hemispheres. Specifically, voxels were selected

within the left and right anatomically defined fusiform gyri,

with the criteria that a voxel only had to have significantly

different fMRI activity between the face trials and the fix-

ation-only trials or between the no face-semblance (NF0)

trials and the fixation-only trials (two-tailed t-test, p , 0.05,

not corrected). The selected voxels comprised large, roughly

equal-sized areas (approx. 16 cm3) in the left and right fusi-

forms. Note that using more stringent criteria that yielded

much smaller (approx. 4 cm3) ROIs did not change our

results. This is consistent with the notion that choosing only

the maximally selective voxels is not necessary for MVPA [19].

In addition to the anatomically defined ROIs, we also func-

tionally localized fusiform face area (FFA), occipital face area

(OFA) and lateral occipital complex (LOC) for each participant.

For analysis that used these ROIs, no spatial normalization or

smoothing was applied. Activation pattern correlations or mag-

nitudes were calculated across the functionally defined ROIs

within each participant and then were averaged across partici-

pants. Specifically, to secure an adequate number of voxels to

perform the pattern correlation analysis, there were two steps

to localize the functionally defined ROIs. (i) General linear

model (GLM) analyses were used to contrast face-evoked acti-

vation and non-face-evoked activation during the localizer

scans. Voxels with peak face-evoked activation greater than

non-face-evoked activation were localized in the fusiform gyri

and the inferior occipital gyri. (ii) Using these voxels as centres,

within a 15 mm radius, significant face-selective voxels (when

compared with the fixation period, p , 1024) were then loca-

lized as FFAs and OFAs, respectively. Similarly, voxels with

peak non-face-evoked activation greater than face-evoked acti-

vation in the lateral occipital–temporal regions were used as

centres to localize the LOC. However, we did not find voxels

with non-face-evoked activation significantly greater than face-

evoked activation in these regions for one participant. In this

case, voxels with peak non-face-evoked activation greater than

fixation-evoked activation in these regions were used. On aver-

age, there were 71 voxels in the right FFA, 65 voxels in the left

FFA, 66 voxels in the right OFA, 73 voxels in the left OFA, 72

voxels in the right LOC and 67 voxels in the left LOC.

Finally, to calculate the activation pattern correlations,

within each ROI (both anatomically and functionally defi-

ned), fMRI activity of the selected voxels was regressed to

the face-evoked fMRI activity. The fMRI activity patterns cor-

responding to non-face images were compared with those

evoked by the 60 face images. Each face-evoked pattern was

compared with the other 59 face-evoked patterns excluding

itself. After averaging across the 60 or 59 correlation scores

corresponding to the 60 or 59 face-evoked activation patterns,

there were 300 averaged correlation scores corresponding to

the 300 stimuli (60 NF0, 90 NFL, 90 NFH and 60 faces).

Further statistical analyses were performed based on these

averaged correlation scores.
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3. RESULTS
(a) Behavioural results

The Elo rating results of face-semblance are shown in

figure 2a. To further validate these perceptually based

face-similarity ratings, we employed two popular compu-

tational image similarity metrics to compare these 300

images with 80 other face images and 80 other random

non-face images. Specifically, we used image-correlation

and Gabor-jet similarity metric [20]. Linear regressions

showed that both of these computational methods con-

curred with the observers’ face-similarity judgements as

quantified by Elo ratings (F . 10, p , 0.001). It is

worth pointing out that our choice of the Elo rating

system is not a critical aspect of the study. Alternatives

like Likert rating scales are also valid. Indeed, in separate

studies, we have found that ratings derived by the two

approaches on our stimulus set are highly correlated. By

contrast, when asked to categorize the 300 images as

‘faces’ or ‘non-faces’, data from 18 observers (who did

not participate in the first experiment) show a sharp

boundary between non-faces and faces (figure 2b).
(b) Activation in the left and right fusiform gyri

across the stimulus spectrum

To quantitatively examine the response profiles of the left

and right fusiform gyri, fMRI activity patterns corre-

sponding to non-face images were compared with those

evoked by the 60 face images by calculating correlation

scores of voxel-by-voxel activation. Each face-evoked pat-

tern was compared with the other 59 face-evoked patterns

excluding itself. The averaged correlation scores are

plotted in figure 2c,d. A repeated-measures ANOVA

reveals that the main effect of face-semblance level is sig-

nificant, F3,177 ¼ 12.46, p , 0.0001; the main effect of

hemisphere is not significant, F1,59 ¼ 2.38, p ¼ 0.128.

