Molecular mechanisms underlying the expression of the human HOX-5.1 gene

Luciano Cianetti^{*}, Anna Di Cristofaro, Vincenzo Zappavigna, Lisa Bottero, Giovanni Boccoli, Ugo Testa, Giovanni Russo¹, Edoardo Boncinelli² and Cesare Peschle Department of Hematology and Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, ¹Clinica Ostetrica e Ginecologica, Ospedale Civile di Avellino, 83100 Avellino and ²International Institute of Genetics and Biophysics – CNR, Via G. Marconi 10, 80125 Naples, Italy

Received May 30, 1990; Accepted June 13, 1990

EMBL accession no. X17360

ABSTRACT

The complex mechanisms underlying homeobox genes expression involve regulation at transcriptional, posttranscriptional and translational levels. The multiple transcripts of the human HOX-5.1 gene are expressed differentially in tissue- and stage-specific patterns during embryogenesis, and differentially induced by retinoic acid (RA) in human embryonal carcinoma (EC) NT2/D1 cells. We have sequenced 6.3 Kb of the genomic region containing the HOX-5.1 gene and analyzed its mechanisms of expression. Two alternative promoters underlie the transcription of two classes of HOX-5.1-specific mRNAs. These classes differ in tissue and subcellular distribution, induction by RA, structure of the 5'-UT region and mRNA stability: these features are compatible with a differential function of the two classes of transcripts in embryogenesis.

INTRODUCTION

Homeobox containing genes are highly conserved and widely distributed among Metazoa (*i.e.*, Annelids, Drosophila, Echinoderms, Xenopus, mice, and humans) (1). The homeobox is a conserved 183 bp sequence encoding a sequence-specific DNA-binding domain, which admittedly regulates gene expression (2, 3).

In Drosophila these genes, mostly organized in chromosome 3 in two clusters (the Antennapedia (Antp) and Bithorax (Bx) complex), play a key role in embryogenesis, particularly in the determination of the number, polarity and identity of body segments (4). In mice and humans Antp-like genes are clustered in four major complexes (murine Hox- and human HOX-1, -2, -3, and -5), which map in man on chromosomes 7, 17, 12 and 2 respectively (5). Growing evidence suggests that these genes play a key role in mammalian development: thus, (i) they are expressed in embryonic tissues according to tissue- and/or stage-specific patterns (6, 7); (ii) the structure/expression features of the genes in the Antp-Bx complex show striking similarities with those of corresponding genes in the murine Hox-1, -2, and -5 and human HOX-2 clusters (8, 9, 10, 11 and our unpublished

observations); (iii) inappropriate expression of homeobox genes in transgenic mice leads to malformations (12, 13).

A 1.3 Kb cDNA clone (*HHo.c13*), belonging to the *HOX-5* cluster, has been isolated from a SV40-transformed human fibroblast library (14). This clone, corresponding to the *HOX-5.1* gene, encodes a homeobox-containing protein of 255 residues. Northern blot analysis revealed multiple c13-specific transcripts, which are differentially expressed in a variety of human embryonic tissues, *i.e.*, brain, spinal cord, backbone, heart and limb buds, often according to stage-specific patterns (14). All c13 specific transcripts are also expressed in the retinoic acid (RA)-induced NT2/D1 human embryonal carcinoma (EC) cell line (15). The murine homologue to c13, isolated from an embryonic mouse cDNA library (16), is similarly expressed in multiple RNA species according to a temporally-regulated pattern, with a tissue distribution analogous to that found in the human *HOX-5.1* (16, 17).

In an attempt to clarify the complex structure of the human *HOX-5.1* gene and the origin of its multiple transcripts, we have analyzed a large genomic region containing the gene. The gene was entirely sequenced, and the structure of the transcripts determined. Transcripts are generated starting from two alternative promoters and polyadenylated at the level of at least three sites. The two classes of *HOX-5.1* transcripts, related to the two different promoters, are characterized by differential tissue and subcellular distribution, induction by RA and mRNA stability.

MATERIALS AND METHODS

Embryos and cells

Human embryos were obtained virtually intact by legal curettage abortions at 5-9 weeks after fertilization. Their age was carefully established by morphologic staging as previously described (7). Different organs and body parts were sterilely dissected under an inverted microscope.

Human pluripotent EC cells NTERA-2, clone D1 (NT2/D1) (18) were grown at 37°C in Dulbecco's modified Eagle's medium (high-glucose formulation), supplemented with 10% fetal calf serum (Flow Laboratories, Glasgow, Great Britain) in 5% CO₂,

^{*} To whom correspondence should be addressed

in air humidified atmosphere. The cells were maintained in their undifferentiated phenotype by continuous growth at high cell density $(5-50 \times 10^6 \text{ cells}/175 \text{ cm}^2 \text{ flask})$ as described (19).

Human embryonic cDNA libraries

cDNA libraries were prepared from $poly(A)^+$ RNA from 5-wk whole embryos, 7-wk spinal cord in λ gt10 (Clontech, Palo Alto, CA) and placenta (20).

Genomic DNA and cDNA fragments were subcloned in M13 mp10/mp11 or pGEM 3Z/4Z (Promega, Madison, WI). DNA

sequencing was performed according to Sanger et al. (21) and adapted to double-stranded plasmid DNA (22).

Induction of teratocarcinoma cells differentiation

Differentiation of NT2/D1 cells was induced by seeding cells at 2×10^6 cells per 175 cm² flasks in 10^{-5} M RA (Sigma Co., St. Louis, MO). After 1 week the cells were refed with an equal volume of fresh culture medium containing 10^{-5} M RA. Cultures were then exposed to RA for 2 weeks.

In order to assess the induction of neuronal differentiation (23, 24) of NT2/D1 cells by RA, we evaluated both the expression of nerve growth factor receptor (NGF-R) and the reactivity of the cells with mAbs to neurofilament proteins. The expression of NGF-R was assayed by binding studies with (¹²⁵I)-NGF (Amersham, Buckinghamshire, England). The expression of neurofilament proteins was examined by an immunoperoxidase technique with three different mAbs to 68, 160 and 200 kDa neurofilament polypeptides (Amersham). Control NT2/D1 cells did not express these neuronal markers, whereas cells grown for 14 days in the presence of RA were clearly positive for all of them.

RNA extraction and Northern analysis

Total cellular RNA was extracted from fresh or frozen cells and tissues by the guanidinium thiocyanate technique (25).

To extract nuclear and cytoplasmic RNA, NT2/D1 cultures were trypsinized and the cell pellet lysed in 10 mM TrisHCl pH 7.5/10 mM NaCl/3 mM MgCl₂/0.5% NP40. Nuclei and cytoplasms were separated by centrifugation at $1020 \times g$ 10 min at + 4°C. Total RNA was extracted from these fractions by the guanidinium thiocyanate technique (25).

 $Poly(A)^+$ RNA was selected by one passage on oligo(dT)cellulose columns, run on 1.0% agarose-formaldehyde gels,

Figure 1: Northern blot analysis of $poly(A)^+$ RNA $(2-3 \mu g/lane)$ from RAinduced NT2/D1 cells, human embryonal 8-wk *medulla oblongata*, 6-wk limbs, 7-wk gut. (A) Hybridization to the 0.8 Kb BamHI-Hindlll fragment; the same pattern was observed for 0.5 Kb Hindlll-PvuII and probe A. (B) Hybridization to probe B; probes C and D revealed the same pattern. (C) Hybridization to the 2.3 Kb Xbal-EcoRI probe; the 0.8 Kb Alul probe gave the same pattern. Sizes in Kb are shown on the right.

