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ABSTRACT

Elongation in protein translation is strongly dependent on the availability of mature transfer RNAs (tRNAs). The relative
concentrations of the tRNA isoacceptors determine the translation efficiency in unicellular organisms. However, the degree of
correspondence of codons and the relevant tRNA isoacceptors serves as an estimator for translation efficiency in all organisms.
In this study, we focus on the translational capacity of the human proteome. We show that the correspondence between the
codon usage and tRNAs can be improved by combining experimental measurements with the genomic copy number of
isoacceptor groups. We show that there are technologies of tRNA measurements that are useful for our analysis. However,
fragments of tRNAs do not agree with translational capacity. It was shown that there is a significant increase in the absolute
levels of tRNA genes in cancerous cells in comparison to healthy cells. However, we find that the relative composition of tRNA
isoacceptors in healthy, cancerous, or transformed cells remains almost identical. This result may indicate that maintaining the
relative tRNA composition in cancerous cells is advantageous via its stabilizing of the effectiveness of translation.
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INTRODUCTION

Translation elongation efficiency

Translation must be tightly controlled for coping with the cell
demands and its limited resources. Energetically, it is the most
expensive process in dividing cells (Arava et al. 2003; Ingolia
et al. 2009; Plotkin and Kudla 2010; Tuller et al. 2010a;
Gingold and Pilpel 2011). Thus, an appropriate regulation of
the rate of translation reduces the ribosomal drop-off and the
translation errors and improves overall ribosomal allocation
(Zhang et al. 2010; Gingold and Pilpel 2011). The relative
genomic abundance of the synonymous codons varies in all
organisms from bacteria to mammals (Sharp and Matassi
1994; Stenico et al. 1994). Furthermore, codon usage in dif-
ferent genes tends to be related to their expression levels

(Marais and Duret 2001; dos Reis et al. 2004; Plotkin and
Kudla 2010; Tuller et al. 2010b). Specifically, highly expressed
genes (e.g., ribosomal proteins) usually include codons that
are recognized by more abundant tRNA molecules, suggesting
that the control of the translation process is under selective
pressure (Anderson 1969; Bulmer 1987).

In all organisms, less than 61 tRNA types carry out the
decoding of all codons. For example, there are only 40 tRNA
types (called ‘‘tRNA isoacceptors’’) in Escherichia coli K12,
44 tRNA types in Drosophila melanogaster, 48 tRNA types in
Caenorhabditis elegans, and 51 tRNA types in humans. The
decoding of mRNA molecules to proteins in most organisms
is therefore based on the presence of some tRNAs that use
the same anticodon for recognizing more than one codon
(according to the wobble restricted rules) (Percudani 2001;
Duret 2002).

In unicellular organisms such as bacteria and fungi, the
genomic tRNA copy number correlates with the intracel-
lular tRNA levels (Ikemura 1981; Sorensen and Pedersen
1991; Dong et al. 1996; Percudani et al. 1997; Kanaya et al.
1999; Dittmar et al. 2004). Thus, in general, translation ef-
ficiency can be analyzed at the level of amino acids, codon
usage, tRNA isoacceptors, and genomic tRNA copy number.

Technologies for large-scale quantifying protein levels
have lagged behind the methodologies for mRNA level
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quantification such as microarray or deep sequencing. Thus,
a common assumption in the field is that the transcriptome
signature of a cell is an appropriate reflection of its pro-
teome. However, in mouse and humans, it has been shown
that the mRNA levels explain only 27%–40% of the protein
level variation (Ghazalpour et al. 2011; Schwanhausser et al.
2011). In addition, the level of tRNA molecules is the best-
known approximation for the translational rate and the
efficiency of codon usage. Unfortunately, measuring the
intracellular levels of tRNA molecules remains technologi-
cally challenging (Dittmar et al. 2006). Specifically, conven-
tional technologies such as DNA microarray, tilling plat-
form, and PCR-based sequencing methods fail to determine
the expression of tRNA molecules. Because tRNAs are short
and extensively modified molecules, the routine molecular
manipulations (e.g., preparing cRNA) may not be straight-
forward (Juhling et al. 2009). Thus, currently, the genomic
tRNA dosage has been used as a proxy for the actual tRNA
cellular abundance (dos Reis et al. 2004; Man and Pilpel
2007; Tuller et al. 2011).

Measurements of short RNAs from deep sequencing
platforms are archived in deepBase (Yang et al. 2009). Among
these sequences, tRNAs occupied a substantial amount.
These data provide an opportunity to study the relations
between the actual tRNA measurements and translational-
related properties such as the transcribed amino acids, the
codon usage, and the tRNA genomic copy number.

The tRNA adaptation index (tAI) (dos Reis et al. 2004; Man
and Pilpel 2007; Tuller et al. 2010b) is a measure of the
adaptation of a gene (or a codon) to the cellular pool of tRNAs.
In practice, to calculate this measure, the genomic tRNA copy
number is combined with thermodynamic considerations of
the codon–anticodon interaction (Man and Pilpel 2007; Tuller
et al. 2010b). The tAI is based on the assumption that the
concentrations of the tRNA molecules that recognize a codon
have a strong effect on the efficiency and speed of translation.

In this study, we analyzed large-scale genomic and tran-
scriptomic data that were generated by technologies that
provide accurate measurements of the relative quantities of
tRNA molecules. Based on these data, we found that the
relative concentrations of tRNA molecules in different cell types
and pathological states remain remarkably stable. We conclude
that, for a wide variety of healthy, transformed, and cancerous
cells, the tRNA molecules act as stabilizers by providing
balanced tRNA pools that resemble the pools of healthy cells.

RESULTS

In the following sections, we report various analyses that we
performed with the tRNA measurements. We have focused
on human cells for which there are measurements of the
intracellular tRNA levels and gene expression, under iden-
tical conditions.

Figure 1A illustrates the levels of resolution that were
addressed in this study. There are 21 amino acids (in-
cluding selanocysteine, which is encoded by the codon

UAG). Each amino acid is decoded using the tRNA codon–
anticodon hybridization and according to the restricted
wobble rules (Percudani 2001). In human, there are 51
different isoacceptor types. When considering transcription
of genes, each of the codons (64, including stop codons) is
represented. In human, the number of tRNA genes for an
individual tRNA isoacceptor is between one gene and 32
genes. The total number of tRNA genes in the genome is
referred to as the ‘‘genomic tRNA copy number.’’ In hu-
man (according to hg19 version), there are potentially 512
functional tRNA genes that cover the 21 amino acids. An
additional 100 pseudogenes are also found, but they will
not be further discussed. Each tRNA is identified by its
anticodon and a numeric value (e.g., tRNA13–AlaCGC).
There are tRNA genes that share the same sequences through-
out their length. According to this definition, the total
number of unique tRNA genes is reduced to 434.