Most interestingly, the interaction between hemisphere

and the level of face-semblance is significant, F3,177 ¼

3.06, p , 0.05. Note that NFL and NFH are the two criti-

cal conditions for our study. A planned analysis to

compare these two conditions reveals that, in the left fusi-

form gyrus, the correlation score is significantly higher for

NFH than for NFL (one tailed t-test, t178 ¼ 2.47, p ,

0.01), suggesting that high face-semblance images lead

to more face-like left fusiform brain activation than do

the low face-semblance images. By contrast, the corre-

lation to face-induced brain activation in the right

fusiform gyrus is not significantly different between the

low and high face-semblance images (one tailed t-test,

t178 ¼ 0.18, p ¼ 0.43).

For the 180 face-like false-alarms, further linear

regression showed that changes of activation patterns in

the left fusiform follow the Elo rating of face-semblance

of each stimulus (T ¼ 3.45, p , 0.001). By contrast,

activation in the right fusiform was independent of

face-semblance for all the false-alarm stimuli (T ¼ 0.59,

p ¼ 0.56). A comparison of correlated correlation coeffi-

cients [21] revealed that the left fusiform gyrus was

significantly more than the right fusiform gyrus was corre-

lated with the Elo rating of face-semblance (p , 0.01).

Overall, the response profile of activation patterns in the

left fusiform (figure 2c) resembles the graded change of

the face-similarity ratings (figure 2a). On the other hand,

activation patterns in the right fusiform (figure 2d) are
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consistent with categorical face/non-face judgements

(figure 2b), suggesting a role in representing the perceived

image category rather than image-level face-semblance.

It is worth pointing out that simply comparing responses

to F and NF0 patterns, as has typically been done in the

past, would have been insufficient to reveal the graded

versus categorical differences between the left and right

fusiform gyri.

Several studies have demonstrated an elevated average

response in the ‘fusiform face area’ (FFA) to faces relative

to non-face objects [10–12]. The right FFA is typically

found to exhibit a more robust response than the left

FFA [10,13]. An important question to address is whether

our current findings can be accounted for simply by the

differences in the magnitude of the activity in the FFA.

To this end, in separate reference scans, we localized FFA

for each participant as the regions of interest (ROIs;

see §2). We found that average response magnitudes in

the left and right FFAs are statistically indistinguishable

(figure 3a). This suggests that our finding of lateral differ-

ence in facial processing cannot simply be driven by
Proc. R. Soc. B (2012)
relative response magnitudes in left and right FFAs. Inter-

estingly, even though the average response magnitudes do

not reveal hemispheric processing differences, pattern cor-

relation data do. We calculated pattern correlation of non-

normalized brain activation data for the left and right FFA

separately for each participant. Linear regression for the

180 false-alarm stimuli (NFL and NFH) showed that

changes of the pattern of the left FFA activation followed

the Elo rating of face-semblance (T ¼ 3.88, p , 0.001),

whereas this effect in the right FFA failed to reach signifi-

cance (T ¼ 1.58, p ¼ 0.12). Again, the left FFA was

significantly more than the right FFA was correlated with

the Elo rating of face-semblance (p , 0.05).

Taken together, these results reveal the differential

sensitivities of the left and right fusiform regions to

face-semblance on the one hand, and face category on

the other. Methodologically, the results demonstrate

that while a univariate conventional mean-of-ROI analysis

might be adequate for separating neural responses to

distinct face versus non-face stimuli, the multivariate

distributed pattern analysis can be used to more precisely
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identify neural responses corresponding to categorical

face perception. This enhanced sensitivity can be instru-

mental for detecting differences across populations (e.g.

neurotypical versus patient and adult versus pediatric)

that might otherwise be difficult to discern using

conventional univariate approaches.

To examine whether activity in other cortical areas

besides the right fusiform gyrus might also serve as corre-

lates of categorical face perception, we conducted the

same pattern correlation analysis in ROIs that have pre-

viously been implicated as having an important role in

high-level vision. Several studies have suggested that the

occipital face area (OFA) in inferior occipital gyri may

be involved in face processing [22,23]. Our results are

consistent with this notion because the activation pat-

tern in OFA is modulated by faceness of the stimuli

(figure 3b). However, the correlations are weaker relative

to those in the fusiform gyrus, and we observe no sys-

tematic differences between the left and the right OFAs.

The LOC constitutes another ROI since it has been

reported to be selective to objects [24]. As in the OFA,

pattern activation data in the LOC (figure 3c) show a

weak correlation across the range of face-semblances

and no categorical trends are evident.