Figure 2: Genomic map of the human *HOX-5.1* gene. Boxes represent the coding region; the black box is the homeobox. Restriction sites are indicated: B, BamHl; V, PvuII; H3, Hindll1; H2, Hincl1; E, EcoRI; Bg, Bgll1; Xb, Xbal; Hf1, Hinf1; S, Smal. Cap sites (bent arrows) and polyadenylation sites (vertical lines) are indicated under the map. The probes reported in the text are shown at top. Ava is AvaI. Probes A, B, C and D are derived from the *HHO.c13 cDNA* clone (see Results and ref. 12). The riboprobes (R) used in RNAase protection experiments are indicated as horizontal arrows turned in the antisense orientation. The cDNA clones analyzed are indicated below the map. Structure of the *HOX-5.1* transcripts is indicated at bottom; sizes in Kb are given on the left.

transferred to nylon membranes (Amersham, Hybond N) by Northern capillary blotting and hybridized to $1-2 \times 10^7$ cpm DNA probes labeled by nick translation or random priming. Prehybridization and hybridization were carried out as described (7). Filters were washed under stringent conditions (15 mM NaCl/1.5 mM Na citrate/0.1% SDS at 65°C) and exposed to Kodak X-OMAT S0-282 film at -70° C in an X-omatic intensifying screen cassette.

RNAase protection

RNA probes were synthesized to high specific activity from DNA fragments cloned in the pGEM 4Z vector (Promega, Madison, WI) to generate ³²P-labeled antisense RNAs according to standard protocols (Promega and 26). In each experiment 20 μ g of total RNA were hybridized to $2-10 \times 10^5$ cpm of the probe.

Hybridization and RNAase digestion were performed according to standard procedures (26). Samples were run on a 8M urea/6-8% acrylamide gel. Gels were dried and exposed to Kodak X-OMAT S0-282 film for 2 days.

Primer extension

Total RNA (50 mg) was hybridized to 10^6 cpm (1 pmole) of the 32 P-kinase labeled oligonucleotide 5'-GCGCCGGCTGCTTCT-AGTCTCATGTCCATGTCGCA-3' in 10 μ l of 10 mM Pipes pH 6.4/400 mM NaCl 16 hr at 60°C. Reverse transcription was performed for 2 h at 42°C in 100 μ l of a buffer containing 50 mM TrisHCl pH 8.3/5 mM MgCl₂/50 mM KCl/250 μ M each dNTP/10 mM DTT/10 u RNasin/20 u AMV reverse transcriptase (Boehringer). Samples were phenol extracted and run on a 8M urea/8%

	10	20	30	40	50	60	70	80
GGATCC	IGGIGGG	GGAGGGTGGTT	AATAAAGCC	GCCATCCTTGG	GATGGATTAT	TTTTCTTTCT	TTCTTTCTTT	TITTCT
BamHi								
	90	100	110	120	130	140	150	160
TTCTTA	AGAAGAA	TATTCTGGTTG	TTCGCCTGC	TTGGTAACCCI	GACCCTGGC	GAAGAATGAG	GGAACTCATI	GCTTCA
	170	180	190	200	210	220	230	240
AATTGT	CGCCAAG	CCCATTAGGCT	ACCTGAACT	GTCTCAGAAAA	STGCGGGTGGG	CTGCGTCGAAC	GGTGGTGGCI	CAGAGG
	250	260	270	280	290	300	310	320
AAGAGA	TTGGGGC	CGGCAGCGACC	TAGGTACCI	CACTCTGGGTC	G <u>GGACC</u> CAGA	GTTGTAACGT	TGTCTATATA	TACCCT
					Avall			
	330	340	350	360	370	380	390	400
GTAGAA	CCGAATI	TGTGTGTGGTATC	CQ <u>TATA</u> GTC	ACAGATTCGAT	TCTAGGGGA	ATATATGGTCO	GATGCAAAAAA	TTCACG
				Hinf		4		
	410	420	430	440	450	460	470	480
TTTCTT	CGGAAT	AGCCAGAGACCA	AAGTGCGAC	ATGGAGACTAC	SAAGCAGCCG	<u>SCGC</u> TGGTCAC	SCCGCCTCGTI	CTGTTT
	490	500	510	520	530	540	550	560
TATTAC	CTTGGAO	CTCCAGGAGGAT	CAGCTGCGC	CTGGTGACAT	AGAGCAGCTT	FTCCTCTCCAC	GAAGCTCCTC/	CCTTTA
			Pvu II					
	570	580	590	600	610	620	630	640
AACAGA	GTATCCI	ICTGGGTGCTGA	AAAGAAAG	AAGACAGAAA	GAGAGAAAGA	GAGAGAGAGAGA	SAGAAAGAGAG	SAATGCA
							- ∧ 6411	
	650	660	670	680	690	700	710	720
AGCCTA	ATTGGT	IGCATGGATGCA	GGGCCAAAC	GGCTAGGTTT	IGGGGTACTA	GGGAGTGAGG	FACAAGGCCAG	SCTTGCC
	730	740	750	/60	//0	/80	/90	800
CAGTCC	CAGCTC	IGCCCTCCAGGA	ACATGAGG	GCAAAGGTAC	CCAAATGGGGG	GCTTGCTTGT	ATTTGGGGGCC	IGTGGGA
	810	820	830	840	850	860	870	880
AGAAAG	CAAGCT	<u>r</u> caaagaagccc	AGTGGGGA	SCTCTAGGGTG	CATITIGACA	AGGTGGAGGT	GCCCTTGCCA	CATCCC
	Hind I	H						
	890	900	910	920	930	940	950	960
AGCCCA	CCCCCA	GCTACATGGGCA	AGGGCAGC	AGGGCCCCCT	GCTATTTTGG	CAGGGCCCAG	CTITGGCTGG	GAACCCC
	970	980	990	1000	1010	1020	1030	1040
CGGGCC	TGGGCA	CTGGTAGAAAGC	ATGGCGGT	TACTCATTGCC	TAATTTGATT	CAAGCTGGCC.	AGATTCTGGT	AACTITI
	1050	1060	1070	1080	1090	1100	1110	1120
GGGTGA	CCCTGA	TGAAGACAAAGO	CAGGACGG	CGGCCTTTGTA	TGGCAGATCC	CIECICCEC	CGGCTGCAGG	CAGGGCG
								1 2 4 4
	1130	1140	1150	1160	1170	1180	1190	1200
GGCAGG	CAGGAA	CCCTCCTCGCCI	GGGGGCACT	TGCCCAACTC	AGAGGCGAGT	TCACCCACCC	ACCTITCATI	Gererer
						1260	1	1 2 0 0
	1210	1220	1230	1240	1250	1260	1270	1280
ACCCCA	ATAGGA	GGATTCATTCT	CCTTGAGC	IGIGCCIACII	Gererceeee	Gereedert	GUATTUAGUT	Geogere
					1	1240	Pvul	1,260
	1290	1300	1310	1320	1330	1340	1350	1300
AGTGGA	AGGGCC	ACGGAAGGTTGG	SCAAAATCA	GIGGCAGACAA	AAGCTGGGAT	TACCIGAGGG	GAAIGGGGIG	CIGGGG
		1 2 6 6	1 2 0 0	1 4 0 0	1 4 1 0	1420	1420	1 4 4 0
	1370	1380	1390	1400	1410	1420		1990
CTGGAA	ACTACAT	TAATATCTGGC/	AGGGGGCTCT	CAAATGIGUUA	TAGCAAGCTA	CIIGAIIACA	CGIAIGIIAI	IIAGIII
	2.450	10.013	1 4 7 4	1 4 9 9	1400	1500	1510	15.20
	1450	1460	14/0	1480	1490	1300	1510	CATCOC
AATTT	JIGAAAA	TTATGAGATGC	LCACCAACC	COGTGATAAAC	TIGCTUCCTU	GCCAIIGGCI	GGCCIGGICA	CAIGGC.
	1 5 3 0	1540	1660	1560	1570	1580	1590	1600
	1230	1540	1320	1360	1370	*******	CCACAAAAAT	TACTAT
GLUCA	ACITIAT	LUDO U	ADDATOMA	Acc.	1	67 II	CONGRAMMA I	
	1610	HINCH	1630	Apa i	1650 - A	1660	1670	169/
more	1010	1020	1030		1020	TODA	A COTTOCOTO	COTOCO
TICIAC	.circit6	AMATIAATGGT	Mat Sar Ca	TUrMetV=1 h	EnSerivem	rValasnPro	Lycpheprop	LOLAEC,
		-metva.	THEFTSETSE			r wrught to	wj st mer I Or	100yad.

