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The most significant advance in the medical management of HIV-1 infection has been the
treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetect-
able levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-
increasing understanding of the virus replication cycle have been instrumental in this effort
by providing researchers with the knowledge and tools required to prosecute drug
discovery efforts focused on targeted inhibition with specific pharmacological agents. To
date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available
for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based
on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse tran-
scriptase inhibitors (NNRTIs), (2) non–nucleoside reverse transcriptase inhibitors (NNRTIs),
(3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor
antagonists. In this article, we will review the basic principles of antiretroviral drug therapy,
the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).

BASIC PRINCIPLES OF ANTIRETROVIRAL
THERAPY

Before 1996, few antiretroviral treatment
options for HIV-1 infection existed. The

clinical management of HIV-1 largely consisted
of prophylaxis against common opportunistic
pathogens and managing AIDS-related ill-
nesses. The treatment of HIV-1 infection was
revolutionized in the mid-1990s by the devel-
opment of inhibitors of the reverse trans-
criptase and protease, two of three essential
enzymes of HIV-1, and the introduction of
drug regimens that combined these agents to
enhance the overall efficacy and durability
of therapy. A timeline of antiretroviral drug

development and approval for human use is
described in Figure 1.

Since the first HIV-1 specific antiviral drugs
were given as monotherapy in the early 1990s,
the standard of HIV-1 care evolved to include
the administration of a cocktail or combination
of antiretroviral agents (ARVs). The advent of
combination therapy, also known as HAART,
for the treatment of HIV-1 infection was semi-
nal in reducing the morbidity and mortality
associated with HIV-1 infection and AIDS
(Collier et al. 1996; D’Aquila et al. 1996; Stas-
zewski et al. 1996). Combination antiretroviral
therapy dramatically suppresses viral replica-
tion and reduces the plasma HIV-1 viral load
(vLoad) to below the limits of detection of the
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Trade name

Norvir
Ritonavir
AbbottPl1996

Viramune

NevirapineBlNNRTI1996 Sustiva
Efavirenz
BMSPl1998Ziagen

Abacavir
GSKNRTI1998

Crixiva
Indinavir
MerckPl1996

Trizivir
Abacavir+

zidovudine+

lamivudine
GSKNRTIs2000

Truvada
Tenofovir+

emtricitabine
GileadNRTIs2004

Atripla
Tenofovir+

emtricitabine+

efavirenz

Gilead and BMS

NRTIs + NNRTI
2006Prezista

Darunavir

Tibotec/J&J

2nd-gen. Pl
2006

Isentress
Raltegravir
MerckINI2007

Emtriva
Emtricitabine

GileadPl2003Fuzeon
Enfuvirtide
Roche

entry/gp412003

Viread
Tenofovir
GileadNRTI2001

Viracept
Nelfinavir
PflzerPl1997

Eipivir
Lamivudine

GSKNRTI1995

Fortovase/Invirase

Saquinavir
RocheNRTI1995

HIVID
Zalcitabine
RocheNRTI

1992 (discont. 2006)

Kaletra
(with ritonavir)

LopinavirAbbottPl2000

Rescriptor
Delavirdine
PflzerNNRTI1997

ZeritStavudineBMSNRTI1994

Videx
DidanosineBMSNRTI1991

Retrovir
ZidovudineGSKNRTI1987

Combivir
Zidovudine+

lamivudineGSKNRTIs1997

Agenerase
Amprenavir

GSK
PI

1999 (discont. 2004)

Selzentry
Maraviroc
Pfizer

Entry/CCR5
2007

Famvir
Famciclovir
Novartis

VZV, HSV-2

TK/DNA pol inhibitor

2007

Baraclude
EntecavirBMS

Hepatitis B virus
NRTI2005

Tamiflu
Oseltamivir

Gilead/Roche

Influenza A and B virus

Sialic acid analog/neurominidase

inhibitor1999
Relenza

ZanamivirGSK

Influenza A and B virus

Sialic acid analog/neurominidase

inhibitor1999

Valtrex
Valacyclovir

GSK

HSV-1, HSV-2, VZV, EBV, CMV

TK/DNA pol inhibitor

1996

Vistide
Codofovir

Gilead Biosciences/Pfizer

Cytomegalovirus (CMV) in AIDS

patients

TK/DNA pol inhibitor

1996

Flumadine
Rimantadine

Forest Pharmaceuticals

Influenza A virus

blocks the M2 ion channel

1994

Cytovene, Cymevene, Vitrasert

Gancyclovir
RocheCMV

TK/DNA pol inhibitor

1989

Herpex, Acivirax, Zovirax, Aciclovir,

and Zovir

Acyclovir (ACV)

Multiple pharmaceutical and generic

companies

HSV-1, HSV-2, VZV, EBV, CMV

TK/DNA pol inhibitor

1982

Copegus, Rebetol, Ribasphere, Vilona,

and Virazole
Ribavirin

Multiple pharmaceutical companies

RSV, HCV

Mechanism unknown/possible

ribonucleoside inhibitor

1980 (RSV)/1998 (HCV)

Symmetrel

Amantadine

Multiple pharmaceutical and generic

companies

Influenza A and B

blocks the M2 ion channel

1969

Foscavir
Foscarnet

Astra Zeneca

HSV-1, HSV-2, CMV

DNA polymerase inhibitor

1991

–Boceprevir
Merck

Hepatitis C virus
NS3 PI

Filed 2010–Telaprevir
VertexHCVNS3 PI

Filed 2010

Aptivus
TipranavirBl
Pl2005

Lexiva

Fosamprenavir
GSKPl2004

Reyata
Atazanavir
BMSPl2003

Drug class
Year of FDA approval
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no
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First
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Trade name
Generic name (common abbreviation)

Company
Virus target

Drug class/mechanism
Year of FDA approval

19
69

Monotherapy

Dual therapy

Triple drug combination (HAART)

Figure 1. Timeline for FDA approval for current antiviral and antiretroviral drugs.
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most sensitive clinical assays (,50 RNA copies/
mL) resulting in a significant reconstitution
of the immune system (Autran et al. 1997; Ko-
manduri et al. 1998; Lederman et al. 1998;)
as measured by an increase in circulating
CD4þ T-lymphocytes. Importantly, combina-
tion therapy using three antiretroviral agents
directed against at least two distinct molecular
targets is the underlying basis for forestalling
the evolution drug resistance.

