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The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated
our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed
previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm.
We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity
of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

1. Introduction

A number of experimental systems for microwave breast
imaging have been developed in recent years. These systems
test full-wave inverse scattering algorithms [1–4] as well
as synthetic aperture beam focusing techniques [5]. While
imaging algorithms abound in the literature, techniques to
properly model, characterize, and calibrate these systems
have lagged behind algorithm development. Investigators
have started to identify characterization as a major task,
which must be addressed in order to fully evaluate the effi-
cacy of microwave imaging for breast cancer detection. Part
of this evaluation involves separating modeling errors from
intrinsic algorithm artifacts in the final images. Thus, there is
a need for accurate models of experimental systems, as well
as methods that efficiently incorporate these models into the
imaging algorithms.

The task of characterizing a microwave breast imaging
system for inverse scattering, as compared to a free-space
system, is complicated by several factors. Specifically, the
antennas are not isolated in the background media but
exist as part of the surrounding structure. Also, compact
arrangements of many antennas create a cavity-like imaging
geometry, and the transmitter incident fields include all
background multiple scattering. Finally, the antennas and

object are in each others near-fields, so object-cavity scatter-
ing should be modeled.

In trying to characterize breast imaging systems, investi-
gators have turned to full numerical simulation. The antenna
cavity in [6] was modeled using Ansoft HFSS and only
used for antenna design and sensitivity analysis. In [7],
dipole sources of an inverse scattering experiment were
modeled with HFSS and calibration constants used to scale
the antenna incident fields. HFSS has also been used to
obtain antenna incident fields in a near-field and open,
antenna setup [8]; however, ad hoc methods have been
used to calibrate the scattered field S-parameter data for
the inverse scattering algorithm. In more recent work [9],
CST Microwave Studio was used to study and tune antenna
performance in a breast imaging cavity. Also, finite-volume
time-domain solvers of [10] modeled wide-band antennas
for time-domain beam focusing. The most complete work
to date is [11], where an FEM forward solver is used to
simulate the entire breast in the presence of the antennas,
but computational complexity remains a challenge. Despite
the growing use of numerical solvers to model breast
imaging systems, there has been no clear or formal way of
incorporating the results from full-wave numerical models
into the imaging algorithms.
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Figure 1: Microwave network model of cavity and scattering object.
S-parameters are measured between the reference planes on the
transmission lines.

Figure 2: Breast imaging system prototype. The imaging cavity is
connected to the VNA through a solid-state switching matrix. A
rotator is mounted above and turns suspended objects for multiple
transmitter views.

The task of characterizing any inverse scattering system
can be divided into three parts: (1) determining the incident
fields produced by the antennas in the absence of the object,
(2) determining the background dyadic Green’s function,
that is, modeling the interactions between the object and
its surroundings if necessary, and (3) linking the volume
integrals in the imaging algorithms to measurable transmit
and receive voltages. The purpose of this paper is to show
how we use HFSS and a formalism we developed in previous
work [12] to solve parts (1) and (3) of this characterization
problem, in order to make a numerical characterization and
inverse scattering algorithm consistent with an S-parameter
based prototype breast imaging system.

The inverse scattering algorithm we use is the Born it-
erative method (BIM) with multivariate-covariance cost
function [13–15]. This cost function allows us to exper-
imentally choose the regularization parameters based on
our prior knowledge of system noise and expected range of
permittivities. The forward solver used in the BIM requires

Figure 3: Imaging cavity. Twelve panels with three bow-tie antennas
each are solder together and to a conducting plate.
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Figure 4: HFSS CAD model of the imaging cavity. Twelve panels
contain three bow-tie antennas each. The bottom of the cavity is
PEC, it is filled with the coupling fluid up to the visible line, and the
top surface radiates to air.

the background dyadic Green’s function and finding it con-
stitutes part (2) of the characterization problem mentioned
above. For convenience we use the lossy free-space dyadic
Green’s function and give some numerical and experimental
justification for this. Fully modeling the multiple scattering
between the breast and the imaging structure in the forward
solver is not trivial and we discuss it in The Appendix.

We validate our methods with a combination of sim-
ulation and experiment. We first present the formalism of
[12] in the context of cavity problems. We then explain our
experimental setup, which consists of a cylindrical imaging
cavity with printed antennas, solid-state switching matrix,
and water/oil coupling medium. The HFSS numerical model
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Figure 5: Measured and simulated magnitude and phase of incident S21 between each of the three transmitting antennas and all receivers.
Solid: measured. Dots: HFSS. The groupings from left to right are the eleven receivers of each level (middle, top, and bottom), repeated for
the three transmitters (middle, top, and bottom), plotted counterclockwise when viewed from above for a given receiver level. For example,
data 38 : 48 are middle receivers and top transmitter. The magnitude and phase agree best for transmitters and receivers on the same level
(i.e., data 1 : 11, 50 : 60, and 98 : 108).