acrylamide gel. The gel was then dried and exposed to Kodak X-OMAT S0-282 film for 4 days.

Evaluation of HOX 5.1 transcripts half-life

mRNA half-life was evaluated in NT2/D1 cells grown for 14 days in the presence of RA. The cells were incubated for 0-8 h in the presence of 1µg/ml actinomycin D (Sigma). Control experiments showed that this concentration of actinomycin D was sufficient to inhibit > 98% (³H)-uridine incorporation into trichloro-acetic-acid (TCA)-precipitable material (i.e., > 98% inhibition of RNA synthesis). At fixed times after actinomycin D addition, the culture medium was removed and cells, immediately lysed in guanidinium thiocyanate, were processed for RNA extraction as described above.

RESULTS

A 24 Kb clone (λ 13G) has been isolated from a human genomic library probed with the *HHo.c13* (14). This clone largely encompasses the *c13* sequence and appears to contain the entire *HOX-5.1* gene.

The HOX-5.1 gene is expressed in multiple transcripts, namely the 5.4, 4.2 and 2.8 Kb mRNAs (14,15). To map the position of these transcripts on genomic DNA, $poly(A)^+$ RNA from human embryonal tissues (14) and 14-day RA-induced NT2/D1 cells (15) were successively probed, by Northern analysis, with several restriction fragments from λ 13G and *c13* (Fig. 1). The results indicate that all *HOX-5.1* mRNAs are transcribed from a region included between a BamHl site located 2.6 Kb upstream and a EcoRI site 3.5 Kb downstream to the homeobox: indeed,

1690 GGAGTATTTGCAG uGluTyrLeuGln	1700 GGCGGCTACCT GlyGlyTyrLe	1710 AGGCGAGCA uGlyGluGl	1720 GGGCGCCGAC nGlyAlaAsp	1730 TACTACGGCG TyrTyrGlyG	1740 GCGGCGCGCCAG LYGLYALAGI	1750 GGGCGCAGAC nGlyAlaAsp	1760 TTCCAGC PheGlnP
1770 C <u>CCCGGG</u> GCTCTA roProGlyLeuTy Sma i	1780 CCCACGGCCCC rProArgProA	1790 ACTTCGGTG spPheGlyG	1800 AGCAGCCTTT luGlnProPh	1810 CGGAGGCAGC eGlyGlySer	1820 GGCCCCGGGC GlyProGlyP:	1830 CTGGCTCGGC roGlySerAl	1840 GCTGCCT ALeuPro
1850 GCGCGGGGGTCACG AlaArgGlyHisG	1860 GACAAGAGCCA lyGlnGluPro	1870 GGCGGCCCC GlyGlyPro	1880 GGCGGTCACT GlyGlyHisT	1890 ACGCCGCTCC YrAlaAlaPr	1900 AGGAGAGCCT oGlyGluPro	1910 IGCCCAGCTC CysProAlaP	1920 CCCCCGGC TOPTOAl
1930 GCCTCCGCCGGCG aProProProAla	1940 CCCCTGCCTGC ProLeuProGi	1950 CGCCCGGGC	1960 CTACAGTCAG	1970 TCCGACCCCA Serasperol	1980 AGCAGCCGCC	1990 CCCCGGGACG	2000 GCACTCA
2010 AGCAGCCGGCCGT	2020 GGTCTACCCC	2030 GGATGAAGA	2040 AGGTGCACGT	2050	2060 AAGGCTAGGG	2070 TCCAGTAACC	2080
2090 CCACATCCCAGCC	2100 CGTTAGCCTG	2110 GTCCTCTGG	2120 AAGGGGGGTGC	LASNSET ECORIJ 264 2130 GAGTAGGTGG	II 2140 GGGCGTGTGG	2150 AGCTTCCATG	2160 GGCGCCG
2170 CAATTACTCTCCC	2180 CATAAATTTT	2190 TATAGCTGAG	2200 GGAGCAGGTC	2210 AGGACCATGT	2220 GGCTGGCTGC	2230 TCGGC TGTG G	2240 GCGCAAA
2250 AGGGGGTGGGGAT	2260 GGGGGGGGGTGGG	2270 GGGAGGACTC	2280 CATITICAGA	2290 GCAGGGGGAA	2300 GGCTGTGGAG	2310 GAGCGGGGGGA	2320
2330 AATGCTTGAGGGI 2410	2340 TCCGGACCTG	2350 GTGGTGGGCC 2430	2360 CAGAAGAAGG 2440	2370 AGCACATTTG	2380 GGGATCCCGC	2390 AAGCCTGGGG	2400 STATGTGG
GTGTGTTTGAGGA 2490	GGTGGGTGGG	AGTGAGCGTG	TGCGCCGGGG	AGAGGGCGGG	AGGGAGGAAG	CAAGCGAGCI	TTGGGAGC
GCGCGGGGGAGGGG	CGCGGGGC <u>CTC</u> Ava 2580	3GG GCGCGCGCC 1 2590 ▼	2600	2610	2620	ACTAGTGGC0 2630	2640
2650	2660	2670	1AsnProAsr 2680	TyrThrGlyG 2690	lyGluProLy home 2700	obox 2710	ThrAlaT 2720
ACACCCGGCAGCA yrThrArgGlnGl 2730	AGTCCTAGAA InValLeuGlu 2740	CTGGAAAAAA LeuGluLys(2750	SAATTTCATT SluPheHisPi 2760	TTAACAGGTAI neAsnArgTyi 2770	CTGACAAGGC LeuThrArgA 2780	GCCGTCGGA TGATGATGI 2790	TTGAAATC LeGluIle 2800
GCTCACACCCTG AlaHisThrLeu0	CTCTGTCGGA CysLeuSerG1	GCGCCAGATO uArgGlnIlo 2830	A <u>AGATCT</u> GG LysIleTrpl Bgi ii	PheGlnAsnA	GAGGATGAAG GArgMetLys	TGGAAAAAA TrpLysLys	GATCATAA AspHisLy 2880
GCTGCCCAACAC	TAAAGGCAGGT TLysGlyArgS	CATCGTCCT	CATCTTCCTCO erSerSerSe	TCATCTTGCT SerSerCyss	CCTCCTCAGT SerSerSerVa	CGCCCCCAG AlalaProSe	CCAGCATT rGlnHisL
2890 TACAGCCGATGG euGlnProMetA	2900 CCAAAGACCAC LaLysAspHis	2910 CACACGGAC HisThrAsp	2920 CTGACGACCT LeuThrThrL	2930 FATAGAAGTGO BU	2940 3ggaccct <u>gg</u> Ag	2950 SCCCATCTCT Sal	2960 CCCTGCGC
2970 ACCAGGCTGAGC	2980 CGAAGCTGCGG	2990 GGCAGGCCG	3000 GGCCTGCTGT	3010 CACCTCGCTG	3020 SGCTCTAAGG	3030 TACTGTGGGG	3040 TGGACCTG