In an untreated individual, on average there
are 104–105 or more HIV-1 particles per mL of
plasma, which turn over at a rate of �1010/d
(Ho et al. 1995; Wei et al. 1995; Perelson et al.
1996). Owing to the error-prone reverse tran-
scription process, it is estimated that one muta-
tion is introduced for every 1000–10,000
nucleotides synthesized (Mansky and Temin
1995; O’Neil et al. 2002; Abram et al. 2010).
As the HIV-1 genome is �10,000 nucleotides
in length, one to 10 mutations may be generated
in each viral genome with every replication
cycle. With this enormous potential for generat-
ing genetic diversity, HIV-1 variants with
reduced susceptibility to any one or two drugs
will often preexist in the viral quasispecies
before initiating therapy (Coffin 1995). The
success of HAART results in part from using
drug combinations that decrease the probability
of selecting virus clones (from an intrapatient
HIV-1 population) bearing multiple mutations
and conferring resistance to a three-antiretrovi-
ral-drug regimen.

Given the rate of HIV-1 turnover and the
size of the virus population, mathematical
modeling studies have suggested that any com-
binations in which at least three mutations are
required should provide durable inhibition
(Frost and McLean 1994; Coffin 1995; Nowak
et al. 1997; Stengel 2008). In the simplest inter-
pretation of these models, three drug combina-
tions should be more advantageous than two
drug regimens, and in fact, this was the prece-
dent established in early clinical trials of combi-
nation antiretroviral therapy. However, this
interpretation assumes that all drugs have equal
activity, that they require the same number of
mutations to engender resistance, and that
resistance mutations impact viral replication

capacity or viral fitness to a similar degree.
Trial and error with early antiretroviral agents
helped to establish the basic principles for
effective drug combinations in HAART. Since
these early days, therapies have evolved, with
the introduction of newer drugs with greater
potency and higher barriers to the development
of resistance. Moreover, some antiretroviral
agents have been shown to select for mutations
which are either incompatible with or engender
hypersensitivity to other antiretroviral drugs,
suggesting certain ARVs may offer an advantage
with respect to resistance barrier when used in
the context of specific combinations (Larder
et al. 1995; Kempf et al. 1997; Hsu et al. 1998).
Therefore, whether HIV-1 treatment can be
simplified to two or even one potent drug(s)
remains an open question that can only be
answered with future clinical studies.

In 2010, HIV-1 treatment guidelines in the
United States and European Union recommend
the initiation of HAART with three fully active
antiretroviral agents when CD4 cells in periph-
eral blood decline to 350 per cubic mm, a stage
at which viral levels can often reach 10,000–
100,000 copies per mL (as measured by RNA
in the blood) (see http://aidsinfo.nih.gov/
Guidelines/). With proper adherence, HAART
can suppress viral replication for decades,
dramatically increasing the life expectancy of
the HIV-infected individual. However, HAART
alone cannot eliminate HIV-1 infection. HIV-1
is a chronic infection for which there is cur-
rently no cure—the prospect of maintaining
therapy for the lifetime of a patient presents
major challenges. The potential for persistent
viral replication in compartments and reser-
voirs may continue to drive pathogenic disease
processes (Finzi et al. 1997, 1999). The effect
of therapy can be impaired by nonadherence,
poor drug tolerability, and drug interactions
among antiretroviral agents and other medica-
tions that decrease optimal drug levels. Each
of these can lead to virologic failure and the evo-
lution of drug resistance.

For all antiretroviral drug classes, drug resis-
tance has been documented in patients failing
therapy as well as in therapy-naı̈ve patients in-
fected with transmitted, drug-resistant viruses.

HIV-1 Antiretroviral Drug Therapy
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Resistance testing is therefore recommended
before initiating HAART in therapy-naı̈ve
patients as well as when reoptimizing antiretro-
viral therapy after treatment failure. Given the
number of agents and distinct classes of antire-
troviral drugs available today, most patients,
even those with a history of failure, can be suc-
cessfully treated. However, as the virus contin-
ues to evolve and escape, with even the most
effective therapies, new HIV-1 treatments will
always be needed.

THE HIV REPLICATION CYCLE AND
DRUG TARGETS

Antiretroviral agents for the treatment of HIV-1
are a relatively new addition to the armamenta-
rium of antiviral drugs. In the 1960s, amanta-
dine and rimantidine were the first approved
antiviral drugs for treatment of a human influ-
enza virus infection (Davies et al. 1964; Wing-
field et al. 1969), but more than 20 years
passed before the elucidation of their mecha-
nism of action (Hay et al. 1985). With the
advent of modern molecular biology, such
serendipitous approaches to antiviral drug
discovery have been largely replaced by mecha-
nistic-based approaches, which include (1) high
throughput compound screens with virus-spe-
cific replication or enzymatic assays, (2) optimi-
zation of inhibitors using lead compounds
based on homologous enzymes or targets,
and/or (3) rational drug design modeled on
the structures of viral proteins. These methods
together with advances in the corresponding
enabling technologies greatly accelerated the
development of antiretroviral drugs in the early
1990s. The highly divergent evolution of HIV-1
genes from the human host provided the basis

for implementing targeted screening efforts
and/or designing and optimizing inhibitors
with minimal off-target activities, thus capital-
izing on these technological advances. A full
timeline in the development of antiviral and
antiretroviral drugs for human use is described
in Figure 1.