Figure 6: HFSS CAD model of the imaging cavity with mesh of
unassigned sheets to constrain the adapting meshing of HFSS for
field interpolation. Sheets are spaced every 5 mm in each direction.

is presented and the simulation results are compared to
those of experiment. We form 3D images of the relative
permittivity and conductivity using both HFSS synthetic
data and experimental data for simple targets. We also
present findings on the sensitivity of image reconstructions
to the accuracy of modeling the background electrical
properties.

Future work includes continuing the validation of our
methodology, experimentally imaging more realistic breast
phantoms, designing a hemispherical imaging cavity, inves-
tigating practical solutions to modeling the breast-cavity
scattering interactions, and developing a clinical imaging
system.
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Figure 7: HFSS convergence with number of tetrahedra for each
adaptive meshing step.

2. Formulation with Source Characterization

2.1. Traditional Volume Integral Equations. The electric field
volume integral equation (VIE) for an inhomogeneous
distribution of permittivity and conductivity is given by

E(r) = Einc(r) + k2
o

∫
G(r, r′) ·

(
δε(r′) +

iδσ(r′)
εbω

)
E(r′)dV ′,

(1)

where E(r) and Einc(r) are the total and incident fields,
respectively, and r is the position vector. The lossless
background wave number is given by k2

o = ω2μoεb, where
the background permittivity is εb = εoεrb with relative
permittivity εrb. The object contrast functions are defined:

εbδε(r) = ε(r)− εb,

δσ(r) = σ(r)− σb,
(2)

where σb is the background conductivity. The quantity
δε(r) is unitless and δσ(r) is an absolute measure of
conductivity with units of Siemens per meter and G(r, r′) is
the background dyadic Green’s function.
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Figure 8: Crosscuts through the center of the cavity of the z-component of the incident electric field due to the middle transmitter. The scale
is 20log10(|Re{Ez,inc}|) of the unnormalized field. (a) Horizontal x-y, and (b) vertical x-z, and (c) vertical y-z planes.

Defining the scattered field as

Esca(r) = E(r)− Einc(r) (3)

and restricting the observation point r to points outside the
object region in (1), we can write the VIE for the scattered
field concisely as

Esca(r) =
∫

G(r, r′) ·O(r′)E(r′)dV ′, (4)

where we define the following object function:

O(r) = k2
o

(
δε(r) + i

δσ(r)
εbω

)
. (5)

In the context of inverse scattering, (1) represents the
solution to the wave equation in the object domain, while (4)
relates the material contrasts to scattered field measurements
taken outside the object domain. Depending on the inversion
algorithm, these two equations are used in combination to

recover both the contrasts and the total fields. Traditionally,
(1) and (4) are used as they are to develop inverse scattering
algorithms.

2.2. Integral Equations for Cavity S-Parameter Measurements.
In a previous work [12], we showed that it is possible to
transform (1) and (4) so that they are consistent with an S-
parameter-based measurement system. We showed that the
resulting equations were valid for both free-space and cavity-
like geometries and went on to validate the free-space case
with an inverse scattering experiment [13]. Here, we will
summarize the results for a cavity geometry.

Consider the cavity depicted in Figure 1. An object to
be imaged is placed in the middle of the cavity. The cavity
is filled with a background material having a permittivity
and conductivity of εb and σb, respectively. The cavity is
lined with radiating apertures, which could be antennas.
Each aperture has its own feeding transmission line and S-
parameter reference plane.
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We define the normalized incident and total fields
throughout the cavity due to a transmitting aperture as

einc(r) = Einc(r)
ao

,

e(r) = E(r)
ao

,
(6)

where ao is the transmit voltage measured with respect to
the S-parameter reference plane. The normalized incident
field captures all background multiple scattering not present
between the object and the cavity.

Let transmitting apertures be indexed with i and those
receiving indexed with j. We can write (1) in terms of
the normalized incident and total fields produced by a
transmitter by dividing both sides by ao,i:

ei(r) = einc,i(r) +
∫

G(r, r′) ·O(r′)ei(r′)dV ′. (7)

This is the integral equation we will use to represent the
forward scattering solution. The normalized total field is the
field solution in the object domain and, with the appropriate
dyadic Green’s function for the cavity, includes the scattering
interactions between the object and the cavity.

In [12] we showed how to transform the scattered
field volume integral equation given by (4) into one that
predicts S-parameters. This new integral operator allows
us to directly compare model predictions to measurements
in the inversion algorithm. The two-port scattered field S-
parameter, Sji,sca, measured between the transmission line
reference planes of two apertures in the presence of an object
is given by

Sji,sca =
∫

g j(r′) ·O(r′)ei(r′)dV ′, (8)

where ei(r) is the normalized total object field produced by
the transmitter and g j(r) is the vector Green’s function kernel
for the receiver. It was also shown in [12] by reciprocity that
g j(r) is related to the normalized incident field of the receiver
as

g j(r) = − Z
j
o

2iωμ
einc, j(r), (9)

where ω is the operating frequency in radians, μ is the back-

ground permeability, and Z
j
o is the characteristic impedance

of the receiver transmission line.
Equations (7) and (8) are the integral equations we will

use for the inverse scattering algorithm. They consistently
link the electric field volume integral equations to an S-
parameter measurement system. We need only to determine
the normalized incident fields in the object domain and
the background dyadic Green’s function; no other step is
required to characterize the system, except to calibrate the
transmission line reference planes.