To control for the possibility that the observed graded

or categorical responses might be artefacts of some low-

level properties of the stimulus set used, we also examined
Proc. R. Soc. B (2012)
responses in anatomically defined primary visual cortex in

the occipital lobe and other visually driven areas in the

parietal and frontal lobes. We found that unlike the fusi-

form gyri, activation patterns in the calcarine sulcus and

in parietal and frontal lobes do not differentiate across

the face/non-face conditions. This suggests that the sys-

tematic response patterns observed in the two fusiform

gyri (figure 2c,d) are unlikely to be artefactual, driven

by some inadvertent regularity in the stimulus set.
(c) Response modulation induced by the inclusion

of local contextual information

Contextual information often facilitates perceptual categ-

orization by disambiguating and organizing visual inputs.

Previous neuroimaging work has shown that face context

alone (i.e. without an actual face) can yield activations in

the fusiform gyrus that are comparable to those elicited by

actual faces [25]. Here, we tested whether contextual

information can modulate the qualitatively different

brain activation patterns in the left and right fusiform

gyri that are evoked by our stimuli. The 300 images

stimulus set described above was augmented with contex-

tual information by including neighbourhoods of the

image patches (figure 4a). These ‘context added’ stimuli

were presented to observers while we measured their

brain activity using fMRI. All other aspects of the
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experimental set-up and procedures were the same as in

the without-context study. Results are shown in figure 4b.

In the left fusiform gyrus, contextual information has the

effect of reducing pattern correlations to false-alarm

images and greatly enhancing those corresponding to gen-

uine faces. This combined reduction and enhancement has

the net consequence of transforming graded responses in

the left fusiform to categorical ones. In contrast, context-

driven modulation on the right is modest with no signifi-

cant change in the response to false-alarm images and

only a small increase for the genuine faces.1
(d) Temporal dynamics of responses to the stimulus

continuum in the left and right fusiform gyri

The voxel activation values used in the analyses described

above correspond to a post-stimulus latency of 4 s. Con-

sistent with the haemodynamic lag of fMRI time course,

the average response magnitude is expected to peak at

4 s in the fusiform gyrus. With a rapid event-related

design of the kind we have employed, we can probe

how the activation pattern changes as a function of

post-stimulus time. Figure 5 shows the time-course

of changes in correlation scores of the fMRI activation

patterns across the left and right fusiform gyri from 2 to

8 s after the stimulus onset. The effect of faceness in

the left is noticeable at 2 s, most pronounced at 4 s and

weakened by 6 s after the stimulus onset. By contrast, in

the right, no trend of the face-induced activation patterns

can be observed at 2 s. The effect of faceness is equally

large at 4 and 6 s after the stimulus onset. Most

interestingly, as long as 8 s after the stimulus onset,
Proc. R. Soc. B (2012)
face-selectivity persists in the right, whereas activity on

the left has returned to baseline. This asymmetry is

reliably observed in two experiments for both with and

without context stimuli. Table 1 shows planned analyses

(one tailed t-tests) to compare face and non-face (NF0)

conditions across the 2–8 s after the stimulus onset in

the left and right fusiform gyri, and in both the without

and with-context experiments. These results suggest a

long-lasting neural activity in the right fusiform gyrus

bear interesting similarities to behavioural findings from

past studies of split-brain patients that indicate that

the right hemisphere is involved in deeper encoding of

faces [15,26].
4. DISCUSSION
Our results reveal multiple systematic differences in face

responses elicited in the left and right fusiform gyri.

First, the results demonstrate that neural activity patterns

in the right fusiform gyrus change in a manner consistent

with behavioural face/non-face categorical judgements. In

contrast, brain activation pattern in the left fusiform gyrus

appears to correspond to image-level face similarity. This

graded versus categorical response distinction between

left and right fusiform gyri clarifies and extends past

results that had noted lateral differences in face processing

[13,14,27,28]. Interestingly, this hemispheric difference

was not revealed in our univariate amplitude analysis.

Although the neurophysiological basis of the increa-

sed correlation for the face condition is unknown, one

possibility is that population coding of faces in these

ROIs defines a tighter image sub-space than arbitrary
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Figure 5. Pattern correlations across the two fusiform gyri as a function of time post-stimulus. The four panels in the upper row
denote responses to each of the stimulus sets at four time points in the left fusiform gyrus. The lower row shows corresponding
responses in the right fusiform gyrus at the same time points. Error bars represent +1 s.e.m. Solid traces represent responses to
stimuli with local context. Dashed lines correspond to responses to without-context stimuli.

