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Abstract
A computer-assisted system for histological prostate cancer diagnosis can assist 
pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, 
and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies 
on this topic have primarily addressed the second stage by classifying the preselected 
tissue regions. In this paper, we address the first stage by presenting a cancer detection 
approach for the whole slide tissue image. We propose a novel method to extract 
a cytological feature, namely the presence of cancer nuclei (nuclei with prominent 
nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, 
conventional image texture features which have been widely used in the literature are 
also considered. The performance comparison among the proposed cytological textural 
feature combination method, the texture-based method and the cytological feature-
based method demonstrates the robustness of the extracted cytological feature. At a 
false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on 
a dataset including six training images (each of which has approximately 4,000x7,000 
pixels) and 1 1 whole-slide test images (each of which has approximately 5,000x23,000 
pixels). All images are at 20X magnification.
Key words: Prostate cancer, cytology, texture, histology, nuclei, nucleoli, whole slide 
image
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INTRODUCTION

In a typical procedure of histological prostate cancer 
diagnosis, a pathologist obtains a tissue sample from 
a prostate biopsy and treats it by a staining protocol 
to highlight the histological structures (e.g., H&E 
staining[1]). State of the art slide scanners can capture 
the content of the entire sample slide and create one 
whole slide image at any magnification. However, with 

a high-magnification slide image (which may contain 
approximately 10,000×50,000 pixels at 40×), it is time 
consuming for pathologists to investigate the tissue 
structures and diagnose the cancer. Thus, there is a need 
to build a computer-aided system to assist pathologists in 
detecting and grading the cancer.

Gleason grading[2] is a well-known method to determine 
the severity of prostate cancer. In this method, only 
the gland structures and morphology are considered to 
assign a grade from 1 to 5 to the cancer region. Grade 
1 is the least severe and grade 5 is the most severe. 

*Anil Jain is also affiliated as a Distinguished Professor in the Department of Brain 
and Cognitive Engineering at Korea University, Korea
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The Gleason grading method is appropriate for a low-
magnification image (≤ 10×), where the details of the 
tissue elements (nuclei, cytoplasm) are not available. 
Nguyen et al.[3] obtained good classification results based 
on the glandular structural features to classify the 10× 
magnification images. However, for a more detailed 
examination, a pathologist would like to examine the 
tissue at a higher magnification (20× or 40×) and utilize 
cytological features[4] of the tissue [Figures 1a, 1b].  
Cytological features refer to shape, quantity, and 
arrangement of the basic elements of the tissue such 
as cell, cytoplasm, and nucleus. Most of the studies 
on automated prostate cancer diagnosis utilize various 
textural and structural features to classify a small region 
of interest (ROI) into benign (normal) or malignant 
(cancer) region, or into different grades. These studies 
are summarized in Table 1. Only a few studies in the 
literature have addressed the cancer detection problem in 
the whole slide image. In Ref.[5] the authors performed 
cancer detection on a whole-mount histological section 
of size 2×1.75 cm2 at a low resolution (8 µm per pixel), 
which created a 2,500×2,200 image. Glands were 
segmented by a region growing algorithm initialized at 

the lumina. The gland size was the only feature used 
to assign an initial label (cancer or normal) to the 
gland. Next, a probabilistic pairwise Markov model was 
proposed to refine the initial gland labels using the labels 
of neighboring glands. They obtained 87% sensitivity and 
90% specificity on a dataset of 40 images. However, it is 
necessary to notice that lumina are not always present in 
the cancer regions (for example, lumina can be occluded 
by mucin or cytoplasm in some cases). As a consequence, 
gland segmentation algorithm using lumina is not always 
applicable. Doyle et al.[6] developed a boosted Bayesian 
system to identify prostate cancer in 40× whole slide 
images (10,000×50,000 pixels) at multiple resolutions. 
On a dataset of 100 images at three different resolutions, 
they obtained the following results (with resolution from 
low to high): 69%, 70%, and  68% for accuracy, and 0.84, 
0.83, 0.76 for area under the ROC curve. As can be 
seen from these results, the accuracy dropped when the 
authors used higher resolution images. The reason is that 
when creating ground truth for cancer regions of histology 
images, pathologists commonly annotate a heterogeneous 
region comprising multiple neighboring cancer glands 
and intervening normal structures like stroma. At a high 