Lastly, in experiment, we never measure scattered field
S-parameters directly but obtain them by subtracting the S-
parameters for the total and incident fields:

Sji,sca = Sji,tot − Sji,inc, (10)

0 100 200

(mm)

Figure 9: HFSS model of a simple sphere used to generate synthetic
scattered field S-parameters.

where Sji,inc is measured in the absence of the object and Sji,tot

is measured in the presence of the object.

2.3. Determining einc(r) and G(r, r′). The normalized inci-
dent field is required in both (7) and (9) and is required
for every aperture. We can either measure it experimentally
or estimate it with simulation. Experimentally mapping the
fields requires proper probe calibration and has the added
complication in a cavity that the probe-wall interactions
cannot be neglected. An alternative approach, the one we
adopt for this paper, is to estimate the normalized incident
field with simulation. This can be done provided that we
have a computer aided design (CAD) model that accurately
represents the cavity. It is also possible in simulation to model
the feeding transmission lines and line voltages in order to
assign an S-parameter reference plane that is identical to
the reference plane used by a vector network analyzer for
the physical measurement. We will show how we use Ansoft
HFSS to accomplish this.

As stated in the introduction, determining the back-
ground dyadic Green’s function is nontrivial, especially for
arbitrary cavity geometries. Despite this, for the immediate
investigation, we use the free-space dyadic Green’s func-
tion under the condition that the background medium is
extremely lossy. Though not strictly correct, this approx-
imation is convenient provided the multiple scattering
throughout the cavity is limited by the background loss.
It also allows us, for the time being, to retain use of an
FFT-based volumetric forward solver. We give examples
later evaluating this assertion. There are several approaches
for determining or approximating the background dyadic
Green’s function for arbitrary geometries, which we discuss
in The Appendix and leave for future work.
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Figure 10: Reconstructions of a single sphere (εr , σ) = (40, 1) located at (x, y, z) = (0, 0, 2 cm) of Example 1. (a) and (c) and (b) and (d)
Relative permittivity and conductivity, respectively. (a) and (b) is the Born approximation. (c) and (d) is BIM iteration 4. Here, iterations
help retrieve the relative permittivity in (c), but the Born approximation yielded better conductivity in (b).

3. Born Iterative Method

The imaging algorithm we use is the Born iterative method
(BIM) [16–19]. The BIM successively linearizes the nonlinear
problem by alternating estimates of the contrasts and the
object fields according to the following algorithm.

(1) Assume the object fields are the incident fields (Born
approximation).

(2) Given the measured scattered field data, estimate the
contrasts with the current object fields by minimizing
a suitable cost function.

(3) Run the forward solver with current contrasts. Store
the updated object field.

(4) Repeat step 2 until convergence.

This algorithm and its implementation are described
in detail in our previous work [13], where we successfully
formed images of dielectric constant for plastic objects in a
free-space experiment. This was done using the same BIM

and the integral equations for S-parameters given above us-
ing antennas characterized with HFSS.

We use the multivariate covariance-based cost function
of [15]. The Gaussian interpretation of this cost function
allows us to experimentally justify the values we use to regu-
larize it by our a priori knowledge of the experimental noise
and range of contrast values. For the forward solver, because
we use the lossy free-space dyadic Green’s function to model
the internal scattering, we use the BCGFFT [20–22], which
we have validated with analytic solutions. In the examples
that follow, we found that 4 BIM iterations were repeatably
sufficient for the data residual and object to converge.

4. Breast Imaging System Prototype

The breast imaging system prototype we built is shown
in Figure 2. The imaging structure is a cavity, shown in
Figure 3, that was created by soldering twelve vertical panels
of microwave substrate together and soldering the collection
to a conducting base. Opposite panels are separated by 15 cm,
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Figure 11: Reconstructions of a single sphere (εr , σ) = (40, 0) located at (x, y, z) = (0, 0, 2 cm) of Example 1. Born iterations helped retrieve
the relative permittivity in (c) and are essential in recovering the conductivity in (d).

and the cavity is 17 cm long. Three antennas are printed on
each panel for a total of 36 antennas. In the prototype, the
three antennas of one panel are used as transmitters, while
all other antennas are receivers. The transmit antennas are
switched with a Dowkey SP6T electromechanical switch. The
receivers are connected through an SP33T solid-state switch-
ing matrix that was designed and assembled in-house. 2-port
S-parameter measurements were taken with an Agilent PNA-
5230A vector network analyzer (VNA) at 2.75 GHz between
each transmitter and any one receiver. This frequency was
chosen as a compromise between resolution and switch
performance, which rolls off above 3 GHz. A rotator was
mounted above the cavity and aligned in the center of the
cavity. Test objects are suspended with fishline and rotated to
provide multiple transmitter views.