Table 1. Results of one-tailed t-tests to compare face and non-face (NF0) conditions across the 2–8 s after the stimulus onset

in the left and right fusiform gyri, and in both the without and with-context experiments.

time after the stimulus onset (s) 2 4 6 8

without context left fusiform T ¼ 2.86 T ¼ 4.94 T ¼ 1.42 T ¼ 0.985

p , 0.01 p , 1025 p ¼ 0.08 p ¼ 0.16
right fusiform T ¼ 20.636 T ¼ 4.67 T ¼ 2.82 T ¼ 1.58

p ¼ 0.26 p , 1025 p , 0.01 p ¼ 0.06
with context left fusiform T ¼ 2.66 T ¼ 7.27 T ¼ 3.34 T ¼ 24.85

p , 0.01 p , 10210 p , 0.001 p ¼ 0.31

right fusiform T ¼ 20.411 T ¼ 7.00 T ¼ 5.65 T ¼ 2.09
p ¼ 0.34 p , 10210 p , 1027 p , 0.05
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non-faces. The greater self-similarity across activation

patterns corresponding to exemplars of the face-set relative

to that within the much more heterogeneous conceptual

class of ‘non-faces’ would be expected to yield a higher

correlation score for the former than the latter.

Second, the results reveal very different susceptibilities

in left and right fusiform gyri to contextual modulation.

From a theoretical standpoint, models of visual categoriz-

ation typically have two conceptually distinct stages, one

that corresponds to graded evidence accumulation and

another that embodies a categorical decision function

[29,30]. Our results suggest that the left and right fusiform
Proc. R. Soc. B (2012)
gyri might approximate these conceptual divisions of a cat-

egorization system. The findings of differential contextual

modulation and temporal dynamics on the two sides sup-

port this conjecture. Response enhancement via evidence

accumulation would predict significant influence of context

on the left, while the application of a decision function

would be expected to mitigate such influences on the right.

Third, responses on the two sides exhibit different

temporal dynamics. Interestingly, for both with- and

without-context conditions, the categorical responses in

the right fusiform persist at least until 8 s after the stimu-

lus onset even though the stimuli are much shorter in
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duration (each stimulus image was presented for 300 ms

followed by 1700 ms ISI). In contrast, activity in the left

fusiform gyrus returns to baseline by 8 s after the stimulus

onset. In general, responses in the left appear to have an

earlier onset and dissolution relative to those on the

right. Although not definitive, this evidence is consistent

with the notion that the left hemisphere might be involved

in rapid processing of face features, whereas the right

hemisphere might be involved with ‘deep’ cognitive

processing of faces [15,26].

Taken together, our results demonstrate important lat-

eral differences of face processing in the human brain,

complementing the presumed hierarchical organization of

visual pathways. It remains an open question whether the

graded analyses of the left fusiform gyrus and the categori-

cal analyses of the right fusiform gyrus operate in parallel or

whether there are functional dependencies between them.

This issue can potentially be addressed by conducting the

present study with individuals who have recently had

corpus callosotomy or via simultaneous single unit record-

ings that can permit an accurate assessment of response

latencies in the two hemispheres. Given this evidence of

distinct styles of face processing on the two sides of the

brain, it is natural to ask what the genesis of this distinction

is. From a developmental perspective, when does this dis-

tinction become evident and what causes it to arise?

Addressing this question is important for understanding

how face processing matures in the course of normal devel-

opment as well as the kinds of deviations that might occur

when the typical developmental trajectory is disrupted by

factors such as visual insults [31,32] or neurological dis-

orders [33]. By revealing the functional lateralization of

analyses driven by bottom-up image attributes versus by

the perceived category, our approach and results further

our understanding of, and our ability to probe, the brain

mechanisms by which we organize the visual environment

into an orderly meaningful world of distinct object classes.
The study was approved by the MIT Committee on the Use
of Humans as Experimental Subjects (COUHES). The
authors wish to thank Profs Richard Held, Sheng He,
Nancy Kanwisher, Jim DiCarlo and Tomaso Poggio for
their helpful feedback regarding this work. Support for this
work was provided by the John Merck Foundation, the
Simons Foundation, the James McDonnell Foundation and
a grant from the NEI (NIH, grant number R21-EY015521).
ENDNOTES
1As a side note, univariate analysis of average response magnitudes in

the left and right FFAs showed that the with-context stimuli led to

increased activity independent of stimulus category (e.g. non-faces

and faces). This result is consistent with a recent study [34],

suggesting an effect of stimulus size over and above face selectivity

in the FFA. By contrast, brain activation patterns revealed by the

multi-variate analysis are independent of stimulus size for non-

faces (NF0) in the fusiform gyri. These results again underscore

the usefulness of MVPA for assessing face selectivity in brain regions.
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