305	0 3060	3070	3080	3090	3100	3110	3120	4730	4740	4750	4760	4770	4780	4790	4800
GGACAAGCA	GGCCGCCCTCGGAC	TAGGTTAGC	ATCCTGCCCGA	GGGCAGCCCC	CTCCCTAGAG	CGGGATGGG	SATGGGÅG	GGGGACTGCTCTT	GTTTCTCCI	TGGGGTGAGC	TGGCTCTCA	GACTTGCACA	TGGCAATACT	IGAATGTCAC	CACGTCG
313	0 3140	3150	3160	3170	3180	3190	3200	4810	4820	4830	4840	4850	4860	4870	4880
GGGGGGCGG	GATTCTCTCTCTA	GTATATTAT	ATGGCAGGAGC	TACTGAGAAC	ATAAAATCTT	GGCGAGTCAT	TAAACTT	GGATATTAAAGAT	GATATTCGI	GCATTATTCA	CATCATTGTT	TCTATGACAA	AAAGCACAGA	GTTCATACAT	AGTCAAG
321	0 3220	3230	3240	3250	3260	3270	3280	4890	4900	4910	4920	4930	4940	4950	4960
ATGAAAATC	ACCGCTCTTGGAT	TTGAATTTG	CAAATGAAGGT	TGGATGCTTT	TATCCCACTGT	GAATTTGGAG	CATTCTCC	ACGTCTTTTTCTG	ACGCCCTCAC	GTTGAGAAGC	L'GAAAAGGTA	TTTTACCGAA	GTTCGGGTAA	ATTACAGAAT	CAGGITC
329	0 3300	3310	3320	3330	3340	3350	3360	4970	4980	4990	5000	5010	5020	5030	5040
CCCACTCCA	CCCCTCCAGGGTGC	TTTGTGGCI	TAATAATGTGG	GGGAGTTGAG	GCAGAAGGTT	GGCCACCCC	FGTGCTAG	AICCAGAGGACAA		IGATIAGCIG	INTITCAGEC	GGGAGGACIG		CCCIANCCII	IIIGGACI
337	0 3380	3390	3400	3410	3420	3430	3440	5050 CTAACTACCCTTC	5060 רבדידרידירידייייייייייייייייייייייייייי	5070	5080 22422274	5090 AGTCTTTGGA	5100 TGTACCATT	5110	5120
GTGCTITCA	GTGGAAGCCAGAGA	<u>act</u> gggtca Alul	GGATITCIGGA	CTTTCTGGGT	TGTCTATGGA	ATTTCATGTC	SATTAAAA	CIARCIACCUITC							GUINICU
345	0 3460	3470	3480	3490	3500	3510	3520	5130 TTAGGCAAGTTGG	5140	5150	5160 TAAAACCCA	5170 AATCTGTCTA	5180 TACATTGAAC	5190 CTTCTCTTTG	5200
AATATATAT	TITGUTUUCAGIGG	CULCACUIC	CAAAGAAAIGG	GICIAAGAAG	GAAGIAAAAA	IGGGIIAIII	INIGITI								
353	0 3540	3550	3560	3570	3580	3590	3600	5210 GAAAAAGGTATAT	5220	5230 CATCCAATTA	5240 CATATATATA	5250 ATAGAGATTT	5260 GTTGTATAGA	5270	5280 CCTCAGA
AGAIAIIIG	C1100010111011	1011000/0	AIGIGGIACAG		CACCIICAIG				6200	5310	5330		69.40		
361 GTGAAAGGG	0 3620 GCTGAACTTCAGGO	3630 AGCAGAATC	3640 AGAGATATGTG	3650 CACTTACTTC	3660	3670	3680 TCTCTGG	AGTTCAGGTTACT	CACCCCCAGI	TTCATACCAA	ATGCCACACA	GGCTTAACTG	ACTGCATCCC	TGCCCCAGAG	GAAAGCC
010////000								5 3 7 0	6380	6200	5400	5410	6420	6430	
369 AAATGTATA	0 3700 TAGGGGGGGCCTTA	CCCTTCCAG	3/20 AAGGAAGCAAA	3730 GGATTCACTC	3740 CAAAGTTGCAT	3750 TCTTGAAAA	3750 TATATTTC	AAGAAACATGTTT	TCATGAGGA	AACCCAAGCT	CTTCTCAAA	CATAGCCCCA	CTACTTTGGA	AAGTAACTTA	ATCAGAG
		2700	2000	2010	2020	2020	3840	5450	5460	5470	5480	5490	5500	5510	5520
CACATGTGT	TTTTTTCAGCACTO	TGCTTACAA	CCAGTTCTGGG	TGATTAAAGG	J820 SAAAGGGAAAA	AAACCAACA	ATGGTCC	AAACAACTTCTTT	STTTATAAG	CTCAGCTCTC	CTTCTCAGCT	TGGAGGGATI	CTTTTGAAAT	GTTAATGGAG	CCTGGAT
205	0 3960	λ6	7II-	2000	^L C	P 2-8	2020	5530	5540	5550	5560	5570	5580	5590	5600
AACATTTTC	CTTCTGGGGAAAGA	AAACAAAAC	CTCTATGCACT	GGGTCATTAG	BATAATGACTG	AATTTTCTG	TTCCAACT	GGCCCAGAGTGCA	SCCCCCAACO	CTGAGGTCCC.	AGTCGGACCC	CAGCATCCAT	TTGGGCCCAC	AGGAGTGGGC	CAGGGAA
303	0 3940	3950	3960	3970	3980	3990	4000	5610	5620	5630	5640	5650	5660	5670	5680
GGATTCCAA	ATGCCCTAAATAC	CTCATATAG	CAGTGTTTTAC	AGGAATTAGI	GTATGGCCCG	TGTAGGGGA	GGGGCTGT	GGGGTAGGGCCCC	GTAACCACT	TAGGGCAGGGA	AGGAAATGGG	TTTCCATCTO	AGAACGTGCT	TTGGAGAAAAG	CTAGGTG
401	0 4020	4030	4040	4050	4060	4070	4080	5690	5700	5710	5720	5730	5740	5750	5760
GCAGTGGGG	AGAAAGTGGGAAG	TGAGGAACT	CTTGCTTTAAG	AAGGAAAAAA	AAAAAACCCT	AATTGAATC	TAGAAGTC	TGGAAAAGCTCCA	ATGCCCATT	IGCTATTATTT	GTTTCCAGTI	TGTTCCTTT	AATATGAGCC	AGAAGTGTTT	IGTGTTGG
409	0 4100	4110	4120	4130	4140	4150 Xb	al 4160	5770	5780	5790	5800	5810	5820	5830	5840
CACAAAAGT	TAGCCTTAGAGTT	TTTTCCCCC	TGAAGTTTTAA	TTTTTTTAA	AACCAAATCT	AAGGAAGTT	ITCCTCAG	TGTTTTAAAAACA	AAAACAAAA	ACCGTGTTGGG	GTCCTGACTO	GGGGGAGGGG	BAGAGTGAAGT	GTTTGCTGAG	GACATTO
417	0 4180	4190	4200	4210	4220	4230	4240	5850	5860	5870	5880	5890	5900	5910	5920
CTCATTAAT	TAGAAGCAGAATTI	GTAAAAGTA	TAAAAGTTTTC	AAGCACTCGI	CTTTGCCTTG	SAGAATAGTG	GTTTTTTA	CTCCTCTGACTCC	CATCTCACT	TGTCCATCGC	AGCCTTTTGT	TGGGAGATG	CACTGTCAG	CAGCCCATGA	ATGTCTGI
425	0 4260	4270	4280	4290	4300	4310	4320	5930	5940	5950	5960	5970	5980	5990	6000
AAGAATCAC	TCTCAACAGGGGAG	ATGTCCTCI	AGTCGTTTTTC	TTCTGCCTCI	CCTGGGAAGG	GTTCAAAGT	ICATTITT	TCACACGAGATGC	LILLILLAT	AGAATTGACCA	ATGTTTTGCI	GCCACTGAT	<u>eaaa</u> gtattat C	TTATACTAA1	FTGTTGC1 5-19
433	0 4340	4350	4360	4370	4380	4390	4400	6010 TCTACTTTTCATC	6020	6030	6040	6050	6060	6070	6080
CTAAAATGC	TGACCCTCAAGCAT	TAAGGAGGA/	GAAGTCAAAGT	TAATGGCCAG	SAGTTCATATA	CTCAGATGA	AACCAGTC	IGIAGIIIIGAIG		JAICIAIAIII	AAAAI <u>NAIAA</u>	MAGGIGIAGO	1 25-20	.iccigninge	JIGCCITA
441	0 4420	4430	4440	4450	4460	4470	4480	6090	6100	6110	6120	6130	6140	6150	6160
TTCCCAAGG	CCTCAGGCTCCAA	AAAGGTTGI	AGCTATCAAAA	AGTGACCAAA	AGTGGGAAAGG	GAGAAAGGA	Hind III			AGICITCIAA	ANGUIANCAI	IIAACAIAA			01000111
449	0 4500	4510	4520	4530	4540	4550	4560	6170 GGCACCATTTTT	6180 666666760	6190	6200	6210	6220	6230	6240
AAATTTAAT	TTTAAGATCCAGAA	GGGGGGTAI	. IIIIIIICAGTA	CIICAAAAAU	ACITIAGAAG	GITICIGITO	GIAAITTA								
457	0 4580	4590	4600	4610 COTTOTTOTT	4620	4630	4640	6250 AATGTACACACAC	6260 TCCCAGTTG	6270 GCCACCATATT	6280 TTGTGAGCA1	6290 TTGGGAAGCC	6300 IGGGGTTGAA1	MC	
~~~~	11114010004000		III CICIGIAG	Gerrarier	100010101010	LICCIGAGAG	LIGNOGGC						Eco	RI	
465 AGGTATTCA	0 4660 CTGCAGTCCCTAG	4670	4680	4690 AGTGTCTTCC	4700	4710	4720								

Figure 3: Nucleotide sequence of the HOX-5.1 gene. Restriction sites reported in the text are shown. cDNA boundaries are indicated. TATA box, polyadenylation signals and the homeobox are boxed; poly-A addition sites are indicated by vertical arrowheads, followed by the name of the cDNA clones polyadenylated at those sites. Black triangles above the sequence indicate the splice sites. The open triangles below the sequence indicates the cap sites. The oligonucleotide used in the primer extension experiment is underlined. Nucleotide positions that do not agree with those reported for the HHo.cl3 clone (14) are indicated by asterisks.