4.1. Liquid Coupling Medium. We expect breast tissue to have
a relative permittivity between 10 and 60 [23]. Without a
matching medium, much of the incident power would be
reflected at the breast/air interface reducing the sensitivity of
the system [24]. Also, the contrast ratio between the object

and the background would be too high for the BIM inverse
scattering algorithm to converge.

The matching medium we use is an oil/water emulsion
developed in a previous work [25]. This fluid is designed
to balance the high permittivity and high conductivity of
water with the low permittivity and low conductivity of oil,
in order to achieve a fluid with moderate permittivity while
limiting loss as much as possible. We are also able to tune
the microwave properties of this emulsion by adjusting the
oil/water ratio. We aimed for a relative permittivity value
around 20, which brings the maximum permittivity contrast
to about 3 : 1. The fluid mixture we used was 65%/35%
oil/water.

The electrical properties of the fluid were measured us-
ing the Agilent 85070E slim form dielectric probe. The
measured properties at 2.75 GHz were (εr , σ) = (19, 0.34).
Relative permittivity is unitless; the units of conductivity
used throughout the paper are Siemens/m. When using
this value in the numerical model (presented below) the
magnitude of cross-cavity S21 required some adjustment
when compared to the measurements. We obtained the best
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Figure 12: Reconstructions of a single sphere (εr , σ) = (10, 1) located at (x, y, z) = (0, 0, 2 cm) of Example 1. Born iterations helped the
recovery of the low permittivity in (c), but at the expense of the correct conductivity value which was better with the Born approximation in
(b).

model agreement for (εr , σ) = (21, 0.475), which are the
values we use throughout the paper. We suspect that the
probe area may be too small to accurately measure the bulk
properties of the mixture, but the fluid otherwise appears
homogeneous for propagation at 2.75 GHz. We are still
investigating this effect.

When taking data, we fill the cavity with the coupling
fluid to a height that is 0.5 cm below the top edge. This
fluid height is accounted for in the numerical model. Any
fluid displacement from adding or removing test objects
is compensated in order to keep the height constant.
We have also found the emulsion to be stable over the
course of measurements, which we confirmed by comparing
transmission measurements before and after we take data for
imaging.

4.2. Antenna Design. The antennas are bow-tie patch anten-
nas, similar to the antennas in [6, 26]. They are of single
frequency and vertical polarization. The bow-tie antenna
was chosen to give more degrees of freedom to help

impedance match the antenna to the coupling fluid. The
vertical polarization was chosen for best illumination of the
object and other antennas in the cylindrical geometry. The
substrate material is Rogers RO3210, with 50 mil thickness
and reported dielectric constant of 10.2. The antennas were
originally designed to operate at 2.8 GHz in the cavity filled
with a fluid with (εr , σ) = (24, 0.34); however, after iterating,
we found best performance at 2.75 GHz in a fluid of (εr , σ) =
(21, 0.475).

4.3. System Parameters. In determining the system noise
and isolation requirements, the minimum expected signal
determines the required noise level, and the maximum
relative magnitude between signals on adjacent channels
determines the required switch path isolation. From previous
numerical studies of cavity-like breast imaging with similar
emulsion properties [27], we expect the scattered field S21

magnitude of small inclusions to be in the range from
−100 to −50 dB, and so the relative signal strength between
adjacent antennas could differ by as much as −50 dB. This
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Figure 13: Reconstructions of a single sphere (εr , σ) = (40, 0) located at (x, y, z) = (0, 0, 2 cm) of Example 1. Born iterations helped bring
out the proper conductivity value in (d).

means that the noise of our system must be less than
−100 dB, which is achievable by our VNA with averaging
and an IF bandwidth of 100 kHz or less. Also, the switching
matrix paths must be isolated by at least −50 dB.

4.4. Switching Matrix. The receivers were connected through
a SP33T solid-state switching matrix that was designed and
assembled in-house. The matrix consists of two custom
SP16T solid-state switching matrices and a cascaded pair of
Miniciruits SPDT switches. Each SP16T switch is composed
of two layers of SP4T Hittite HMC241QS16 nonreflective
switches, which are buffered at the output by a third layer
consisting of a single SPDT Hittite HMC284MS8GE on
each path. The buffer layer was added to increase interpath
isolation. The switch is controlled with an embedded digital
board and computer parallel port. The operating band of
the switching matrix is between 0.1–3 GHz. The overall loss
of a path through the SP33T matrix is no worse than 8 dB
across the band. We measured the switch path isolation to
be better than −55 dB between 1–3 GHz, which meets the
criteria above.