Our research flow is shown in Figure 1B. We start with
the comparison of the experimental tRNA measurements
that are based on several deep-sequencing resources and
tRNA hybridization arrays. The experimental codon usage
is calculated from the gene expression transcriptomic data
of the analyzed cells. These data are collected from different
human cells and tissues. Then, a comparison to the ge-
nomic tRNA copy number is performed. A refined estima-
tion of the effect of the tRNA abundance on the efficiency
of the translation rate of codons is achieved from the tRNA
adaptation index (tAI; see Materials and Methods) (dos
Reis et al. 2004). We further compare the tRNA genomic
copy number and the codons that are used according to the
transcriptomic data and according to various accepted
measures of codon preference (Sharp and Li 1987; Duret
2000) (Materials and Methods). We investigate the corre-
lation of the tRNA level measurements based on hybrid-
ization arrays and the deep-sequencing reads with the tRNA
copy numbers (CN). All analyses were performed for healthy
and transformed breast cell lines and for healthy and can-
cerous tissues (Fig. 1B).

tRNA abundance from RNA-seq correlates
with the amino acid frequency

We have focused on cells for which we have different ex-
perimental measurements including the direct measure-
ment of tRNA levels and the gene expression profiles that
were collected under identical conditions. Figure 2 includes
the correlation between the amino acid frequencies (as de-
termined from the transcriptome data) and the number of
tRNA genes that recognize the codons of each amino
acid (e.g., 43 tRNA genes for Ala) (Fig. 1A). The data
were collected from the MCF-10A epithelial breast cell line.
A high correlation (r = 0.765, P-value = 3.3 3 10�5)
indicates that the number of tRNA genes that decode the
codons of an amino acid is in accordance with their genomic
abundance (Fig. 2).
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tRNA abundance from RNA-seq correlates
with the genomic tRNA copy number

We further tested whether such a trend occurs between the
experimental measurements of the tRNA molecules and

their genomic copy number. Data sets
that include measurements of tRNA
genes were generated by the main se-
quencing platforms. For such analyses,
we include data from deepBase (Yang
et al. 2009) that includes about 60 tRNA
experiments (only 20 of them are of a
substantial coverage). The entire collec-
tion of reads apparently covers all known
tRNA genes (510 of the 512 genomic
tRNAs). The correlation of tRNA reads
and their genomic copy number was
moderate but significant (r = 0.34,
P-value = 0.012) (Supplemental Fig. S1).
This unbiased analysis emphasizes the
need for high-quality and high-coverage
deep-sequencing data for accurate tRNA
abundance measurements.

At the next stage, we focused on in-
dividual high-coverage experiments. Such
an unbiased data set was extracted from
the ENCODE short RNA-seq project
(Washietl et al. 2007). Millions of reads
for short RNA molecules (e.g., tRNA and
miRNA) are reported. The data include
short RNA sequences (20–200 nt) without
poly(A) that were extracted from several
human cell types.

We analyzed the 52,893 and 28,959
reads that were associated with the eryth-
rocytic leukemia cells (K562) and the
B-lymphoblastoid cells (GM12878), re-
spectively. The two cell lines differ in
their origins as well as in their chro-
matic state (Ernst et al. 2011). For each
tRNA gene that was uniquely defined,
we compared the number of reads that
were recorded and its genomic copy
number. The reads for the GM12878
cells according to their partitioning to
tRNA isoacceptor groups (a total of 51)
(Fig. 1A) are shown in Figure 3A. As
can be seen in the figure, some tRNA
isoacceptor groups are assigned to only
a few reads, while others are assigned
to >10% of the reads.

Comparison of the relative abun-
dance of the 51 groups of tRNA reads
to their genomic copy number is shown
in Figure 3B. The two distributions are

far from being identical. Specifically, the tRNA levels of the
anticodons CAG and TTT are over-represented in the
GM12878 data set, while many tRNAs are under-repre-
sented in these cells. Among the under-represented anti-
codons are GAA and GCA but also the anticodons for Ser

FIGURE 1. The levels of resolution in tRNAs analyses. (A) An illustration for tRNA quantitative
analyses at varying levels of resolution is shown. (i) There are 21 amino acids that are decoded by
tRNAs including selanocysteine. (ii) tRNA isoacceptor groups specified by the number of different
tRNA carrying different anticodons. There are 51 such tRNA types that are grouped to match the 21
amino acids. Each amino acid has a different number of isoacceptor groups. In this example, alanine
(Ala) is decoded by three isoacceptor groups. (iii) Codons that encode each amino acid. There are
62 codons in total. (iv) Each tRNA isoacceptor group has a different number of tRNA genes,
referred to as genomic tRNA copy number (CN). For example, the 43 tRNAs for Ala are grouped
into 29, 5, and 9 groups. The 512 tRNAs are grouped into the 51 tRNA isoacceptor groups, some
with only a single tRNA (Tyr for the ATA codon) and others with as high as 32 tRNAs (Asn for the
GTT codon). Among the tRNAs, some of the genes share the same sequences (gray), resulting in
only 434 sequence-unique tRNA genes. (B) A flow diagram of the analyses performed in this study
is shown. We considered experimental data from deep sequencing (referred to as ‘‘Reads’’), tRNA
probe array (referred to as ‘‘Hybridization’’), and transcriptomic gene expression (referred to as
‘‘Codon Usage’’). Experimentally, data were compared among themselves (blue arrows) and for the
various human cell lines and tissues (brown). Additional quantitative data are derived from the
genomic data of the genomic tRNA copy numbers (referred to as ‘‘CN’’). We analyzed the
correlations between the experimental data of tRNA, the cell transcriptome, and the isoacceptor
groups by the genomic CN (purple arrows). See details in the text.
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(T/C)GA, Arg (T/C)CT, and more. Nevertheless, the corre-
lation between experimentally measured tRNA levels (accord-
ing to the unique reads) and their genomic copy number
for the 51 isoacceptor groups was r = 0.3813 (P-value =
0.0058) (Fig. 3C).