Whereas the HIV-1 life cycle presents many
potential opportunities for therapeutic inter-
vention, only a few have been exploited. The
replication scheme of HIV-1 is shown in
Figure 2, marked with the steps blocked by
approved inhibitors (numbers in panel 2A). A
timing of the retroviral lifecycle is described in
panel B based on the specific time window of
inhibition by a specific drug class. In panel
2C, the inhibitors in development (normal
text) or FDA approved (italic/bold text) are
listed by inhibition of a specific retroviral
replication event. The first step in the HIV-1
replication cycle, viral entry (Doms and Wilen
2011), is the target for several classes of
antiretroviral agents: attachment inhibitors,
chemokine receptor antagonists, and fusion
inhibitors. The HIV-1 envelope gp120/gp41
has affinity for the CD4 receptor and directs
HIV-1 to CD4þ immune cells (Dalgleish et al.
1984; Klatzmann et al. 1984). Interaction of
the gp120 subunit of the HIV-1 envelope with
CD4 is followed by binding to an additional
coreceptor, either the CC chemokine receptor
CCR5 or the CXC chemokine receptor CXCR4
(Alkhatib et al. 1996; Deng et al. 1996; Doranz
et al. 1996; Feng et al. 1996). The disposition
of these coreceptors on the surface of lym-
phocytes and monocyte/macrophages, and
coreceptor recognition by the viral envelope,
are major determinants of tropism for different
cell types. These sequential receptor-binding

Figure 2. Identifying distinct steps in HIV-1 life cycle as potential or current target for antiretroviral drugs. (A)
Schematic of the HIV-1 life cycle in a susceptible CD4þ cell. (B) Time frame for antiretroviral drug action during
a single-cycle HIV-1 replication assay. In this experiment, HIV-1 inhibitors are added following a synchronized
inhibition. The addition of drug following the HIV-1 replication step targeted by the drug will result in a lack
of inhibition. The time window of drug inhibition provides an estimate for the time required for these replica-
tion steps. For example, T30 or enfuvirtide (T20) only inhibits within 1–2 h of infection, whereas lamivudine
(3TC) inhibits within a 2- to 10-h time frame, which coincides with reverse transcription. (C) Preclinical, aban-
doned (normal text), or FDA-approved (bold italic text) inhibitors are listed in relation to specificity of action
and drug target.
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Figure 2. See legend on facing page.
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events trigger conformational changes in the
HIV-1 envelope, exposing a hydrophobic do-
main on gp41 that mediates fusion with the cel-
lular membrane. The entire entry process is
completed within 1 h of virus contact with the
cell (Fig. 2B). Gp120 and CD4 are targets for
small-molecule and antibody-based attach-
ment inhibitors BMS-378806 and TNX-355,
each of which have shown some clinical prom-
ise, although neither is approved for use in
HIV-1 patients (Reimann et al. 1997; Lin et al.
2003; Kuritzkes et al. 2004). BMS-378806 binds
to a pocket on gp120 important for binding
CD4 and alters the conformation of the enve-
lope protein such that it cannot recognize
CD4 (Lin et al. 2003). TNX-355 is a humanized
anti-CD4 monoclonal antibody that binds to
CD4 and inhibits HIV-1 envelope docking,
but does not inhibit CD4 function in immuno-
logical contexts (Reimann et al. 1997). Gp41
and the coreceptor CCR5 are the targets for
the two approved entry agents that will be
discussed in more detail below: the peptide-
based fusion inhibitor, fuzeon, and the small-
molecule CCR5 chemokine receptor antago-
nist, maraviroc.

Viral entry and fusion of the HIV-1 enve-
lope with the host cell membrane allow for
uncoating of the viral core and initiate a slow
dissolution process that maintains protection
of the viral RNA genome while permitting
access to deoxyribonucleoside triphosphates
(dNTPs) necessary for reverse transcription
and proviral DNA synthesis (Fig. 1). Reverse
transcription is a process extending over the
next 10 h of infection (Fig. 2A,B). Reverse tran-
scriptase (RT) was the first HIV-1 enzyme to be
exploited for antiretroviral drug discovery
(Fig. 1). RT is a multifunctional enzyme with
RNA-dependent DNA polymerase, RNase-H,
and DNA-dependent DNA polymerase activ-
ities, all of which are required to convert the
single-stranded HIV-1 viral RNA into double-
stranded DNA (Hughes and Hu 2011). RT is
the target for two distinct classes of antire-
troviral agents: the NRTIs (Fig. 2C), which are
analogs of native nucleoside substrates, and
the NNRTIs (Fig. 2C), which bind to a noncata-
lytic allosteric pocket on the enzyme. Together,

the 12 licensed agents in these two classes
account for the nearly half of all approved anti-
retroviral drugs. Although the NRTIs and
NNRTIs differ with respect to their site of inter-
action on the enzyme and molecular mecha-
nism, both affect the DNA polymerization
activity of the enzyme and block the generation
of full-length viral DNA.