probes external to this region failed to hybridize to any HOX-5.1 transcript. The 0.8 Kb BamHl-Hindlll (1-808, in Fig. 3), 0.5Kb Hindlll-PvuII (808-1269) and A (0.2 Kb from the 5' end of c13 to ApaI, 1370-1553) (14) probes detect both the 5.4 and 2.8 Kb transcripts (Fig. 1A). Using the B (0.5 Kb ApaI-EcoRI, 1553-2044), C (0.35 Kb EcoRI-ApaI, 2044-2941 excluding the intron) and D (0.25 Kb ApaI-3' end of HHo. c13, 2941-3209) (14) probes both the above mentioned RNAs and an additional 4.2 Kb transcript were detected (Fig. 1B). A faint 1.4 Kb band was detected using the same probes, but only in RA-induced NT2/D1 cells and embryonal medulla oblongata. When probes downstream to the c13 poly-A site were used, i.e., 0.8 Kb Alu I (3383-4159) and 2.3 Kb Xbal-EcoRI (4071-6300), only the 4.2 and 5.4 Kb bands were observed (Fig. 1C): these data suggest that the 5.4 and 2.8 Kb transcripts contain a long region upstream to the reported ATG, while the 5.4 and 4.2 Kb transcripts largely extend 3' to the c13 poly-A site (Fig. 2).

The 6.3 Kb region encompassed by the BamHl and EcoRI sites was completely sequenced (Fig. 3). The genomic sequence of the region corresponds to the c13 sequence, with the exception of: (i) two sites in the 123 and 142 codons in the first coding exon (positions 1985 and 2043 in Fig. 3), where nucleotide substitutions determine respectively changes of Pro and Val in the Ser and Ala residues previously reported (14), and (ii) 10 positions in the 3' untranslated (UT) region (see asterisks in Fig.

3). The aminoacid 123 is also Ser in the  $\lambda$ 64II and  $\lambda$ 67II cDNAs (see below). All of the 12 new positions in the human genomic sequence agree with the mouse Hox-5.1 sequence (16). Three cDNA libraries were screened with HOX-5.1-specific probes. When a 3' probe was used (1.8 Kb Hindlll-EcoRI, 4474-6300) a 2169 bp clone, cp2-8, from a placenta library and two shorter clones,  $\lambda 5 - 20$  and  $\lambda 5 - 19$ , 288 and 449 bp long respectively, from a 5-wk human embryo library were isolated. By restriction mapping and partial or total sequencing, the clones were found to be colinear to the genomic sequence in the 3 ' region (Fig. 2). Moreover,  $\lambda 5 - 20$  and  $\lambda 5 - 19$  were polyadenylated at two different positions (6053 and 5990 in Fig. 3), 63 bp apart from one another, 9 and 14 bp respectively downstream from canonical polyadenylation signals (27). An additional AATAAA sequence is located at position 6152 in Fig. 3, possibly representing the signal for a third poly-A site in a multiple poly-A region. All three poly-A signals are followed, at a 10-20 bp distance, by a typical GT-rich stretch (27). This region appears to constitute the 3' termination of the 5.4 and 4.2 mature transcripts. When probe B was used, two clones,  $\lambda 64II$  and  $\lambda 67II$ , were isolated from a 7-wk spinal cord library. These clones were characterized as described above (Fig. 2).  $\lambda$ 64II is a 1424-bp clone, colinear to the genomic sequence in the 5' UT and first coding exon.  $\lambda 67II$ is a 1685-bp clone spliced as c13, but extending 587 bp 3' to it. Neither clone is polyadenylated. As indicated by the colinearity of the described cDNA to the genomic sequence, no other introns appear to be spliced out in primary transcripts from the HOX-5.1 transcription unit other than the 541 bp (Figs. 2 and 3).

To verify that this intron is spliced in the same way in all transcripts, a 711 bp EcoRI-BgIII RNA probe encompassing the intron sequence was hybridized in a RNAase protection experiment to 20  $\mu$ g total RNA samples from: (a) RA-induced NT2/D1 cells, (b) 8-wk embryo *medulla oblongata*, (c) NT2/D1 stem cells. In both the (a) and (b) samples, the first one expressing all *HOX-5.1* transcripts and the other only the 4.2 kb messenger, we detected a 165 bp band (Fig. 4A), corresponding to the distance from the *c13* splice site and the BgIII site in the homeobox. No bands were detected in sample (c). If we further consider that *c13* and  $\lambda$ 67II appear to correspond to partial copies of the 2.8 and 5.4 Kb transcripts respectively, we may conclude that the 541 bp intron is similarly spliced in all mature transcripts of the *HOX-5.1* gene.

Nevertheless, when we used a 457 bp EcoRI-AvaI (2044–2501) probe containing most of the intron sequence, we detected only two faint bands of approximately 6.0 and 3.2 Kb in poly(A)⁺ RNAs from RA-induced NT2/D1 cells, embryo limbs and gut (data not shown). These bands are present in nuclear but not in cytoplasmic poly(A)⁺ RNA from RA-induced NT2/D1 cells (results not presented): thus, they may represent precursor forms, polyadenylated but not yet spliced, of the 5.4 and 2.8 Kb mRNAs.

Positions of the distal cap site pertaining to 5.4 and 2.8 Kb transcripts were determined by both RNAase protection and primer extension assays. Total RNA from RA-induced or uninduced NT2/D1 cells was used for both assays. The RNAase protection experiment, performed with a BamHI-PvuII 504 bp (1-505) or a AvaII-PvuII 220 bp (285-505) RNA probe, showed in both cases an RNA-protected fragment co-migrating



with a 126-bp DNA band in the RA-induced but not in the stem cell sample (Fig. 4B). In this regard, evaluation of the size of RNA fragments may be up to 10% approximate with respect to DNA size markers (26). In the primer extension experiment, when a 30 bp oligonucleotide complementary to the 428-457 sequence (underlined in Fig. 3) was used and hybrids were extended with AMV reverse transcriptase, a band of 81 bp was detected in RA-induced samples (Fig. 4C). Therefore, the distal cap site may be located at the T at residue position 377 (Fig. 3) or, more likely, at the preceding A: indeed, the cap site is most often an A residue surrounded by pyrimidines (28) and a one residue shorter cDNA may be generated by methylation of the first nucleotide of the corresponding mRNA (29).