A similar analysis was performed for
the K562 cells. However, for the K562
cells, a poor and not significant correla-
tion was measured. In these cells, the
number of the tRNA isoacceptor types
represented is low (34/49) (Supplemental
Fig. S2). We suggest that the tRNAs
from deep sequencing are a useful
source for tRNA sampling and quanti-
zation. However, the experiments differ
in term of their reproducibility, cover-
age, and quality.

In the next step, we seek an indepen-
dent source for tRNA sequences. The im-
munoprecipitation experiment using po-
lymerase III (Pol III) fulfills this criterion
(Raha et al. 2010). The isolated sequences
represent an enriched fraction of genes
that were directly attached to Pol III (Figs.
3D–F). The experiments included the
K562 and GM12878 cell lines. In both
cell lines, a significant correlation of the
tRNA measurements and the 51 groups
of the tRNA types clustered from the
genomic copy number was obtained (Fig.
3F; Supplemental Fig. S2). Figure 3E
shows the relative abundance of tRNA
reads in comparison to their genomic
copy number. The reported correlation
for the GM12878 data set was high (r =

0.548, P-value = 3.13 3 10�5). A
similar analysis was performed for the
K562 cell line (Supplemental Fig. S2).

A direct correlation between the tRNA
assigned reads obtained from the two
experimental settings (ENCODE and Pol
III) for the GM12878 cells is r = 0.475
(P-value = 4.28 3 10�4). This relatively
high correlation suggests a sufficient
consistency in the tRNA reads from the
deep-sequencing methodology, despite
substantial variations among the experi-
ments (Supplemental Fig. S3).

Fragmented tRNAs do not correlate
significantly with the tRNA
genomic copy number

The RNA-seq methodology using deep
sequencing can estimate the abundance

of sequences that are related to the several steps in the life
cycle of tRNA genes. For example, the 39-tRNA trailers are
subsequences from the 39 end of the pre-tRNA. These
sequences are cleaved by a specific endonuclease (RNaseZ)

FIGURE 2. Correlation between the genomic copy number and the amino acid usage from
epithelial normal cell line MCF-10A. Each codon from the cell transcriptome (10,132 identified
expressed genes) was multiplied by the relative gene expression signal. The number of tRNA
genes grouped by tRNA isoacceptor groups specifies each amino acid. The 21 amino acids are
abbreviated according to standard convention, with SeCys denoting selanocysteine. The
maximal value in the x-axis is for alanine (A) with a total of 43 tRNA genes.

FIGURE 3. Expression levels of tRNA types for GM12878 cells by RNA-seq sequencing
technology. The total reads that match tRNA genes from GM12878 samples are indicated. (A–
C) The ENCODE data set is based on short (20–200 nt) non-poly(A) RNA. (D–F) The data set
was extracted from the RNA polymerase III (Pol III) immunoprecipitation experiment. The
reads were normalized and presented as a sorted list according to the relative read values
(A,D). (B,E) The list includes the relative log abundance above and below the expectation value
according to the 51 available tRNA types (note that tRNAs that had no reads are not shown).
The correlation of the absolute number of reads and the genomics tRNA copy numbers is
plotted. The correlation coefficient (r) value and the P-value are indicated (C,F). Note that the
correlations and the P-values were calculated from the original dot plots. The data are shown
in a log scale for data compression graphical reasons.
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during the process of tRNA maturation (Nashimoto 1997).
In Liao et al. (2010), the presence of the 39-tRNA trailers
was quantified in the cytoplasm and the nucleus of the
human nasopharyngeal carcinoma (NPC) 5-8F cell line.
Interestingly, the estimated levels of the 39-tRNA trailers
showed no correlation with the genomic copy number of
tRNA isoacceptors (r = �0.1169, P-value = 0.4140). Impor-
tantly, the measurements of the 39-tRNA trailers are of high
quality, because the correlation between different samples
(nuclear or cytosolic fractions) is extremely high (r =
0.9461, P-value = 3.715 3 10�24). Furthermore, the number
of uniquely matched reads reaches nearly half a million,
suggesting a high coverage of the experiment.

Another set of RNA-seq experiments was conducted on
HeLa cells with the aim of tracing extremely short stable
RNA species (<30 nt) (Cole et al. 2009). In this study, a
surprisingly high number of tRNA fragments were de-
tected. Despite the sequencing depth, only a few tRNAs
dominate (e.g., tRNA isoacceptors for Lys, Val, Glu, and
Arg). In this case, we did not get a significant correlation
at the amino acid resolution (r = 0.295, P-value = 0.18)
(Supplemental Fig. S4).

tRNAs detected by microarray hybridization strongly
correlate with tRNA genomic copy number

In a study published by Pavon-Eternod et al. (2009),
a specific microarray for identifying tRNAs by the hybrid-
ization signal was designed. Each probe was designed to
complement either a single tRNA type or a combination of
some of the isoacceptor tRNAs. Consequently, all amino
acids (except proline) were covered. Whereas in the study
of Pavon-Eternod et al. the relative changes in the expres-
sion levels of tRNA (each gene compared to itself) were
emphasized, in the present study we focused on the ranking
between the expression levels of individual tRNAs. We have
used the raw data (Pavon-Eternod et al. 2009) from the
normal MCF-10A breast cell line to generalize our findings
across technologies.

As mentioned above, some of the probes cross-react with
several isoacceptor tRNAs. Consequently, the contribution
of each specific tRNA cannot be deduced. Indeed, when the
probe hybridization intensity was compared with its iso-
acceptor group according to the tRNA copy number, no
correlation was found (MCF-10A cell line).

We therefore refined the data by applying a strict defi-
nition for the tRNAs and the probe sequences. We elimi-
nated the data derived from the mitochondrial tRNAs and
focused on the nuclear set. Furthermore, we filtered out the
results by analyzing only the subset of probes that perfectly
match only a single tRNA gene. Under such a criterion, we
reduce the discussion to only 22 valid tRNA isoacceptors
(see Materials and Methods). Following such probe–tRNA
match selection, the correlation increases but remains in-
significant (r = 0.323, P-value = 0.1424).

Many tRNA genes share a remarkably high sequence
similarity. Thus, at the next step, we considered only the
183 tRNA genes having an unequivocal hybridization po-
tential by the 22 selected probes. The correlation of the
hybridization intensity with these validated tRNA genes was
considerably improved (r = 0.4275, P-value = 0.047).

The strong dependency of the analysis on the selected
probes encouraged us to increase the number of probes in
the analyses. We thus used the definitions that were pro-
vided by Pavon-Eternod et al. (2009) for a uniquely matched
probe. Thirty tRNA probes were considered based on this
definition (some probes matching tRNAs within the same
isoacceptor group).