Figure 1:  A tissue image region at (a) 20× and (b) 5× magnifications. In the high-magnification region, the tissue elements (nuclei, cytoplasm) 
are clearly visible. Two types of features considered in a tissue region are (c) cytological feature, which is the presence of cancer nuclei in 
the region; (d) textural features extracted from the grayscale intensity distribution of the region
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resolution, the intervening normal structures (which 
are annotated as a part of cancer regions) become more 
salient and are easily classified as normal regions. This 
can somewhat explain why the accuracies in reference[5] 
are higher than the accuracies in reference[6] although 
different datasets were used for their experiments. Finally, 
the whole slide analysis is significantly more complex 
than the ROI analysis because of the scale of operations 
that needs to be done. The data sizes are 2 to 3 orders 
of magnitude more for a whole slide as compared to a 
ROI. In summary, cancer detection in high-magnification 
whole slide tissue image is still a challenging problem. 

By observing the cancer detection procedure adopted by 
pathologists, we establish that an important cytological 
feature, the presence of cancer nuclei (nuclei with 
prominent nucleoli) [Figure 2a], is an important clue 
in deciding if a region is cancerous[7,8]. In this study, 
we propose an efficient algorithm to extract cancer 
nuclei and use them in detecting cancer regions in high 
magnification (20×) whole slide images [Figure 5]. To 
the best of our knowledge, cytological features have not 
yet been exploited in the reported studies on automated 
cancer detection and grading in prostate histology.

In the proposed approach, we first find all the cancer 
nuclei in the tissue. Then, we divide the image into a 
grid of patches. For each patch, we compute two types 
of features (cytological and textural features; [Figures 
1c,1d]), and combine them to classify the patch as 
normal or cancerous. Finally, neighboring cancer patches 
are unified into continuous cancer regions.

NUCLEUS SEGMENTATION AND  
CLASSIFICATION

Nucleus Segmentation
To segment nuclei from the tissue area, we propose 
a maximum object likelihood binarization (MOLB) 
algorithm. Our goal is to segment an object O with 
feature vector ƒ(O) in a grayscale image I. We first 
assume that ƒ(O) follows a density g with parameter 
vector θ. An estimate q̂  is obtained from a training 
set. A threshold t0 to binarize I is obtained such that 
the average object likelihood of the foreground blobs is 
maximized. Formally, let Bi

t, i= 1, . . . , nt, denote the 
nt foreground blobs generated by binarizing I with a 

ba
Figure 2:  Nucleus segmentation and classification. (a) Cancer and normal nuclei in a 20× tissue region. (b) Results of the nucleus segmentation 
and classification. Cyan regions are cancer nuclei and blue regions are normal nuclei. The blank areas inside each nucleus region are the 
segmented dark spots obtained by the maximum object boundary binarization algorithm. In cyan regions, these spots are round and small in 
size, which are considered nucleoli. In blue regions, these spots are either elongated or much larger in size, which are not considered nucleoli

Table 1: Summary of major studies on ROI 
classification in automated prostate cancer 
diagnosis. Since different authors used different 
datasets, their results cannot be directly 
compared

Approach Dataset Accuracy

Lumen area and co-occurrence 
features; classify 100×100
sub-regions into prostatic 
carcinoma, stroma, and benign 
tissue[9]

Sub-regions of
8 tissue images
(40×)

79.3%

Multiwavelet features; classify 
images of tissue portions into
grade 2, 3, 4, and 5 carcinoma[10]

100 images (100×) 97%

Global and local features; classify 
1,600×1,200 images into
tumor-nontumor[11]

367 images (20×) 96.7%

Glandular structural features; 
classify 500×500 images into
benign, grade 3, and grade 4 
carcinoma[3]

78 images (10×) 88.8%
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threshold t ∈ [tmin, tmax] (note that Bi
t and nt depend on 

t). We choose t0 such that

| )
tn

t
0 t it

i=1

1
t = argmax g(f(B )

n
qå (1)

where f Bit( ) is the feature vector of blob Bi
t and qt

ig(f(B )| ) 
is the object likelihood of blob Bi

t since it estimates how 
similar the features of Bi

t are to the features of the object 
of interest O (which have density g with parameter q̂ ).

In this procedure, after binarizing I using a threshold  
t ∈ [tmin, tmax], we apply a 4-connectivity connected 
component algorithm to group foreground pixels (pixels 
whose intensities are greater than t) into blobs Bi

t, i = 1, 
. . . ,nt. This is followed by computation of blob features, 
f Bi

t( ), and their average object likelihood, 

tn
t
it

i=1

1
g(f(B )| )

n
qå . 