This A residue is 26 bp 3' to a TATA sequence. Furthermore, no bands were detected when  $poly(A)^+$  RNA from RA-induced NT2/D1 cells was hybridized to an excess of a ³²P-labeled HinfI-HinfI 0.8 Kb probe (0.8 HfI in Fig. 2), spanning from a HinfI site 0.45 Kb upstream from the BamHl site (pos. 1) to the HinfI site at position 357 (data not shown).

From hybridization experiments (see the A probe in Fig. 1) the position of the proximal cap site, pertaining to the 4.2 and possibly the 1.4 Kb transcripts, appears to be located close to the first ATG. An RNAase protection experiment was performed: a 254 bp RNA probe containing the 226 bp antisense sequence from the HincII site (pos.1536) to the Smal site (pos.1762) was hybridized to 20  $\mu$ g of total RNA from RA-induced NT2/D1 cells and 20  $\mu$ g from NT2/D1 stem cells (Fig. 4D). In the RA-induced





**Figure 4**: (A) RNAase protection analysis using the intron-specific riboprobe 0.7 Kb EcoRl-BgIII synthesized in the antisense orientation. Hybridizations were performed to 20  $\mu$ g of total RNA from RA-induced NT2/D1 cells, 8-week embryonal *medulla oblongata*, NT2/D1 stem cells. (B) RNAase protection analysis using the distal cap site-specific riboprobe 0.5 Kb BamHI-PvuII, synthesized in the antisense orientation. Hybridizations were performed to 20  $\mu$ g of total RNA from RA-induced NT2/D1 cells and NT2/D1 stem cells. (C) Primer extension analysis using the 30 bp oligonucleotide (position 428–457 in Fig. 3). Hybridizations were performed to 50  $\mu$ g of total RNA from RA-induced NT2/D1 cells and NT2/D1 stem cells. (C) Primer extension analysis using the 30 bp oligonucleotide (position 428–457 in Fig. 3). Hybridizations were performed to 50  $\mu$ g of total RNA from RA-induced NT2/D1 cells and NT2/D1 stem cells. After reverse transcription, half of each sample was loaded on a 8M urea / 8% acrylamide gel. As size reference, a sequence was performed using the same 30 bp oligonucleotide as specific primer on a plasmid containing the entire *HOX-5.1* gene. (D) RNAase protection analysis using the 226 bp HincII-SmaI proximal cap site-specific riboprobe in the antisense orientation. Hybridizations were performed to 20  $\mu$ g of total RNA from RA-induced NT2/D1 cells and NT2/D1 stem cells. M is a size marker. In all experiments a known sequence was run together with the samples as size reference.

sample a 220 bp band was observed representing full-protection by the probe of the distally-promoted transcripts. In addition two bands are present: the first comigrating with a 166 bp, and a second fainter one with a 146 bp DNA band. They indicate two possible proximal cap sites, the first located about 20 bp upstream from the ATGs (probably at positions 1598), the other located at the first ATG or immediately 5' to it (pos. 1618). The possibility that the 166 bp bands arise from a splicing site, although not excluded, seems unlikely, in that the only AG in the region is not surrounded by a good splicing consensus sequence (30). Furthermore, multiple cap sites of the murine *Hox-1.4*, the paralog of *Hox-5.1* in the *Hox-1* cluster, have been mapped 21 and 13 bp 5' to the first ATG, within a sequence region 80% similar to that of human *HOX-5.1* (31).

To characterize the differential half-lives of HOX 5.1

transcripts,  $poly(A)^+$  RNAs from RA-induced NT2/D1 cells, incubated for increasing times (0-8 h) with actinomycin D, were probed with the B fragment in a Northern analysis.

Data were normalized by hybridization to  $\beta$ -actin, whose mRNA decay is negligible at the times considered. As shown in Fig. 5, the 4.2 Kb transcript displays a 60–75 min half-life, and is virtually undetectable after 4 h of actinomycin D treatment. The 5.4 and 2.8 Kb transcripts display a half-life of 20–30 min and are hardly detectable after 1 h.

The same probe was used on  $poly(A)^+$  RNAs from separately prepared nuclei and cytoplasms of RA-induced NT2/D1 cells. Reciprocal ratios between the 5.4, 4.2 and 2.8 Kb transcripts are respectively: 2.52 : 1.19 : 1 in total cellular RNA; 1.14 : 2.28 : 1 in cytoplasmic RNA; 4.04 : 1 : 2.30 in nuclear RNA (Fig. 6). From these results the 5.4 and 2.8 Kb transcripts appear



T C N

**Figure 6**: Northern blot analysis of  $poly(A)^+$  RNA  $(2-3 \mu g/lane)$  from total cellular (T), cytoplasmic (C) and nuclear (N) fractions of RA-induced NT2/D1 cells, hybridized to the B probe (see Fig. 2). Sizes in Kb are indicated at left.

**Figure 5**: Northern blot analysis of  $poly(A)^+$  RNA  $(2-3 \mu g/lane)$  from RAinduced NT2/D1 cells treated for different times (0-8 h) with  $1 \mu g/ml$  actinomycin D hybridized to the B probe (see Fig. 2). C corresponds to time 0. Sizes in kb are indicated at left. Hybridization to the  $\beta$ -actin probe is shown. The 5.0 Kb band present in all lanes represents a cross hybridization of the GC-rich (70%) B probe to a 28S ribosomal RNA residue.

to be mainly accumulated in the nucleus, whereas the 4.2 Kb RNA is distributed between the nuclear and cytoplasmic compartments, representing the main band in the cytoplasm.