By separating the transmitter and receiver switching, the
isolation between these two operation modes is dictated
by the network analyzer and the cables. In more realistic
systems, where the antennas are dual mode and so object
rotation is not necessary, the isolation requirements are more
stringent, because the transmit amplitude will be orders of
magnitude larger than the scattered field.

4.5. VNA Calibration. Two-port VNA calibrations were
accomplished between each transmitter and each receiver.
The S-parameter reference planes were calibrated to the
points where the cables connect to the antenna. These
reference planes are identical to those in the HFSS CAD
model (presented below). While calibrating, we left the
unused ports open with the rationale that the one-way
switch isolation of −55 dB provided sufficient matching to
the open ports. Short-open-load measurements for a 1-
port calibration were taken for each antenna. Next, we
measured the through path between the transmitter and each
receiver using a connector. In software, we combined the
1-port and through measurements to accomplish a 2-port
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short-open-load-through (SOLT) calibration with arbitrary
through between each transmitter and receiver for a total
of 99 separate 2-port calibrations. The calibration for a
particular transmitter/receiver pair is recalled in the VNA
before taking data.

5. Numerical Model

We use Ansoft HFSS to numerically model the cavity, similar
to [27]. We use it several ways. First, we model the feeding
transmission lines in order to assign S-parameter reference
planes that are identical in both simulation and experiment.
Second, we estimate the normalized incident fields due to
the transmitters throughout the cavity for use in (7) and
(9), where the normalized incident fields now include all
background multiple scattering not present between the
object and the cavity. Also, we use the model to generate
synthetic scattered field S-parameters of numerical targets
in order to study the performance of the inverse scattering
algorithm given the source geometry and system parameters.

Figure 4 shows the HFSS CAD model of the 12-sided
cavity. The model includes the panel thickness and dielectric
constant, bottom conductor, probe feed, coupling fluid prop-
erties, and height of the fluid. Same as in the experiment, the
cavity is filled to a height that is 0.5 cm below the top (seen
as the line below the top edge of the cavity). The remaining
0.5 cm is air with a radiating boundary condition. The outer
boundary of the cavity is PEC.

Next we compare measured and simulated incident S-
parameters in order to access the accuracy of the model.
Figure 5 shows the magnitude and phase, respectively, of
the measured and simulated incident S-parameters between
each transmitter and all receivers. The magnitude and phase
agree best when the receivers are on the same level as the
transmitter. In this case, the magnitude agrees generally to
within 3 dB, for all three levels, and the phase agrees to within
30 degrees, which is approximately λ/10, a common metric
for many microwave systems. For measurements between
antenna levels in Figure 5, the agreement is not as good
in magnitude, but the phase error remains similar to the
previous cases. This also shows that the one-way path loss
across the cavity is approximately −50 dB, so we expect any
multiple scattering to be localized. This partially justifies our
approximation of the cavity dyadic Green’s function with the
lossy free-space dyadic Green’s function.

When computing the incident fields, the center of the
cavity was meshed with a coarse Cartesian grid of sparse
unassigned sheets, shown in Figure 6. Sheets are spaced
every 5 mm in the x, y, and z directions. The spacing is
approximately λ/5 at 2.75 GHz in the fluid with relative
permittivity of 21. We have found that this helps constrain
the adaptive meshing of HFSS when we obtain the incident
fields by interpolating the FEM mesh onto a fine Cartesian
grid, [12].

When simulating the structure, with or without scat-
tering targets, we use a convergence criterion of ΔS =
0.02 which is reached in 7 adaptive meshing iterations.
A typical simulation completed with approximately 1.4
million tetrahedra using 23.5 GBytes of RAM and swap

0 100 200

(mm)

Figure 14: HFSS CAD numerical breast phantom of Example 2.
The inclusion is 2 cm in diameter with relative permittivity and
conductivity contrasts of 2 : 1. The skin layer is 2 mm thick.

space to obtain a full 36 × 36 S-matrix. Simulations took
approximately 25 hours on a dual E5504 Intel Xeon (2x Quad
Core) desktop with 24 GBytes of RAM. Figure 7 shows a
typical convergence rate as a function of tetrahedra.

We obtained the incident fields for only the three
transmitters. The incident fields for the receivers were
obtained through rotation, where we assume the 12 panels
of the experimental cavity are identical. The incident fields
were sampled on a 17 cm × 17 cm × 18 cm grid with 1 mm
spacing, which is λ/24 at 2.75 GHz in a fluid with relative
permittivity 21. In simulation, the average transmit power
was 1 Watt, so, from transmission line analysis, the line
voltage is given by

ao =
√

2PaveZo =
√

2Zo, (11)

which is used in (6). The phase of ao is zero because the
S-parameter reference planes of the HFSS model and the
experimental cavity were identical.