The completion of reverse transcription is
required to form the viral preintegration com-
plex, or PIC. The PIC, comprised of viral as
well as cellular components, is transported to
the nucleus where the second essential HIV-1
enzyme, integrase, catalyzes the integration of
the viral DNA with the host DNA (Craigie and
Bushman 2011). Integrase orchestrates three
sequence-specific events required for integra-
tion, assembly with the viral DNA, endonucleo-
lytic processing of the 30 ends of the viral DNA,
and strand transfer or joining of the viral and
cellular DNA. In the context of HIV-1 infection,
the process occurs in a stepwise manner, with
the rate-limiting event being strand transfer
and the stable integration of the viral genome
into the human chromosome occurring within
the first 15–20 h of infection (Fig. 2B). The
newest class of approved ARVs, integrase inhib-
itors (INIs or InSTIs) (Fig. 2C), specifically
inhibit strand transfer and block integration of
the HIV-1 DNA into the cellular DNA.

Integration of the HIV-1 DNA is required to
maintain the viral DNA in the infected cell and
is essential for expression of HIV-1 mRNA and
viral RNA. Following integration, the cellular
machinery can initiate transcription; however,
transcript elongation requires binding of the
HIV-1 regulatory protein Tat to the HIV-1 RNA
element (TAR) (Karn and Stoltzfus 2011).
This mechanism is unique to HIV-1 and is
thus considered a highly desirable therapeutic
target. A variety of candidate small-molecule
inhibitors of either HIV transcription, or
more specifically, the Tat–TAR interaction,
have been identified during the last 15 yrs
(Fig. 2A,C, section 4) (Hsu et al. 1991; Cupelli
and Hsu 1995; Hamy et al. 1997; Hwang et al.
2003). Unfortunately, none of these com-
pounds were sufficiently potent and/or selec-
tive to progress beyond phase I clinical trials.
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Recent reports describe a new cyclic Tat pepti-
domimetic that binds to TAR with high affinity
and shows broad and potent HIV-1 inhibition
(Davidson et al. 2009; Lalonde 2011). Surpris-
ingly, this drug inhibits both HIV-1 reverse
transcription and Tat-mediated mRNA tran-
scription (Lalonde 2011).

The assembly and maturation of HIV-1 on
the inner plasma membrane is also an active
area for drug discovery. Inhibitors such as betu-
linic acid have been shown to block HIV-1
maturation by interacting with the viral capsid
(Fig. 2A,C, section 5) (Fujioka et al. 1994; Li
et al. 2003). Although a promising new mecha-
nism of action, insufficient antiviral activity
precluded the development beyond early phase
clinical trials (Smith et al. 2007).

The context of the HIV-1 life cycle, the final
class of approved ARVs, is the HIV-1 PIs. PIs
block proteolysis of the viral polyprotein, a
step required for the production of infectious
viral particles (Sundquist and Kräusslich 2011).
PIs are among the most potent agents developed
to date, but are large, peptidelike compounds
that generally require the coadministration of a
“boosting” agent to inhibit their metabolism
and enhance drug levels. Therefore, PI-contain-
ing regimens contain a fourth drug, albeit one
that does not directly contribute to overall antivi-
ral activity. To date, ritonavir (RTV) is the only
boosting agent or pharmacokinetic enhancer
(PKE) available for use (Kempf et al. 1997; Hsu
et al. 1998), although other compounds are in
early stages of clinical development.

This description of the HIV-1 replication
cycle (Fig. 2) provides a cursory overview of
the most advanced antiretroviral drug targets
with a focus on the approved agents that will
be covered in more detail below. However, it
should be noted that nearly all viral processes
that are distinct from the cellular life cycle are
potentially suitable for screening/designing
inhibitors. Enhancing or modulating the ac-
tivities of cellular restriction factors (Malim
and Bieniasz 2011) could also potentially
provide an approach to inhibiting HIV-1 repli-
cation and/or modulate pathogenesis and
transmission, but this topic is not covered fur-
ther here.

NUCLEOSIDE/NUCLEOTIDE REVERSE
TRANSCRIPTASE INHIBITORS

NRTIs were the first class of drugs to be ap-
proved by the FDA (Fig. 1) (Young 1988).
NRTIs are administered as prodrugs, which
require host cell entry and phosphorylation
(Mitsuya et al. 1985; Furman et al. 1986;
Mitsuya and Broder 1986; St Clair et al. 1987;
Hart et al. 1992) by cellular kinases before
enacting an antiviral effect (Fig. 3). Lack of a
30-hydroxyl group at the sugar (20-deoxyribo-
syl) moiety of the NRTIs prevents the forma-
tion of a 30-50-phosphodiester bond between
the NRTIs and incoming 50-nucleoside triphos-
phates, resulting in termination of the growing
viral DNA chain. Chain termination can occur
during RNA-dependent DNA or DNA-depend-
ent DNA synthesis, inhibiting production of
either the (2) or (þ) strands of the HIV-1 pro-
viral DNA (Cheng et al. 1987; Balzarini et al.
1989; Richman 2001). Currently, there are eight
FDA-approved NRTIs: abacavir (ABC, Ziagen),
didanosine (ddI, Videx), emtricitabine (FTC,
Emtriva), lamivudine (3TC, Epivir), stavudine
(d4T, Zerit), zalcitabine (ddC, Hivid), zidovu-
dine (AZT, Retrovir), and Tenofovir disoprovil
fumarate (TDF, Viread), a nucleotide RT inhib-
itor (Fig. 3).