# DISCUSSION

We previously reported the sequence of a 1.3 Kb homeoboxcontaining cDNA, *HHo.c13*, apparently comprising the entire coding sequence (14). This clone was used to probe  $poly(A)^+$ RNA samples from a variety of human embryonic body parts: several transcripts with differential stage- and/or tissue-specific expression were detected in limbs, heart, spinal cord, brain and backbone (14). We now report its expression in gut (see Fig. 1), as described for the murine *Hox-5.1* (16, 17). The expression in the brain appears to be restricted to a region between the cervical and pontine flexures (*medulla oblongata*), as the region anterior to the pontine flexure fails to express any of the *HOX-5.1* transcripts (data not shown). Accordingly, the anterior boundary of the expression of the murine *HOX-5.1* has been located in the mid-myelencephalon (17).

The present work also includes an extensive analysis of the structure of the human HOX-5.1 gene, as well as the mechanisms responsible for the expression of its mRNAs.

Production of multiple transcripts is a feature shared by a number of genes, including the homeobox (9, 32, 33, 34). The multiple transcripts, often showing a stage- and/or tissue-specific expression pattern in development, arise from multiple promoters and/or alternative processing. *HOX-5.1* appears to use two promoters in both embryonic tissues and teratocarcinoma cells: the 5.4 and 2.8 Kb transcripts are driven from the distal promoter and the 4.2 from the proximal one. The two promoters appear

to be differentially regulated in a tissue- and stage-specific manner (14) and respond differently to RA induction (15). Likewise, a proximal and at least two distal, clustered but independent, polyadenylation sites exist: the first pertaining to the 2.8 Kb, the others to the 4.2 and 5.4 Kb transcripts (Fig. 2). We report the presence of a 1.4 Kb transcript, which is expressed as a faint band detected by only the B, C and D *c13*-specific probes (Fig. 1B). This transcript has been observed only in RA-induced NT2/D1 cells and in embryonic *medulla oblongata* poly(A)⁺ RNA after prolonged exposure (see Figs. 1, 5 and 6). Remarkably, its expression is strictly related to that of the 4.2 Kb transcript, being clearly detectable only when the 4.2 kb band is abundantly expressed. The 1.4 Kb transcript appears to utilize the proximal cap site(s) and the proximal polyadenylation site.

Analysis of the sequence upstream from the transcription start points revealed that the distal promoter displays two TATA sequences, 29 and 67 bp, and an inverted CCAAT 129 bp upstream from the cap site (positions 347, 309 and 246 respectively). A 32 bp sequence composed of a tandemly repeated CTTT module located 322 bp upstream from the distal cap site (position 54), is invertedly repeated 209 bp downstream from it (position 584) in a 53-bp GA-rich sequence: the cap site is located between these inverted repeats. In this regard, poly(pyrimidine)-poly(purine) stretches have been implicated in gene regulation (35).

The proximal promoter does not show a TATA box, but displays an inverted CCAAT and two GGGCGG located at positions 1497, 1116 and 1253 respectively.

Regulatory elements acting as enhancers with time-, tissue- and region-specificity have been demonstrated in transgenic mice in the 2830 bp fragment upstream the Hincll site (position 1536 in Fig. 3) using a *lacZ* gene fusion construct (36). These elements specifically direct  $\beta$ -galactosidase expression to the upper cervical region of the central nervous system and appear to regulate *HOX-5.1* expression at transcriptional level from the proximal promoter (36).

The 5'-UT-region, included in the distally promoted transcripts, contains three potential short open reading frames at 3, 678 and

709 bp 3' to the distal cap site, starting with an ATG, which are able to encode for respectively 68, 52 and 85 aminoacid long polypeptides. It has been suggested (37,38) that short open reading frames in the upstream region may be involved in the translational control of transcripts containing that region.

Analysis of HOX-5.1 transcripts stability after actinomycin D treatment of RA-induced NT2/D1 cells shows a half-life of 20-30 min for both the 5.4 and 2.8 Kb transcripts and approximately 1 h for the 4.2 Kb messenger. Altogether, the short half-life of the 5.4 and 2.8 Kb mRNAs, their preferential accumulation in the nucleus, the presence of their precursors in the nuclear RNA and the rapid turnover of mature transcripts in cytoplasm suggest that the distally-promoted transcripts are abundantly synthesized, and/or accumulate in the nucleus, but rapidly decay soon after their transfer to the cytoplasm. Conversely, the 4.2 messenger is characterized by a relatively low abundance in the nucleus and high level in cytoplasm, a longer half-life and absence of detectable precursors: this suggests that the 4.2 Kb mRNA is synthesized at a lower rate as compared to the distal transcripts, but has a slower catabolic rate in the cvtoplasm.

Control of these variables may be related in part to alternative functional features of the two differentially regulated upstream regions, and/or to the intrinsic stability of different mRNA molecules.

Determinants of mRNA stability may reside in the 5' or 3'-UT region of the molecule (39). The determinant responsible for the differential stability of the 2.8 and 5.4 Kb transcripts versus the 4.2 Kb mRNA may be located in the long 5'-UT region, which structurally discriminates between the 5.4 and the 4.2 Kb mRNAs. In this regard, it has been reported that the 5'-UT region of c-myc oncogene is responsible for the rapid degradation of c-myc mRNA (40).