The rest of the analysis is based on the uniquely defined
30 probes (associated with 25 different tRNA isoacceptor
groups). Using the experimental hybridization intensities,
we found that the correlation between these measured ex-
pression levels of the selected probes and the genomic copy
number of the relevant tRNA isoacceptor groups was quite
high (r = 0.639, P-value = 1.4 3 10�4) (Fig. 4).

Correspondence of experimental data with various
measures of codon usage

In this section, we evaluate the comparison of the hybrid-
ization intensity to common scores of codon usage.

Specifically, we tested classical measures including the
RGF (the relative tRNA gene frequency from the isoaccep-
tors of a specific amino acid) and the partition between the
synonymous codons as measured by RSCU (i.e., the relative
usage of a codon among all codons for an amino acid). We
included a measure of the dKL (Kullback–Leibler diver-
gence) that provides an overall estimation for the similar-
ities of the various measures (Prat et al. 2009). (For formal
definitions, see Materials and Methods.)

Figure 5 shows that for most isoacceptor groups, the
codons that had the highest RSCU within each amino acid
were those that are decoded by the tRNA isoacceptor with
the highest RGF values (the genomic tRNA copy numbers
used are listed in Supplemental Table S1). The wobble-
restricted rules do not explicitly include the affinity or
specificity for the cognate codon–anticodon and the wobble
codon. A naive view suggests an equal decoding capacity
by a tRNA for the perfectly matched codon and the
wobble-codon. While it is clearly an oversimplification,
the results show that, for the 16/19 tRNA isoacceptor
groups, a full correspondence of the top RGF and the top
RSCU is achieved (note that the 6-based decoding of
leucine, arginine, and serine was separated according to
the genetic code table; see Materials and Methods). Some
tRNA isoacceptors cannot be ranked either because the
number of tRNA genes within a codon group is identical
(Fig. 5B, green background) or because there is only one
anticodon that corresponds to the amino acid (Fig. 5B, blue
background).
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The dKL calculates the difference in the distributions of
the experimental tRNA measurements and the expressed
codon as compiled from the gene expression transcrip-
tomic data. The minimal dKL value for the distribution
of genomic copy numbers and the codon usage is low
(0.1717), supporting the relatedness between these dis-
tributions (Fig. 5C).

Estimating the tRNA abundance using
tAI-based measurements

In this subsection, we report on the correlation of codon
bias (based on gene expression microarray; see Materials
and Methods) and tRNA levels or copy numbers. In the
case of the MCF-10A cell line, the correlation between
mRNA level codon bias and tRNA copy number was 0.38
(P-value = 0.0016). This correlation is based on the 51
tRNA type copy numbers that have at least one gene and an
additional 12 codons that have no perfectly matched tRNA
(for definitions, see Fig. 1A; Supplemental Table S2). The
‘‘missing’’ codons are decoded according to the restricted
wobble rules (Fig. 5A).

We also tested the quality of the correlation of the
mRNA codon usage (based on the transcriptomic data for
MSF-10A cells) and the tAI values of the codons (based on
tRNA copy number). The correlation coefficient of the tAI
computed by genomic tRNA copy number and the codon
usage according to the gene expression array was r = 0.57,
P-value = 8.6 3 10�7.

We repeated the calculation of the correlation between
the partial set of experimental tRNA levels based on probe
data (Pavon-Eternod et al. 2009) and the genomic copy
number. However, in this stage, when values for the probe
hybridization were missing (based on uniquely assigned 30
probes) (Fig. 4), we estimated them based on the relevant
genomic tRNA copy number (see Materials and Methods).
The combined tAI obtained a higher and more significant

correlation of r = 0.70 (P-value = 1.4 3

10�10; see Materials and Methods) with
mRNA codon usage (cf. Fig. 6A,B).

The correlation between the two mea-
sures for the tAI is exceptionally high,
supporting the validity of the approach
used for the missing values (r = 0.814,
P-value = 1.4 3 10�16).

The tRNAs and the codon usage
vary in a coordinated way
in different cell types

Evidently, the human genomic tRNA
copy number is identical in all cells
(considering the normal karyotype).
We have shown that the codon usage
correlates with the hybridization inten-

sity directly (Figs. 4, 5B,C) or through the refined tAI
measure (Fig. 6A,B). We therefore analyzed the impact of
the alteration in the expression levels in MCF-10A (mam-
mary epithelial cells) and ZR-075 (a breast transformed cell
line), which represent normal and cancerous breast cell
lines, respectively. These cells were also used for measuring
the tRNA abundance (see Materials and Methods). We have
compared the mRNA codon bias with their genomic tRNA
copy number and with the tRNA expression levels obtained
based on hybridization (for the subset of 183 validated tRNA
genes) (Fig. 7, indicated as tRNA probe 25).

Overexpressing genes are primarily composed of house-
keeping genes that are optimally expressed. This optimiza-
tion is monitored by the codon adaptation index (CAI),
which is maximal for highly abundant genes (e.g., ribosomal
proteins). We tested whether such support is also valid for
the calculated tAI. We performed the analysis for three com-
plementary data sets: (i) all genes in the gene expression
array; (ii) the 200 most highly expressed genes; and (iii) the
200 most lowly expressed genes. The tests were performed
for the normal breast cell line MCF-10A and the cancerous
breast cell line ZR-075.

Figure 7 demonstrates that there is a strong correlation
for the tRNA probes when we consider all expressed genes
(more than 10,000 genes) with r = 0.69 (P-value = 1.3 3

10�4) for the normal cells, and r = 0.71 for the cancerous
cell lines (P-value = 7.5 3 10�5).

When the 200 most highly expressed genes were analyzed
separately, a slightly higher correlation between the mRNA
codon bias and the genomic tRNA copy number (r = 0.54,
P-value = 3.8 3 10�5 for the normal cell line; r = 0.53,
P-value = 0.05 for the cancerous cell line) was obtained. As
shown (Fig. 6), when experimental tRNA levels and tRNA
copy numbers are combined, the correlation becomes
stronger (Fig. 7, labeled as tRNA probe �25).