As with all antiretroviral therapies, treat-
ment with any of these agents often results in
the emergence of HIV-1 strains with reduced
drug susceptibility. Resistance to NRTIs is
mediated by two mechanisms: ATP-dependent
pyrophosphorolysis, which is the removal of
NRTIs from the 30 end of the nascent chain,
and reversal of chain termination (Arion et al.
1998; Meyer et al. 1999; Boyer et al. 2001) and
increased discrimination between the native
deoxyribonucleotide substrate and the in-
hibitor. NRTI mutations occur in RT and are
classified as nucleoside/nucleotide associated
mutations (NAMs) or thymidine analog muta-
tions (TAMs). TAMs promote pyrophosphorol-
ysis and are involved in the excision of AZTand
d4T (Arion et al. 1998; Meyer et al. 2002;
Naeger et al. 2002). TAM amino acid changes
in HIV-1 RT include two distinct pathways:
the TAM1 pathway (M41L, L210W, T215Y,

HIV-1 Antiretroviral Drug Therapy
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and occasionally D67N) and the TAM2 pathway
(D67N, K70R, T215F, and 219E/Q) (Larder and
Kemp 1989; Boucher et al. 1992; Kellam et al.
1992; Harrigan et al. 1996; Bacheler et al.
2001; Marcelin et al. 2004; Yahi et al. 2005).

A second mechanism of NRTI resistance
is the prevention of NRTI incorporation into
the nascent chain. Mutations associated with
this mechanism include the M184V/I and the
K65R. The M184V mutation emerges with
3TC or FTC therapy (Schinazi et al. 1993;
Quan et al. 1996), whereas treatment with Teno-
fovir, ddC, ddI, d4T, and ABC can select K65R
(Wainberg et al. 1999; Margot et al. 2002;
Garcia-Lerma et al. 2003; Shehu-Xhilaga et al.
2005). In general, K65R rarely emerges in
patients receiving any AZT-containing regi-
men because this mutation is phenotypically
antagonistic to the TAMs (Parikh et al. 2006;

White et al. 2006). M184V restores Tenofovir
susceptibility in the presence of K65R (Deval
et al. 2004), thus K65R viruses are also infre-
quent in patients on Tenofivir who fail 3TC or
emtricitabine (FTC) with M184V.

Many primary and secondary NRTI mu-
tations (or combinations of these) have been
shown to decrease RT function and viral repli-
cative fitness (Quinones-Mateu and Arts 2002,
2006). Although several studies have suggested
a potential for a clinical benefit associated
with reduced replicative fitness of NRTI-re-
sistant variants, it is important to note that
additional mutations can accumulate in the
presence of ongoing treatment resulting in
higher levels of resistance. The loss in replicative
fitness owing to drug resistance mutations (in
the absence of drug) can also be compensated
by accumulating secondary mutations.
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NON–NUCLEOSIDE REVERSE
TRANSCRIPTASE INHIBITORS

NNRTIs inhibit HIV-1 RT by binding and in-
ducing the formation of a hydrophobic pocket
proximal to, but not overlapping the active
site (Fig. 4) (Kohlstaedt et al. 1992; Tantillo
et al. 1994). The binding of NNRTIs changes
the spatial conformation of the substrate-bind-
ing site and reduces polymerase activity (Kohl-
staedt et al. 1992; Spence et al. 1995). The
NNRTI-binding pocket only exists in the pres-
ence of NNRTIs (Rodgers et al. 1995; Hsiou
et al. 1996) and consists of hydrophobic residues
(Y181, Y188, F227, W229, and Y232), and hydro-
philic residues such as K101, K103, S105, D192,
and E224 of the p66 subunit and E138 of the
p51 subunit (Fig. 4) (Sluis-Cremer et al. 2004).
Unlike NRTIs, these non/uncompetitive inhibi-
tors do not inhibit the RT of other lentiviruses
such as HIV-2 and simian immunodeficiency

virus (SIV) (Kohlstaedt et al. 1992; Witvrouw
et al. 1999). Currently, there are four approved
NNRTIs: etravirine, delavirdine, efavirenz, and
nevirapine, and several in development, includ-
ing rilpivirine in phase 3 (Fig. 4).

NNRTI resistance generally results from
amino acid substitutions such as L100, K101,
K103, E138, V179, Y181, and Y188 in the
NNRTI-binding pocket of RT (Tantillo et al.
1994). The most common NNRTI mutations
are K103N and Y181C (Bacheler et al. 2000,
2001; Demeter et al. 2000; Dykes et al. 2001).
As with NRTI resistance, complex patterns
of NNRTI-resistant mutations can arise and
alternative pathways have been observed in non-
subtype B infected individuals (Brenner et al.
2003; Spira et al. 2003; Gao et al. 2004). Most
NNRTI mutations engender some level of cross
resistance among different NNRTIs, especially
in the context of additional secondary muta-
tions (Antinori et al. 2002).
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Figure 4. Non–nucleoside RT inhibitors and the X-ray crystal structure of HIV-1 RT complexed with etravirine
(Lansdon et al. 2010) (3MEE).
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In contrast to the significant reductions in
replicative fitness observed with resistance to
other drug classes, with NNRTIs, single nucleo-
tide changes can result in high-level resistance
with only a slight loss of replicative fitness
(Deeks 2001; Dykes et al. 2001; Imamichi
et al. 2001). A lower genetic barrier, minimal
impact on replicative fitness, and the slow
reversion of these mutations in patients in the
absence of drug contribute to transmission
and stability of NNRTI-resistant HIV-1 in
the population. Interestingly, the majority of
NNRTI-resistance mutations selected under
NNRTI treatment are commonly found as wild-
type sequence in HIV-1 group O and HIV-2.
HIV-1 group O can actually be subdivided
into lineages based on a C181 or Y181 amino
acid in RT (Tebit et al. 2010). Furthermore,
nearly all primate lentiviruses can be phy-
logenetically classified into different lineages
based on signature sequences in NNRTI-bind-
ing pocket and linked to a Cys, Ile, or Tyr at
position 181, i.e., the primary codon-conferring
resistance to NNRTIs (Tebit et al. 2010). Given
the intrinsic resistance in most primate lentivi-
ruses, aside from HIV-1 group M, it is not sur-
prising that acquired resistance to NNRTIs has
the least fitness impact.