The 5.4 and 4.2 Kb transcripts largely extend 3' to the proximal poly-A addition site in a long AT-rich sequence. The AT-stretches are reported to be responsible for rapid degradation of short-lived mRNAs (41): in this case they might partially contribute to the rapid turnover of the distally polyadenylated *HOX-5.1* transcripts.

An alternative explanation may be considered. RA-induced NT2/D1 cells differentiate into heterogeneous cell lineages that include neuron-like cells (23). It has been suggested (15) that the *HOX-5.1* transcripts may be differentially expressed in different cell subpopulations, *e.g.* the 4.2 Kb transcript, specifically expressed in embryonic *medulla oblongata* and spinal cord could be selectively synthesized in the neuron-like cells in RA-induced NT2/D1 cells. In this case the differential regulation and mRNA stability of *HOX-5.1* mRNAs may be attributed to the different intracellular environment in which each transcript is expressed.

In conclusion, analysis of the molecular mechanisms of *HOX-5.1* expression shows the presence of two independent classes of transcripts, one including the 5.4 and 2.8 Kb transcripts and the other the 4.2 and 1.4 Kb ones. The two classes appear to be differentially regulated at transcriptional and post-transcriptional level. However, all *HOX-5.1* transcripts share the same major open reading frame, thus suggesting they encode for the same protein.

The functional significance of the two classes of transcripts remains to be elucidated.

#### ACKNOWLEDGEMENTS

This work was supported by Progetto Finalizzato CNR 'Oncologia' to C.P. (Grant No. 88.00809.44) and Progetto Finalizzato CNR 'Biotecnologie' to C. P. (Grant No. 89.00250.70).

### REFERENCES

- 1. Holland, P.W.H. and Hogan, B.L.M. (1986) Nature, 321, 251-253.
- 2. Desplan, C., Theis, J. and O'Farrell, P. (1988) Cell, 54, 1081-1090.
- 3. Hoey, T. and Levine, M. (1988) Nature, 332, 858-861.
- 4. Gehring, W.J. (1987) Science, 236, 1245-1252.
- 5. Boncinelli, E., Somma, R., Acampora, D., Pannese, M., D'Esposito, M., Faiella, A. and Simeone, A. (1988) Hum. Reprod., *3*, 880–886.
- Holland, P.W.H. and Hogan, B.L.M. (1988) Gene Dev., 2, 773-782.
  Simeone, A., Mavilio, F., Bottero, L., Giampaolo, A., Russo, G., Faiella, A., Boncinelli, E. and Peschle, C. (1986) Nature, 320, 773-775.
- Bonement, E. and Fescher, C. (1966) Future, 526, 775-775.
  Graham, A., Papalopulu, N. and Krumlauf, R. (1989) Cell, 57, 367-378.
- Giampaolo, A., Acampora, D., Zappavigna, V., Pannese, M., D'Esposito, M., Caré, A., Faiella, A., Stornaiuolo, A., Russo, G., Simeone, A., Boncinelli, E. and Peschle, C. (1989) Differentiation, 40, 191-197.
- Gaunt, S.J., Sharpe, P.T. and Duboule, D. (1988) Development, 104 (Suppl.), 169-179.
- 11. Duboule, D. and Dollè, P. (1989) EMBO J., 8, 1497-1505.
- 12. Wolgemuth, D.J., Behringer, R.R., Mostoller, M.P., Brinster, R.L. and Palmiter, R.D. (1989) Nature, 337, 464-467.
- 13. Balling, R., Mutter, G., Gruss, P. and Kessel, M. (1989) Cell, 58, 337-347.
- Mavilio, F., Simeone, A., Giampaolo, A., Faiella, A., Zappavigna, V., Acampora, D., Poiana, G., Russo, G., Peschle C. and Boncinelli, E. (1986) Nature, 324, 664-668.
- Mavilio, F., Simeone, A., Boncinelli, E. and Andrews, P.W. (1988) Differentiation, 37, 73-79.
- Featherstone, M.S., Baron, A., Gaunt, S.J., Mattei, M.G. and Duboule, D. (1988) Proc. Natl. Acad. Sci. USA, 85, 4760-4764.
- 17. Gaunt, S.J., Krumlauf, R. and Duboule, D. (1989) Development, 107, 131-141.
- Andrews, P.W., Goodfellow, P.N., Shevinsky, L., Bronson, D.L., and Knowles B.B. (1982) Int. J. Cancer, 29, 523-531.
- Andrews, P.W., Damjanov, I., Simon, D., Banting, D.S., Carlin, C., Dracopoli, N.C. and Fogh, J. (1984) Lab. Invest., 50, 147-162.
- Simeone, A., Pannese, M., Acampora, D., D'Esposito, M. and Boncinelli, E. (1988) Nucl. Acids Res., 16, 5379-5390.
- Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA, 74, 5463-5467.
- 22. Chen, E.Y. and Seeburg, P.H. (1985) DNA, 4, 165-170.
- 23. Andrews, P.W. (1984) Dev. Biol., 103, 285-293.
- Andrews, P.W., Gonczol, E., Plotkin, S.A., Dignazio, M. and Oosterhuis, J.W. (1986) Differentiation, 31, 119-126.
- Chirgwin, J.M., Przybyle, A.E., MacDonald, R.J. and Rutter, W.J. (1979) Biochemistry, 18, 5294-5300.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- 27. Birnstiel, M.L., Busslinger, M. and Strub, K. (1985) Cell, 41, 349-359.
- Lodish, H., Darnell, J. and Baltimore, D. (1986) Molecular Cell Biology. Scientific American Books, Inc. New York., pp. 343-349.
- Calzone, F.J., Britten, R.J. and Davidson, E.H. (1987) Methods Enzymol., 152, 611-632.
- 30. Mount, S.M. (1982) Nucl. Acids Res., 10, 459-472.
- Galliot, B., DollÄ, P., Vigneron, M., Featherstone, M.S., Baron, A. and Duboule, D. (1989) Development, 107, 343-359.
- 32. Gehring, W.J. and Hiromi, Y. (1986) Ann. Rev. Genet., 20, 147-173.
- 33. Simeone, A., Mavilio, F., Acampora, D., Giampaolo, A., Faiella, A., Zappavigna, V., D'Esposito, M., Pannese, M., Russo, G., Boncinelli, E. and Peschle C. (1987) Proc. Natl. Acad. Sci. USA, 84, 4914-4918.
- Cho, K.W., Goetz, J., Wright, C.V., Fritz, A., Hardwicke, J. and De Robertis, E.M. (1988) EMBO J., 7, 2139-2149.
- 35. Lee, J.S., Woodsworth, M.L., Latimer, L.J.P. and Morgan, A.R. (1984) Nucl. Acids Res., 12, 6603-6614.
- Tuggle, C.K., Zakany, J., Cianetti, L., Peschle, C. and Nguyen-Huu, M.C. (1990) Gene Dev., 4, 180–189.
- Burglin, T.R., Wright, C.V.E. and De Robertis, E.M. (1987) Nature, 330, 701-702.
- 38. Kessel, M. and Gruss, P. (1988) Nature, 332, 117-118.
- 39. Brawerman, G. (1987) Cell, 48, 5-6.
- Rabbits, P.H., Forster, A., Stinson, M.A. and Rabbitts, T.H. (1985) EMBO J., 4, 3727-3733.
- 41. Shaw, G. and Kamen, R. (1986) Cell, 46, 659-667.