Importantly, both cells show a similar correlation trend
for multiple selections of tRNA measurements (cf. Fig. 7A

FIGURE 4. Correlation of the hybridization intensity and tRNA genomics copy number of
MCF-10A cells. The correlation is according to the tRNA copy number and the unique 30
probes from the tRNA microarray experiments described in Pavon-Eternod et al. (2009). The
30 tRNA probes cover 25 tRNA isoacceptor groups. Some of the outliers are indicated by their
codons.

tRNA composition in cells and tissues

www.rnajournal.org 645



and 7B). We tested the direct correlation between the tRNA
levels in these apparently different cell lines based on the
experimental hybridization intensity (25 unique isoaccep-
tors) (Fig. 7C). In a similar way, we applied the refined

measure based on tAI that is based on
tRNA hybridization experiments and
tRNA copy numbers (when the data are
missing) (Fig. 7D). In both instances,
when the normal cells were compared
with the cancerous cell line, an almost
perfect correlation was revealed (r = 0.98,
P-value = 1.23 3 10�45).

Human cell lines and tissues maintain
a stable composition of tRNAs
in pathological conditions

We studied whether the strong and con-
sistent correlation found between tRNA
levels and tRNA copy numbers in cell
lines is comparable to these correlations
in healthy and cancerous breast tissues
(Table 1).

The analyzed cancerous tissues in-
cluded three main subtypes of breast
cancer (a total of nine samples): luminal
(ER+, HER2�), basal (ER�, HER2+),
and ER�/HER2�. When we computed
the correlation of the tRNA probe
hybridization intensity for the normal
(average of three healthy tissues) and the
cancerous tissues (average of nine breast
cancer tissues), we found it to be signifi-
cant (r = 0.38, P-value = 0.037).

At the next step, we analyzed the in-
ternal correlations between the 12 different
tRNA measurements of the raw data in
human tissue (Pavon-Eternod et al. 2009).
Specifically, we tested the internal correla-
tions, the mutual dKL, and the correspon-
dence of the tRNA levels (measured by the
hybridization intensity for the 25 uniquely
defined tRNA isoacceptors) to the geno-
mic tRNA copy number. The results ac-
cording to the dKL calculations are shown
in Figure 8. There is high similarity of
the tRNA distributions among all tested
tissues (Fig. 8; Supplemental Table S3).
Unsupervised clustering supports two
main clusters of the healthy (three sam-
ples) and the cancerous (nine samples)
tissues. Interestingly, among the cancer-
ous tissues, clustering of the results failed
to indicate their cancer typing (in terms
of the expression of ER and HER2).

The results (Fig. 8; Table 1; Supplemental Table S3) are
consistent with the notion that while the absolute level of
tRNAs had changed drastically (Pavon-Eternod et al. 2009),
the relative abundance of each tRNA type is quite robust.

FIGURE 5. Schematic view of the relation between the tRNA isoacceptor groups and codon
usage. (A) Restricted wobble rules are indicated. (Red) The cognate-matched corresponding
codon; (orange) the match with the wobble codon. (Bottom table) The values for human
threonine (Thr). There are four potential anticodons; however, in human, one of them is
missing (GGT). When sorted by the relative copy number (RGF), this anticodon has the
highest number of tRNA genes in the Thr isoacceptor group. However, it is ranked only third
by the RSCU (red). The RSCU reflects the codon usage within the relevant isoacceptor group.
The codon ACC that is decoded by the wobble rule is sorted on the top of the RSCU (orange).
(B) Codons are grouped by their detailed tRNA isoacceptor groups. The six-codon amino
acids (Arg, Leu, Ser) were fractionated to their groups according to their identity in positions 2
and 3 of their anticodons [(i) four-codon and (ii) two-codon groups]. The perfectly matched
codon–anticodon (red); the wobble codon (orange). The matrix is colored by the rank of the
codons sorted according to the RGF (as in A). In the case in which the copy number for the
tRNAs within an isoacceptor group is identical, it is colored green. Amino acids that are
decoded by a single tRNA type (blue). (Dark yellow) Potentially a wobble codon; but a tRNA
exists that perfectly matches the indicated codon. In 16/19 isoacceptor groups, the perfectly
matched anticodon or the wobble codon is also the codon that is used the most (based on
RSCU of the MCF-10A transcriptome). The source data are provided in Supplemental Table
S2. (C) Distributions of mRNA codon usage and copy number. The mRNA codon usage (red
bars) was calculated based on the gene expression array from the MCF-10A cell line and was
compared with the genomic tRNA copy number (blue bars). The data are used for calculating
the dKL between the two distributions.
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A stable tRNA composition is valid among cell lines and
healthy and diseased tissues.

DISCUSSION

Advances in tRNA measurements

In this study, we analyzed tRNA measurements from RNA-seq
that originated from all leading technological platforms (454,
SoliD, and Illumina). Our analyses covered several cellular set-
tings including healthy, transformed cell lines, and cancerous
tissues. We focused on most of the reported experiments that
measured tRNAs by different methodologies. These method-
ologies include the Pol III immunoprecipitation and a survey
for short non-poly(A) RNA conducted by the ENCODE
project. We had validated the feasibility of the deep-sequencing
data to provide a reproducible source for tRNA concentra-
tions. However, the high level of modifications in human
tRNAs may lead to a failure in the required reverse transcrip-
tase reaction. Consequently, all further steps in the sequencing
protocol will be affected. Indeed, in the ENCODE data (RNA
of 20–200 nt), the tRNAs occupy only 5% and 10% of the
entire sample for K562 and GM12878 cells, respectively. In the
Pol III data (Fig. 3; Raha et al. 2010), the tRNA fraction
occupies only 5% of all of the reads. We attribute this low
recovery of tRNAs to an actual methodology limitation. The
challenges and biases in identifying the small noncoding
RNAs, including tRNA molecules by deep-sequencing tech-
nologies, were recently discussed (Beck et al. 2011).

On average, tRNAs occupy 30% of all RNA molecules in
a cell. Thus, no amplification step was needed for the hy-

bridization experiments using the tRNA
probe microarray (Pavon-Eternod et al.
2009). We assume that by avoiding a
reverse transcription step on the RNA
sample, potential biases were removed.
An additional obstacle in estimating
the tRNA abundance stems from mis-
alignment of the RNA-seq reads on the
chromosomal segments that are rich
in repeats in the vicinity of tRNA gene
clusters.

tRNA gene regulation

The expression of a tRNA gene that is
not subjected to a regulation is expected
to be similar to its respective copy num-
ber. Genes with the highest skew from
this rule may be candidates for some
tissue-specific regulation. Figure 3, B and
E, highlights such instances. For exam-
ple, the tRNAs that recognize the anti-
codons CGA and TTT (Fig. 3B) are
suspected to be the most up-regulated

in the ENCODE project data of GM12878 cells, while the
tRNA molecules that recognize the codons GAA and GCA
are down-regulated in this tissue. Additional tRNA genes
appear as outliers in the plot of tRNA levels versus tRNA
copy number (for example, Fig. 6A,B). The results reported
in this study suggest that individual tRNA genes are
regulated more significantly than it was initially antici-
pated. The involvement of epigenetic signature and chro-
matin state is a plausible explanation for the observed
difference in specific tRNA expression (Ernst et al. 2011).

tRNA fragments do not exhibit a significant correlation
with tRNA abundance

We found that there is a poor correlation between tRNA
copy numbers and tRNA fragments (Cole et al. 2009; Liao
et al. 2010). Thus, in all of the reported studies, the re-
lationship between measured fragments of tRNAs and trans-
lation elongation efficiency is not supported.