INTEGRASE INHIBITORS

Integrase was the most recent HIV-1 enzyme to
be successfully targeted for drug development
(Espeseth et al. 2000; Hazuda et al. 2004a,b).
Raltegravir (RAL), MK-0518 was FDA approved
in 2007, and other integrase inhibitors, includ-
ing Elvitegravir (EVG), GS-9137 are progressing
through clinical development (Fig. 5) (Sato
et al. 2006; Shimura et al. 2008). As mentioned
above, integrase catalyzes 30 end processing
and viral DNA and strand transfer. All integrase
inhibitors in development target the strand
transfer reaction and are thus referred to as
either INIs or more specifically, integrase strand
transfer inhibitors (InSTIs) (Espeseth et al.
2000; Hazuda et al. 2004a,b; McColl and Chen
2010). The selective effect on strand transfer is
a result of a now well-defined mechanism of
action in which the inhibitor (1) binds only to

the specific complex between integrase and
the viral DNA and (2) interacts with the two
essential magnesium metal ion cofactors in the
integrase active site and also the DNA (Fig. 5).
Therefore, all InSTIs are comprised of two
essential components: a metal-binding pharma-
cophore, which sequestors the active site
magnesiums, and a hydrophobic group, which
interacts with the viral DNA as well as the
enzyme in the complex (Grobler et al. 2002).
InSTIs are therefore the only ARV class that
interacts with two essential elements of the
virus, the integrase enzyme as well as the viral
DNA, which is the substrate for integration.

The recent cocrystallization of the foamy
virus integrase DNA complex or intasome
with both RAL and EVG (Hare et al. 2010)
corroborates the biochemical mechanism and
provides a structural basis for understanding
the unique breadth of antiviral activity that
has been observed for InSTIs across all HIV-1
subtypes as well as other retroviruses, such as
HIV-2 and XMRV (Fig. 5) (Maignan et al.
1998; Damond et al. 2008; Shimura et al. 2008;
Van Baelen et al. 2008; Garrido et al. 2010;
Singh et al. 2010). In the cocrystal structure,
the general architecture and amino acids within
the active site of the foamy virus intasome are
highly conserved with other retroviral integra-
ses, as are the immediate surrounding interac-
tions with InSTIs. The common mechanism
of action and conserved binding mode for
InSTIs also has important implications for
understanding resistance to the class. Muta-
tions that engender resistance to InSTIs almost
always map within the integrase active site
near the amino acid residues that coordinate
the essential magnesium cofactors (Hazuda
et al. 2004a; Hare et al. 2010). Thus, these muta-
tions have deleterious effects on enzymatic func-
tion and viral replicative capacity (Marinello
et al. 2008; Quercia et al. 2009). In clinical stud-
ies, resistance to Raltegravir is associated with
three independent pathways or sets of mutations
in the integrase gene, as defined by primary or
signature mutations at Y143, N155, or Q148
(Fransen et al. 2009). These primary mutations
are generally observed with specific secondary
mutations; for N155(H) these include E92Q,
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V151L, T97A, G163R, and L74M, whereas for
Q148(K/R/H), G140S/A and E138K are com-
mon. Significant cross resistance is observed
among the InSTIs almost regardless of the pri-
mary/secondary mutation sets (Goethals et al.
2008; Marinello et al. 2008). Although cross
resistance is prevalent, different agents appear
to preferentially select different patterns of
mutations (Hazuda et al. 2004a).

PROTEASE INHIBITORS

The HIV-1 protease is the enzyme responsible
for the cleavage of the viral gag and gag-pol
polyprotein precursors during virion matura-
tion (Park and Morrow 1993; Miller 2001).
Ten PIs are currently approved: amprenavir
(APV, Agenerase), atazanavir (ATZ, Reyataz),
darunavir (TMC114, Prezista), fosamprenavir
(Lexiva), indinavir (IDV, Crixivan), lopinavir
(LPV), nelfinavir (NFV, Viracept), ritonavir
(RTV, Norvir), saquinavir (SQV, Fortovase/
Invirase), and tipranavir (TPV, Aptivus) (Fig. 6).

Because of its vital role in the life cycle of
HIV-1 and relatively small size (11 kDa), it
was initially expected that resistance to protease
inhibitors would be rare. However, the protease
gene has great plasticity, with polymorphisms
observed in 49 of the 99 codons, and more
than 20 substitutions known to be associated
with resistance (Shafer et al. 2000). The emer-
gence of protease inhibitor resistance likely
requires the stepwise accumulation of primary
and compensatory mutations (Molla et al.
1996a) and each PI usually selects for certain
signature primary mutations and a characteris-
tic pattern of compensatory mutations. Unlike
NNRTIs, primary drug-resistant substitutions
are rarely observed in the viral populations in
protease inhibitor-naı̈ve individuals (Kozal
et al. 1996).