Figure 8 shows three crosscuts of the z-component of the
incident electric field through the center of the cavity for the
center transmitter in a fluid of relative permittivity of 21 and
conductivity 0.475 at 2.75 GHz. The coordinate origin is at
the center of the cavity, and the transmitter is located on the
positive x axis. The effects of the cavity on the incident field
are seen in Figure 7, where the fields are guided by the walls
of the cavity; the coaxial feeds are also visible; the fluid-air
interface is visible in Figures 8(b) and 8(c).

6. Image Reconstructions

6.1. Synthetic Data. We first test the BIM and numerical
characterization using synthetic data from HFSS. This is
to assess the performance of the algorithm and source
geometry under near ideal circumstances. We simulated the
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Figure 15: Reconstructions of the HFSS numerical breast phantom in Example 2 after four iterations. (a), (c), and (e) and (b), (d), and (f)
Relative permittivity and conductivity, respectively. (a) and (b), (c) and (d), and (e) and (f) Cuts at x = 0 cm, y = 0 cm, and z = 3 cm. The
relative permittivity of the inclusion is recovered, but both images contain many artifacts.
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Figure 16: HFSS CAD numerical breast phantom with skin
layer, fat layer, glandular tissue, and chest wall of Example 3.
The inclusion is 1 cm in diameter with relative permittivity and
conductivity contrasts of 2 : 1.

scattered field S-parameters of simple numerical objects and
use these data as measurements in the inversion algorithm.
HFSS scattered field data includes any multiple scattering
between the object and the cavity. The background medium
had a relative permittivity of 21 and a conductivity of
0.475 Siemens/m. The incident fields were computed with
these background parameters and used in volume integral
equations.

Example 1. We first used HFSS to simulate the scattered
field S-parameters for a single 1.5 cm diameter sphere located
at (x, y, z) = (0,0,2 cm) with four combinations of relative
permittivity and conductivity: (40, 1), (40, 0), (10, 1), and
(10, 0). The HFSS model is shown in Figure 9. Figures 10,
11, 12, and 13 show images of the first and fourth BIM
iterations for each object. As shown, in some cases, the
BIM steps were essential in recovering the correct property
values of the sphere; in other cases, the relative permittivity
was improved at the expense of the conductivity value.
These images show that the source geometry and numerical
characterization are adequate for the retrieval of some object
property combinations, but not others. This fact, together
with the visible artifacts, suggests that the images could be
improved with a denser source geometry.

Example 2. Next we imaged a more anatomical numerical
breast phantom. The numerical phantom is shown in
Figure 14. The breast is 9 cm at the widest point and 6 cm
deep. The outer layer is a 2 mm thick skin layer, and the
inclusion is 2 cm in diameter. The dielectric properties of the
skin layer, glandular tissue, and inclusion, respectively, are
(εr , σ) = {(45,1.59), (21, 0.475), and (42, 0.8)}, which were
obtained from [28]. We assume we know the volume region
of the breast, so we mask that volume excluding all other
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Figure 17: Reconstructions of the HFSS numerical breast phantom,
which includes the chest wall of Example 3. (a) and (b) Relative
permittivity and conductivity, respectively. The object could not be
reconstructed.

points during inversion. Figure 15 shows the reconstructed
relative permittivity and conductivity after 4 iterations for
three cuts. The relative permittivity of the inclusion is
recovered, but the conductivity of the inclusion is not
recovered. The skin layer is also visible in the conductivity
images. Both sets of images suffer from artifacts, which is due
to the sparse spatial sampling of the antennas and indicates
that the images can be improved with more angular views.

Example 3. To push the algorithm, we imaged a phantom
that included a skin layer, fat layer, glandular tissue, chest
wall, and inclusion, with relative permittivity and conductiv-
ity, respectively, of (45, 1.6), (5.1, 0.16), (21, 0.475), (52, 2.0),
and (40, 1.0). The HFSS model is shown in Figure 16. The
reconstructions are shown in Figure 17. In this case the
algorithm failed to recover the contrasts. This suggests that
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Figure 18: Continued.
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Figure 18: Sensitivity of image reconstructions to background permittivity for Example 4. (a), (c), (e), (g), and (i) and (b), (d), (f), (h), and
(j) Relative permittivity and conductivity, respectively. The scattered field data was generated in HFSS in a background of (21, 0.475). The
reconstructions are done with assumed background relative permittivities of 20, 20.5, 21, 21.5, 22 for (a) and (b), (c) and (d), (e) and (f),
(g) and (h) and (i) and (j), respectively. The recovered contrasts of the sphere oscillate about the background.

(1) the object is too different from the background for the
BIM to converge, (2) object-cavity interactions are too strong
to use the free-space dyadic Green’s function, or (3) images
cannot be constructed if the chest wall is not modeled,
meaning that it is necessary to model the chest wall for the
incident fields and the dyadic Green’s function.