Recently, another study used deep sequencing (based on
454 sequencing) for estimating the expression levels of
small RNAs from prostate cancer cell lines (Lee et al. 2009).
Many of the reads were assigned to the processed tRNA
fragments that were derived from the regions that overlap
with the 39-tRNA-trailers (Liao et al. 2010). Our results
reject the hypothesis that the frequencies of these fragments
reflect the expression levels of tRNA genes. Thus, these
tRNA fragments may have cellular functions not related to
translation. For example, it was suggested that tRNA frag-
ments have a regulatory role in the apoptotic pathway (Mei

FIGURE 6. Correlation of the tRNA measurements and the codon usage of MCF-10A cells.
(A) The tAI value of each codon was computed using the genomic tRNA copy number of the
tRNA genes. Recall that the calculation by the tAI covers all 62 codons. (B) The tAI values of
each codon were computed using the normalized values from the hybridization intensity levels.
The missing values are inferred based on the genomic tRNA copy number (triangles). Note
that the overall correlation was significantly increased when the tAI was calculated based on
a combination of the genomic tRNA copy number and the actual experimental data (based on
the hybridization intensity from the 30 unique probes).
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et al. 2010) and in regulating cell proliferation (Lee et al.
2009). Furthermore, it was also suggested that the tRNA
fragments act as regulators of miRNA by competing on the
miRNA processing (Lee et al. 2009; Pederson 2010). Our
analysis is in accord with the notion that tRNA fragments have
some yet-unknown functionality (Okamura and Lai 2008).

A robust expression of tRNAs in various cell types

We have rigorously analyzed several types of cells including
healthy, transformed, and cancerous tissues. The absolute
tRNA level in the transformed cells is about 20-fold higher
than the levels in normal cells (Pavon-Eternod et al. 2009).

As we showed, the measured level of
tRNA expression is in a strong accor-
dance with the mRNA codon bias
extracted from a global gene expression
analysis.

We argue that the tRNAs that change
their overall expression roughly main-
tain their relative concentrations upon
a wide range of conditions. Moreover,
the change in codon usage among cell
lines of different identity is negligible
(Fig. 7). The relatively constant ranking
of the concentrations of tRNAs under
a broad range of cells and conditions
may indicate that fine-tuned tissue-spe-
cific changes in the gene translation rate
are probably mostly a result of an ad-
ditional layer of regulation such as epi-
genetic, transcriptional, and miRNAs, and
not a result of a programmed change in
the tRNA levels.

The first systematic analysis that was
based only on a careful measure of the
relative hybridization intensities (Pavon-
Eternod et al. 2009) indicated that tRNAs
carrying specific amino acids (such as S,
T, and Y) are mostly overexpressed in
breast cancer cell lines and breast tu-
mors. In our study, we show that the
ranked order of tRNAs (and not nec-
essarily the total amount) is similar
whether it is tested by direct experimen-
tal data (e.g., RNA-seq) or under a rich
model that includes thermodynamic
codon–anticodon parameters (e.g., tAI)
(dos Reis et al. 2004). The same trends
hold when we compare the RGF to the
RSCU (Fig. 5). Thus, expression of a
balanced, stable ranking of the isoaccep-
tor tRNAs dominates our study.

A detailed study of tRNA relative ex-
pression in tissues and cell lines showed

that specific tRNA isoacceptors have higher-than-expected
variation in some tissues (Dittmar et al. 2006). Our results
suggest that the variations in specific isoacceptors are in-
significant relative to the overall trend showing a wide
variation in the amount of the entire set of tRNAs for
a number of tissues and cell lines (as measured in Fig. 8). In
agreement with the results from this study, it was noted that
the relative expression of tRNAs in HeLa and HEK293 cell
lines is similar among the isoacceptors (Dittmar et al. 2006),
even though they are derived from different tissues (cervix and
embryonic kidney, respectively).

The high correlation between tRNA (or tAI) levels in cells
with different transcriptomic profiles (Fig. 7C,D) supports

FIGURE 7. Correlation between codon usage and tRNA approximations. The correlation
according to the tRNA copy number (CN) and the codon usage based on the MCF-10A
transcriptome (A) and the same data analysis from the cancer ZR-75-1 cell line (B). The CN is
based on those that were selected for the 25 tRNA isoacceptor groups. Note that these are
identical to the 30 elected probes from the tRNA microarray experiments. The tRNA probes
applied the actual measurements from the 30 probes that are associated with 25 tRNA
isoacceptor groups. Note that few of the tRNA probes hybridize to the same isoacceptor tRNA
type. The correlation with all genes (blue bar) concerns all expressed genes in the tran-
scriptome (10,132 genes). (Red bar) The 200 most highly expressed genes in the array; (dark
green bar) the 200 lowly expressed genes. (C) Correlation of tRNA probes hybridization
intensity. (D) The tAI computed by the combination of the tRNA copy number with the
hybridization intensity. The correlations performed for normal (MCF-10A) and cancerous
(ZR-75-1) cell lines. The raw data were from Pavon-Eternod et al. (2009). The correlation and
the P-values are reported.
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fundamental robustness in the process of protein trans-
lation across a range of conditions and tissues. According
to our findings, the global rate of translation is probably
altered under pathological conditions, while the difference
in the relative translation rates of specific genes is less likely
to occur.