All PIs share relatively similar chemical
structures (Fig. 6) and cross resistance is com-
monly observed. For most PIs, primary re-
sistance mutations cluster near the active site
of the enzyme, at positions located at the
substrate/inhibitor binding site (e.g., D30N,
G48V, I50V, V82A, or I84V, among others).
These amino acid changes usually have a

deleterious effect on the replicative fitness (Nij-
huis et al. 2001; Quinones-Mateu and Arts
2002; Quinones-Mateu et al. 2008). In addition
to mutations in the protease gene, changes
located within eight major protease cleavage
sites (i.e., gag and pol genes), have been associ-
ated with resistance to protease inhibitors
(Doyon et al. 1996; Zhang et al. 1997; Clavel
et al. 2000; Miller 2001; Nijhuis et al. 2001).
Cleavage site mutants are better substrates for
the mutated protease, and thus partially compen-
sate for the resistance-associated loss of viral fit-
ness (Doyon et al. 1996; Mammano et al. 1998;
Zennou et al. 1998; Clavel et al. 2000; Nijhuis
et al. 2001). With PI resistance, HIV-1 appears
to follows a “stepwise” pathway to overcome
drug selection: (1) acquisition of primary
resistance mutations in the protease gene, (2)
selection of secondary/compensatory protease
mutations to repair the enzymatic function
and rescue viral fitness, and (3) selection of
mutations in the major cleavage sites of the gag
and gag-pol polyprotein precursors that restore
protein processing and increase production of
the HIV-1 protease itself (Condra et al. 1995;
Molla et al. 1996b; Doyon et al. 1998; Berkhout
1999; Nijhuis et al. 2001).

ENTRY INHIBITORS

HIV-1 entry exploits several host proteins for
a set of intricate events leading to membrane
fusion and virus core release into the cytoplasm
(Fig. 7). HIV-1 entry inhibitors can be subdi-
vided into distinct classes based on disrup-
tion/inhibition of distinct targets/steps in the
process.

Fusion Inhibitors

The crystal structure of the gp41 ectodomain
and of the ectodomain partnered with an inhib-
itory peptide (C34) revealed that the fusion-
active conformation of gp41 was a six-helix
bundle in which three N helices form an inte-
rior, trimeric coiled coil onto which three anti-
parallel C helices pack (Doms and Wilen 2011).
Peptide fusion inhibitors were designed based
on the discovery that two homologous domains
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in the viral gp41 protein must interact with each
other to promote fusion, and that mimicry of
one of these domains by a heterologous protein
can bind and disrupt the intramolecular inter-
actions of the virus protein. Alpha-helical pep-
tides homologous to the leucine zipper domain
of gp41 had significant antiviral activity against
HIV-1, and this activity depended on their
ordered solution structure (Wild et al. 1993,
1994). Rational design of helical inhibitors ulti-
mately produced a molecule (T-20, enfuvirtide)
with potent antiviral activity in vivo (Fig. 7)
(Kilby et al. 1998; Lalezari et al. 2003).

Resistance to early alpha-helical inhibitors
was shown to be mediated by mutations in the
amino-terminal heptad repeat region of gp41
(Rimsky et al. 1998), which provide further evi-
dence for binding of these peptides to the virus.
Monotherapy with enfuvirtide resulted in viral
load rebounds after 14 days with resistance
which mapped to determinants in the HR1
domain (G36D, I37T, V38A, V38M, N42T,
N42D, N43K) (Wei et al. 2002). Mutations
that confer resistance to enfuvirtide result in
reduced replication capacity/replicative fitness
presumably because mutations that reduce
enfuvirtide binding also reduce the efficiency
of six-helix bundle formation and overall fu-
sion rates (Reeves et al. 2004, 2005). These mu-
tations do not confer cross resistance to other
entry inhibitors (attachment inhibitors or core-
ceptor inhibitors) (Ray et al. 2005) but can sen-
sitize viruses to neutralization by monoclonal
antibodies that target the gp41 domain by pro-
longing the exposure of fusion intermediates
that are specifically sensitive to these antibodies
(Reeves et al. 2005). Adaptation to enfuvirtide
has even resulted in viruses that require enfuvir-
tide for fusion (Baldwin et al. 2004).

Resistance mutations in gp41 decrease fu-
sion efficiency and reduce viral fitness (Labrosse
et al. 2003). Nonetheless, studies of baseline
susceptibility to enfuvirtide suggested that large
variations in intrinsic susceptibility existed in
diverse HIV-1 isolates, and that these variations
mapped to regions outside the enfuvirtide-
binding site (Derdeyn et al. 2000). Sequences
associated with the V3 loop were correlated with
intrinsic enfuvirtide susceptibility, suggesting

that interactions with the coreceptor were
important determinants of susceptibility of a
drug that inhibits virus fusion. A seminal obser-
vation in the understanding of entry inhibitor
susceptibility was the discovery that efficiency
of the fusion process was the principal modula-
tor of intrinsic enfuvirtide susceptibility (Ree-
ves et al. 2002). Mutations in the coreceptor-
binding site that reduced gp120 affinity for
CCR5 resulted in viruses with reduced fusion
kinetics (Reeves et al. 2004; Biscone et al.
2006). Engagement of CD4 by gp120 initiates
a process of structural rearrangement in the
envelope glycoprotein resulting in fusion. Com-
pletion of this process requires engagement of
the coreceptor molecule, but enfuvirtide sus-
ceptibility is limited to the time between CD4
engagement and six-helix bundle formation.
Any decrease in the rate of this entry process
(e.g., reducing the levels of coreceptor expres-
sion) also increases susceptibility of the virus
to inhibition by enfuvirtide. Consistent with
this, ENF is synergistic with compounds that
inhibit CD4 or coreceptor engagement (Trem-
blay et al. 2000; Nagashima et al. 2001).

Small-Molecule CCR5 Antagonists

Small-molecule CCR5 antagonists bind to hy-
drophobic pockets within the transmem-
brane helices of CCR5 (Dragic et al. 2000;
Tsamis et al. 2003). This site does not overlap
the binding sites of either CCR5 agonists or
HIV-1 envelope. Instead, drug binding induces
and stabilizes a receptor conformation that is
not recognized by either. Thus, these molecules
are considered allosteric inhibitors. Ideally,
a small-molecule inhibitor of CCR5 would
block binding by HIV-1 envelope but continue
to bind native chemokines and allow signal
transduction. Most small-molecule inhibitors,
however, are pure antagonists of the receptor.
Oral administration of small-molecule antago-
nists has been shown to inhibit viral replication
in macaque models (Veazey et al. 2003) and to
prevent vaginal transmission (Veazey et al.
2005). Thus far, three antagonists (VCV, MVC,
and Aplaviroc) have been shown to inhibit virus
replication in humans (Dorr et al. 2005). The
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compound MVC was approved for therapeutic
use by the FDA in 2007 (Fig. 7).