Example 4. Finally, we studied the effects of different back-
ground permittivities when forming images. This represents
a case in experiment where the measurements are taken in
a fluid with some set of properties, but the fluid properties
we use in the model are slightly off. We formed images using
HFSS scattered field data of the sphere with (εr , σ) = (40, 0)
in a background of (εb, σ) = (21, 0.475), but where we use
incident fields from five different background permittivities:
{20, 20.5, 21 (again), 21.5, 22} and the same conductivity.

Figure 18 shows 3D crosscuts at the fourth BIM iteration
for all five backgrounds. Figures 18(e) and 18(f) are the
correct images. Notice that an error in the background
permittivity of 1, or 5%, is enough for the reconstructed
object contrast to oscillate, demonstrating that reconstruc-
tions are very sensitive to our knowledge of the background
properties.

6.2. Experimental Data. At this time, only simple plastic
objects have been imaged with the experimental system;
however, future work includes imaging more realistic breast
phantoms. Among the test objects, we show the results
here for several acrylic spheres. The objects were suspended
from a platform and rotated to 12 positions in 30 degree
increments. Scattered field S-parameter measurements from
each position were combined to yield a full 36 × 36 S-
parameter matrix, which was used in the inverse scattering
algorithm.

Experiment 1. We imaged a single acrylic sphere, shown in
Figure 19. The diameter of the sphere was 2.54 cm, with

properties (εr , σ) = (2.7, 0). The sphere was located at
approximately (x, y, z) = (1.5 cm, 1.5 cm, 0). Figure 20 shows
the reconstructions after 4 iterations of the x-y plane.
The inversion domain is masked so that only a cylindrical
region containing the rotated object is imaged. We also
imaged two acrylic spheres, shown in Figure 19. Figure 21
shows the reconstructions after 4 iterations. In both cases,
the relative permittivity is recovered quite well, and the
conductivity contrast is correctly valued but the shape is
incorrect. There are also many artifacts present. Given that
the imaging algorithm could recover the single sphere using
HFSS data, we can attribute these discrepancies to differences
between the experiment and the model, such as knowledge in
the coupling medium properties, substrate properties, VNA
calibration, cavity size measurements, or object motion.

Experiment 2. Finally, while the primary discussions in this
paper concern a cavity having antennas that operate at
2.75 GHz, we also built a lower frequency cavity where the
antennas operate at 915 MHz. This cavity was numerically
characterized using the same methods, but the background
fluid properties were (εr , σ) = (23, 0.1). Figure 22 shows
the cavity with three acrylic spheres. Two spheres are
located in the x-y plane, while the third is positioned at
approximately (x, y, z) = (4 cm, −3 cm, 5 cm). We imaged
the relative permittivity and conductivity, and the results
after 4 iterations are shown in Figure 23. The shape and
properties of the two in-plane spheres are well recovered.
The third sphere is also detected but cut off at the upper
left of the imaging domain. Artifacts are also present, but
this example better demonstrates that the numerical charac-
terization, BIM, and free-space Green’s function are capable
of recovering objects in this cavity and source geometry. It
should be noted that images formed with data at 915 MHz
are less susceptible to modeling errors because the cavity
and objects are electrically smaller, but the resolution is
reduced.
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(a)

(b)

(c)

Figure 19: Test objects and coupling fluid for Experiment 1. (a)
Single suspended acrylic sphere. (b) Two acrylic spheres. (c) Cavity
filled with the coupling medium. Objects are suspended and rotated
from the nylon platform.

6.3. Discussion. Overall, the imaging algorithm, numerical
characterization, and experiment worked with some success,
and there are several areas for continued investigation.

First, Examples 1 and 2, and also Experiments 1 and
2, validate the technique described in this paper showing
that the numerical characterization of the cavity incident
fields and the use of the vector Green’s function formulation
linking the incident fields to the inverse scattering algorithm
can be used to successfully form images in a cavity geometry.
Examples 1 and 2 demonstrate the consistency of the method
using synthetic scattered field S-parameter data. Experiments
1 and 2 show that the characterization and experiment
agreed enough for the BIM to recover the location and
permittivity of the test objects. More realistic phantoms
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Figure 20: Reconstructions of the single acrylic sphere of
Experiment 1 shown in Figure 19(a). (a): Relative permittivity. (b):
Conductivity. The permittivity is recovered well but the shape in the
conductivity is not.

and lower contrast phantoms will help further confirm the
methodology.

Second, in Example 1, although some permittivity and
conductivity combinations of the sphere were recovered,
others were not. Given that the data was synthetic, this
points to inherent imaging ambiguities in the simultaneous
retrieval of both permittivity and conductivity in the inverse
scattering problem. Possible solutions are increasing the
number of unique data, or including prior information
about the relations between permittivity and conductivity in
tissue.

Third, the success of the algorithm in Example 2 in
recovering the partial breast phantom suggests that our use
of the lossy free-space dyadic Green’s function in the forward
solver of the BIM did not grossly affect image reconstruction
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Figure 21: Reconstructions of the two acrylic spheres of
Experiment 1 shown in Figure 19(b). (a) Relative permittivity. (b)
Conductivity. The permittivity is again recovered well but the shape
in the conductivity is not.

in this case. This is keeping in mind that the synthetic
scattered field S-parameter data did include any multiple
scattering between the phantom and the cavity.