The correlation of the tRNA abundance and the codon
usage is extremely robust in the healthy and transformed
cells. Thus, we propose a model in which the tRNA levels
change either by an excess of RNA Pol III, by instability of
the karyotype, or other indirect cellular scenarios. How-
ever, the changes in tRNA gene expression are general and
occur across the entire tRNA gene sets, maintaining the
relative expression levels of tRNA genes. In support of this
intuitively unexpected phenomena, we noted that also the
correlation between the calculated tAIs of the normal cells
and the transformed cells is extremely high (r = 0.9784,
P-value = 3.879 3 10�44). Thus, as a first approximation,
one can order genes according to their translation efficiency
in the same conditions by considering the genomic tRNA
copy numbers and pre-calculated factorization of the co-
dons (as in Fig. 6). However, because we expect global
changes (and changes that do not affect the ranking of the
expression levels of individual tRNAs) in tRNA levels across
tissues or conditions, the tRNA copy number should not be
used for a comparison of translation efficiency of a specific
gene across different conditions/tissues.

Breast cancerous tissues of different origin display
similar tRNA composition

Probably, cell lines were adapted for a stable, constant
growth. This may lead to a loss of regulatory mechanisms
of the tRNA genes while maximizing the expression levels
of each tRNA isoacceptor to meet the constant need for cell
divisions. However, we showed that the strong and signif-
icant resemblance of the tRNA expression levels also occurs
in human healthy and cancerous tissues. All of the 12 sam-
ples (three healthy and nine cancerous) show a strong cor-
relation. However, the correlations (and the dKL) of the
tRNA levels with the tRNA copy number are considerably
weaker for each of the tested samples (Fig. 8; Supplemental
Table S3). The average value (Table 1) demonstrates that,
despite a strong coherence in the results among all tissues,
the genomic tRNA copy number is not a perfect approx-

imation of the tRNA abundance. Sev-
eral reasons may have reduced the
correlations (Fig. 8; Table 1): (1) Data
from the 30 tRNA probes (covering 25
tRNA isoacceptors) may not be an op-
timal sampling for the entire 64 codons
and may include different sources of
noise and bias. (2) The tRNA copy num-
ber may be inaccurate. For example, the
identification of functional tRNAs is

based on algorithmic arbitrary thresholds, and it is known
that the functionality of some tRNAs remains uncertain
(Lowe and Eddy 1997). In addition, some pseudogenes that
have been excluded from the copy number calculation are
expressed (based on the deepBase data) (Yang et al. 2009).
(3) Different tRNA genes have different levels of regulations
that reduce the correlation between copy number and tRNA
levels.

Based on the results reported in this study, we conclude
that, in human, the genomic tRNA copy number is a reli-
able and valid approximation for their expression levels.
Thus, when performing a large-scale transcriptomic study,
the tRNA copy number can be safely used for estimating
global translation efficiency. However, we showed that data
from deep sequencing or tRNA microarrays are useful be-

FIGURE 8. Calculation of the dKL of the tRNA expression levels in
healthy and diseased tissues. The values of the dKL measures are
shown by a color gradient (black to red). The calculations are based
on the hybridization signals from the 30 unique tRNA probes for
healthy (three samples) and cancerous tissue samples (nine samples).
The symmetric matrix indicates the clustering of the 13 columns in
the matrix. The diagonal is indicated as dKL = 0. (The left column and
the bottom row of the matrix) The dKL for the tRNA hybridization
intensity and the genomic tRNA copy number (CN). (Red) A weaker
correspondence (higher dKL value). The columns are sorted based on
the clustering. The correlations, the minimum dKL, and the P-values
are listed in Supplemental Table S3. The samples are colored by their
labels as ER�/HER2�: 59826, 60046, 62706, 62944 (blue); ER�/
HER2+: 46258, 58955 (red); ER+/HER2�: 41299, 57731, 45163
(orange); and healthy breast tissues: A-01, A-06, and S-23 (green).
Note that there is no clear separation between ER�/HER2+ and ER+/
HER2� by this measure.

TABLE 1. Correlation (and the P-values) between the genomic tRNA copy number and the
codon usage (see Supplemental Table S4)

Epithelial breast
cell line (MCF-10A)

Cancer breast
cell line (ZR-075)

Healthy breast
tissue (3 samples)

Cancer breast
tissue (9 samples)

R 0.4425 0.4289 0.3818 0.5083
P-value 0.0392 0.0464 0.0374 0.0041
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cause they potentially improve the estimation of the tRNA
levels. At present, accurate measurements of processed, func-
tional tRNAs are still fragmented and mostly missing. Thus,
high-quality data are urgently needed.

Our comprehensive study that is based on collecting
most available experimental data led to new insights on
translation efficiency in a wide range of cellular settings.
Ample research studies showed that due to genomic in-
stability and changes in chromatin structure, the expression
of hundreds of genes is altered in cancer relative to healthy
cells. In sharp contrast, at the level of translation, such
alterations seem to be tamed and attenuated. Our findings
argue that a regulation of tRNA expression is not at the gene
level or the chromosomal level, but instead it is performed
globally on the entire collection of tRNA genes. We raised
the notion that translation, being the most energetically ex-
pensive process in dividing cells, acts as a stabilizer that
maintains a balanced translation potential even under un-
stable cellular conditions.

MATERIALS AND METHODS

Genomic copy number

The data of genomic tRNA copy number, chromosomal locations,
and the sequence identity tRNA genes were taken from the Ge-
nomic tRNA Database using human genome hg19 (NCBI Build
37.1, Feb 2009) (Lowe and Eddy 1997). For each tRNA gene, the
number of copies was counted, ignoring pseudogenes but including
selanocysteine (for a detailed list, see Supplemental Table S1).

tRNA gene counting

The convention is based on the algorithms described in Lowe and
Eddy (1997). The tRNA probe reanalysis is based on a replacement
of the degenerate base. The degenerative probes are indicated by
one-letter codes (http://www.bioinformatics.org/sms/iupac.html).
Each tRNA is designated by the anticodon that is depicted by
three bases. For consistency, all codons and anticodons are de-
scribed with the base thymidine (T) instead of uridine (U). For
example, the tRNA Met (CAT) decodes the codon ATG. We kept
the notation of the tissues used by Pavon-Eternod et al. (2009).

RNA-seq sequencing data of tRNAs

tRNA 39-trailers

The data for the tRNAs 39-trailers were based on a cytoplasmic
and a nuclear extraction from human nasopharyngeal carcinoma
(NPC) 5-8F (Liao et al. 2010).

ENCODE

The data were downloaded from the small RNA [non-poly(A)]
ENCODE project at http://genome.ucsc.edu/. The tRNA measure-
ments were collected from the K562 and GM12878 cell lines. Each
validated read was assigned to the appropriate genomic location
(contigs), and the number of reads that were detected for each
genomic sequence was recorded. All sequences that overlap (even

partially) a tRNA gene were considered. The chromosomal lo-
cation of each tRNA gene was based on the data of the UCSC
Genome Browser (Raney et al. 2010).