MVC binds a hydrophobic transmembrane
cavity of CCR5. Binding alters the conforma-
tion of the second extracellular loop of the
receptor and prevents interaction with the
V3 stem loop of gp120 (Dragic et al. 2000;
Kondru et al. 2008). A rough model of MVC
binding to CCR5 in Figure 7 is based on a
recently published structure of CXCR4 com-
plexed to a small molecule, IT1t (Wu et al.
2010). CXCR4 also serves as a coreceptor for
HIV-1 but attempts at development of CXCR4
antagonists (e.g., AMD3100) fail in clinical
studies (Hendrix et al. 2004). Because MVC
binds to a host cell protein, resistance to MVC
is unlike that of other ARVs. Potential resistance
mechanisms include (1) tropism switching
(utilization of CXCR4 instead of CCR5 for
entry), (2) increased affinity for the coreceptor,
(3) utilization of inhibitor-bound receptor for
entry, and (4) faster rate of entry. Tropism
switching has been a concern in the therapeutic
administration of this class as primary infection
with, or early emergence of CXCR4 tropic
virus, although rare, typically leads to faster dis-
ease progression. Thus, the selection of CXCR4
tropic virus owing to CCR5 antagonist treat-
ment could have a negative impact on HIV-1
pathogenesis.

Small-molecule CCR5 inhibitors have been
used to select for drug resistance in peripheral
blood mononuclear cell cultures (PBMC),
which express CCR5 and CXCR4, as well as a
variety of other chemokine receptors that could
potentially substitute for HIV-1 coreceptors.
In these experiments, inhibitor-resistant viruses
continue to require CCR5 for entry (Trkola et al.
2002; Marozsan et al. 2005; Baba et al. 2007;
Westby et al. 2007). Furthermore, evaluation
of coreceptor tropism of viruses from patients
who failed MVC therapy during clinical trials
has suggested that tropism change occurred
only when X4 tropic viruses were preexisting
in the patient quasispecies before initiating
treatment with MVC (Westby et al. 2006).
Thus, it appears that de novo mutations confer-
ring altered coreceptor usage is not the favored
pathway for resistance in vitro or in vivo. It

should be noted that in some treatment failures,
the use of CCR5 was maintained even in the
presence of MVC. These “resistant” HIV-1 iso-
lates did not display the same shift in drug sus-
ceptibility, typically characterized by an increase
in IC50 values, but were capable of using both
the free and inhibitor-bound CCR5 for entry
(Trkola et al. 2002; Tsibris et al. 2008). In such
cases, resistance is reported as MPI (or maxi-
mum percent inhibition) for saturating concen-
trations of drug.

Although it is still early with respect to the
clinical experience for CCR5 antagonists, there
are documented cases of treatment failures
that are not accounted for by either CXCR4
tropism switch or resistance owing to increased
MPI. Recent studies suggest discrepancies in the
sensitivity to CCR5 antagonists may be assay
dependent. Susceptibility to entry CCR5 antag-
onists can be affected by cell type, state of cellu-
lar activation, and number of virus replication
cycles (Kuhmann et al. 2004; Marozsan et al.
2005; Lobritz et al. 2007;Westby et al. 2007).
Also, different primary HIV-1 isolates can vary
in sensitivity by as much as 100-fold in IC50 val-
ues (Torre et al. 2000; Dorr et al. 2005; Lobritz
et al. 2007), and this difference is much more
demonstrable with infection assays using
replication-competent primary HIV-1 isolates
as compared with defective viruses limited to
single-cycle replication. These complexities
make it quite challenging to detect resistance
at the time of treatment failure with routine
resistance testing assays. Given the issues, the
use of CCR5 antagonists in clinical practice is
somewhat more complex than other classes of
ARV agents.

CONCLUSIONS

The breadth and depth of the HIV-1 therapy
pipeline may arguably be among the most suc-
cessful for treating any single human disease,
infection, or disorder as illustrated by the
number of antiretroviral agents and unique
drug classes available. In reviewing the history
of ARV drug development, however, there are
some key lessons and parallels that need to be
kept in mind as we consider the development
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of small-molecule prevention strategies for
HIV-1 and evolving treatment strategies for
other viral infections, including hepatitis C
virus (HCV). The road to successful HIV-1
treatment was hard, and in the early days
many patients were inadequately treated with
suboptimal regimens that rapidly led to failure
and drug resistance. Although it is unknown
whether the prevention of HIV-1 transmission
will require the same number of agents, the
inherent plasticity of HIV-1 would suggest err-
ing on the side of caution and focusing early
on combination products that would mitigate
this risk. In the case of HCV, the breadth of
genetic diversity appears to be greater than
that observed in an HIV-1 infected individual.
Anti-HCV drugs in the most advanced stages
for approval inhibit a small number of targets
(e.g., the NS5b polymerase and NS3 protease)
and each class appears to share significant cross
resistance; when tested as single agents, the
emergence of HCV drug resistance is rapid.
The success of HAART should provide the
benchmark for HCV drug development and a
roadmap for the development of novel preven-
tion strategies in HIV-1 to avoid potential risk
to both the individual patient and the popula-
tion by preventing the acquisition and trans-
mission of drug resistance.
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