Fourth, in light of the successful reconstruction of the
simple phantom in Example 2, the failure of the algorithm
to recover the more complete breast phantom in Example 3
points to the need to model the chest wall. This can be
done by including it in the incident field computations but it
may also be necessary in estimating the cavity dyadic Green’s
function. This is an area to be investigated.

Lastly, Example 4 shows that we must know the back-
ground relative permittivity to within 5% of the actual or else
risk incorrectly estimating whether the contrasts are higher
or lower than the background. An equivalent error can
arise from a correct background permittivity but incorrectly

Figure 22: Second cavity with antennas designed to operate at
915 MHz of Experiment 2. Three acrylic sphere are suspended (one
visible). Cavity is filled with fluid for imaging.

measuring the dimensions of the cavity. We suspect that the
very high recovered conductivity values in both Experiments
1 and 2 may be due in part to these types of systematic errors.
This demonstrates the difficulty in achieving the necessary
consistency between the model, experiment, characteriza-
tion, and imaging algorithm to accurately form microwave
breast images of diagnostic quality.

7. Conclusion

We demonstrated the use of a numerical characterization
technique for a breast imaging system prototype. We
used HFSS to numerically estimate the incident fields of
the antennas in a cavity geometry and formally linked
them to an S-parameter-based inverse scattering algorithm
and experimental setup. The imaging algorithm was the
Born Iterative Method and recovered both numerical and
experimental test objects with some success. Future work
includes further validation of our methodology, imaging
realistic breast phantoms, investigating practical solutions to
modeling breast-cavity scattering interactions, image quality
assessments with and without numerical characterization,
and developing a hemispherical cavity and clinical imaging
system.

Appendix

Determining the Background Dyadic
Green’s Function

We list the following approaches for obtaining the back-
ground dyadic Green’s function as work for future investi-
gation.

Analytical Dyadic Green’s Function. There exist analytical
solutions of the dyadic Green’s function for some simple cav-
ity geometries, such as cubes or cylinders, [29], which might
approximately model certain cavity-based imaging setups.
These solutions, however, will likely not include finer details
such as antenna plating, connectors, substrate material, or
open-ended cavities, such as those used for breast imaging.
Analytic solutions though lend themselves to the possibility
of retaining some convolution structure in the VIE so fast
forward solvers can be used (e.g., fast half space solutions
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Figure 23: Reconstruction of the relative permittivity and conductivity of three acrylic spheres using a cavity operating at 915 MHz from
Experiment 2. The two spheres in plane are well recovered and the third detected at the upper left of the image.

[30], applied to multisided cavities). Determining the dyadic
Green’s function analytically becomes a formidable task as
the geometry complicates, where simulation may be better
suited.

Full Numeric Simulation. The most complete solution
is to fully simulate the object and cavity using a numeric
simulator, which will capture all the multiple scattering
between the object and the cavity. However, unlike a dyadic
Green’s function, which only needs to be found once for a
particular geometry and the values of which are only needed
on the interior of the object domain, this method must
simulate the cavity structure outside the object domain in
every instance of the simulation. When used in an inverse
scattering algorithm, which might compute the domain VIE
for each source, frequency, and iteration, then repeatedly
simulating the cavity structure adds to the already high
computational burden. In addition, one must choose a
proper simulation technique to handle both antenna surfaces
and inhomogenous media.

Numerical Dyadic Green’s Function. If analytical solutions
are not accurate enough, then one must determine the dyadic
Green’s function numerically. This requires simulating three
orthogonal dipoles in turn at every point in the object
domain and recording the response at every other point
in the domain. The dyadic Green’s function is symmetric,
so half of the combinations are redundant, and while the
convolution nature of the VIE is destroyed, some compu-
tational speed-up is possible for symmetric operators. This
technique, however, requires accurate modeling around the
dipole singularity, which can be difficult. In the case of PEC
structures, the technique in [31] computes the dyadic Green’s
function by finding an array of image dipoles outside the
cavity, which avoids the complications from the singularity.
The main advantage of determining the dyadic Green’s
function numerically is that, once found, we no longer need
to simulate the cavity structure and can turn our attention to
optimizing the computation of the dyadic Green’s function.

Approximate Solutions. If the background loss is suffi-
ciently high, so that the resonances of the cavity are damped,
then we can approximate the dyadic Green’s function. This
can be done by adopting an analytical solution (e.g., free-
space or cavity) or by, for instance, developing a perturbation
method. Adopting the free-space dyadic Green’s function (or
a perturbation on it) also allows us to retain the convolution
structure of the VIE- and FFT-based forward solvers, which
may be more beneficial to the inverse scattering algorithm
than modeling higher-order multiple scattering.
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