Pol III immunoprecipitation

Reads of tRNA from the K562 and GM12878 cells were collected
using an antibody against Pol III (Raha et al. 2010). The number
of reads for each tRNA gene was used as a measure for the tRNA
abundance.

deepBase

deepBase compiles 59 individual experiments; among them about
20 are of high coverage (more than 1 million reads). A total of 625
tRNAs are reported as expressed genes by deep sequencing. The
list includes 99 genes that were assigned as pseudogenes. Out of
the complete list of tRNAs, only 12 were unidentified. It is
important to note that for sequence-identical tRNAs, no unique
identification is possible, and therefore some of the reads should
be considered as a sum of the multiple tRNAs that are identical in
sequence.

Analyzing tRNA probe hybridization intensity data

The data of tRNA probe hybridization intensity were taken from
Pavon-Eternod et al. (2009). The set of probes was used to mea-
sure the differences in tRNA levels between the three samples of
MCF-10A (used as reference for the epithelial normal cell line)
and nine additional samples from different stages and types of
breast cancer tissues (Pavon-Eternod et al. 2009).

For each biological sample, two probe arrays with a mixture of
Cy3 and Cy5 dyes were used to produce the hybridization data. To
reduce the staining bias, the cell line that was used as a reference (a
non-cancer-derived breast epithelial MCF-10A) was dyed with
each of the two dyes, separately. The variation between the mea-
sured hybridization intensities was used to estimate the bias.
While the experiment was not designed for estimating absolute
measurements of tRNA genes, we considered the average of the
hybridization intensities measured from the dye swapped arrays
as a quantity of the tRNA hybridization. The complete data set
(Pavon-Eternod et al. 2009) covers the 50 different nuclear tRNA
probes. However, among these probes, only 30 were designed to
match a single tRNA type. The rest were designed to match several
tRNA isoacceptors. The 30 unique probes were used throughout
our study. This set covers 25 of the isoacceptor groups.

Additional filtration was applied to ensure a perfect match for
the hybridization reaction. To this end, the sequence of each
probe was aligned using the tRNA genomic BLAST tool. The
aligned sequences were filtered to include only the tRNA genes
that had a perfect matched alignment of $20 sequential nucleo-
tides. Only 22 legitimate probes passed this filter. We refined the
assignment of a tRNA to its probe by defining higher constraints
on the probe–tRNA hybridization.

Gene expression and codon usage analysis

Data from gene expression arrays of a normal cell line (MCF-10A)
and a cancerous cell line (ZR-075) were used in this study. Genes
that were reported as expressed were retrieved from Ensembl
(Flicek et al. 2010). The Ensembl annotation of each probe was
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based on the HG-U133A Affymetrix annotation file. Genes with
no matched sequence or without an ATG initiator codon were dis-
carded. Out of 22,215 potential human genes, 10,132 genes were
further analyzed. The mRNA codon usage was computed by
accumulating over all of the genes the product of the codon oc-
currences in each gene multiplied by the actual expression in-
tensity of the gene. The intensity was retrieved from the relevant
HG-U133A microarray. A naive view on gene expression is based
on the Ensembl gene list (22,215 potential human genes). This
analysis was applied for instances in which detailed transcriptomic
data were missing.

tRNA gene frequency (RGF) and relative synonymous
codon usage (RSCU)

For each tRNA isoacceptor that encodes a specific amino acid, the
relative gene frequency was computed in the following way: In
each amino acid isoacceptor group, let CNi be the copy number of
the i-th isoacceptor. Let Mcnj be the average of the copy number
of all isoacceptor within the j-th group. The i-th isoacceptor is
part of the j-th group (Fig. 1A). The RGF of isoacceptor i, RGFi, is
defined as:

RGFi = CNi = Mcnj

We partitioned the six-based codons of Leu, Ser, and Arg to
their subgroups according to the genetic code table. The partition
to six-based codons to four- and two-based codons. A total of 24
isoacceptor groups were considered; among them there are 21
isoacceptor groups with two or more codons.

Similarly, the relative synonymous copy number was com-
puted: Let CUi be the codon usage of codon i. Let Mcuj be the
average of the codon usage within a group of the j-th amino acid
synonymous codons. The i-th isoacceptor is part of the j-th group.

The RSCU of each codon, RSCUi, is defined as:

RSCUi = CUi = Mcuj

Kullback–Leibler divergence (dKL)

The difference of the probability distribution between two data
sets was computed using the Kullback–Leibler divergence defini-
tion (Prat et al. 2009). Let P and Q be the probability distribution
of each data set. We applied this measure for normalized
distribution of the copy numbers and the codon usage.

The dKL is defined as:

dKL = aveð+P�i logðPi=QiÞ + +Q�i logðQi=PiÞÞ

Computing the tRNA adaptation index (tAI)

tAI was computed according to dos Reis et al. (2004). This
measure gauges the availability of tRNAs for each codon along an
mRNA. Because codon–anticodon coupling is not unique due to
wobble interactions, practically, several anticodons can recognize
the same codon, with somewhat different efficiency.

Let ni be the number of tRNA isoacceptors recognizing codon i.
Let tCGNij be the copy number of the j-th tRNA that recognizes
the i-th codon, and let Sij be the selective constraint on the ef-
ficiency of the codon–anticodon coupling. We define the absolute
adaptiveness Wi for each codon i as:

Wi = +
ni

j = 1

ð1� SijÞtCGNij

From Wi we obtain wi, which is the relative adaptiveness value
of codon i, by normalizing the Wi values (dividing them by the
maximal of all the 61 Wi).

Computing tAI for missing data

Reliable experimental data are limited to the 30 tRNA genes for
which 30 unique probes are used to estimate the tRNA levels. The
rest of the tRNA genes are estimated based on the genomic copy
number. In this case, for a tRNA that has no matching probe, the
value of the tRNA abundance was normalized with the total
genomic tRNA copy number in the following manner: Let tpi be
the hybridization intensity value of probe i. Let Mp be the mean of
all of the probe hybridization intensities. Let Mcn be the mean of
all genomic tRNA copy numbers. The tRNA abundance estimator
tEi for tRNAi is defined as:

tEi =

if there is data of tRNA; abundance :
ðtpi=MpÞ�Mcn
Otherwise :
Genomic copy number

8>><
>>:
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