The optimal threshold t0, computed in Equation (1), is 
the threshold resulting in the maximum average object 
likelihood. The blobs obtained by binarizing I with t0 are 
the outputs of the algorithm.

Since nuclei appear as blue in H&E stained images, 
we apply this algorithm on the b channel (which is 
normalized to [0,1]) of the Lab color space (which 
best represents the blue color). Here, objects O to be 
segmented are the nuclei. The feature vector of the 
nucleus is defined as ƒ(O) = (a, c), where a and c denote 
the area and circularity of a nucleus, respectively. The 
circularity is defined as c = (4πa)/p2, where p denotes 
the perimeter of the nucleus. In this problem, we assume 
that the feature density is bivariate Gaussian ƒ(O) ~ N  
( ˆˆ,m S ), where m̂  and S are estimated from a training set of 
manually segmented nuclei.

NUCLEUS CLASSIFICATION

Nuclei in cancer glands[7,8] usually appear light blue and 
contain prominent nucleoli which appear as small dark 
spots. On the other hand, nuclei in normal glands usually 
appear uniformly dark or uniformly light over its entire 
area without the nucleoli [Figure 2a]. We utilize this 
observation to classify the segmented nuclei into normal 
or cancer nuclei. First, we segment the dark spots from 
each nucleus; then the features of these spots are used to 
determine if the nucleus is a cancer nucleus. These two 
operations are performed as follows.

Maximum Object Boundary Binarization
By observing that boundaries of the salient objects 
(dark spots) within a region of interest (nucleus region) 
typically have strong gradient magnitude, we find a 
threshold t0 to binarize the ROI (in a grayscale image) in 
such a way that it generates the foreground object which 
has the maximum gradient magnitude on the boundary. 
Formally, let t

iO , i= 1, . . . , nt, denote the nt foreground 
objects obtained in the ROI, R, when binarizing R with a 
threshold t ∈ [tmin, tmax ] (note that t

iO  and nt depend on 
t). We choose t0 such that

(max ( ))
Î t

t
0 t i

i [1,n ]
t = argmax bound_mag O (2)

where bound_mag ( t
iO ) denotes the average gradient 

magnitude of the pixels on the boundary of t
iO .

In this procedure, after binarizing R using a threshold t 
∈ [tmin, tmax], we use the 4-connectivity property to group 
foreground pixels (pixels whose intensities are greater 
than t) into objects t

iO , i= 1, . . . , nt. Then we compute 
the average gradient magnitude on the boundary of each 
object and get the maximum value of these average 
magnitudes (max ( )

t

t
i

i [1,n ]
bound_mag O

Î
). The best threshold t0, 

which is computed in Equation (2), is the threshold that 
maximizes the object boundary gradient magnitude. This 
is a local binarization method since in each ROI, we find 
a different threshold t0 to binarize and detect the local 
objects in that ROI.

Since the difference in intensity of the nucleolus and the 
rest of the nucleus area is most salient in the luminance 
channel of the image, we apply the algorithm in this 
channel to segment the dark spots. However, we obtain 
several spots in each nucleus because some noisy dark 
regions resulting from the poor tissue staining procedure 
may also generate spots. Figure 3 shows the result of this 
binarization.

Feature-based Object Identification
We need to identify an object of interest O* (nucleolus) 
among a pool of objects { } 1

n
i i

O
=  (dark spots). Similar to 

the formulation of the MOLB algorithm in the previous 
section, we estimate the parameters q̂  of the density g of 
the feature vector ƒ(O*) from a training set of manually 
segmented nucleoli. Then, we choose the object Om 
which has the maximum likelihood: ˆ( ( )| )m i iO argmax g f O q=

Figure 3: A cancer nucleus (left) and the segmented dark spots (right).  There are two spots detected by the proposed algorithm, one is a 
true nucleolus and the other is a noisy spot
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. The object Om is considered the object of interest, where 
the constraints for each feature, i.e., ( )min max

j j m jf f O f j< < "  
are estimated from the training set. We again use area 
and circularity as the features to identify the nucleoli. 
By using this algorithm, if a nucleolus is found within 
a nucleus, that nucleus is classified as a cancer nucleus. 
Otherwise, it is considered a normal nucleus. Figure 
2b depicts the results of the nucleus segmentation and 
classification. For cancer detection purposes, we only 
keep cancer nuclei and disregard normal nuclei.

TEXTURAL FEATURES

Similar to Ref.[6], the textural features computed for an 
image patch include first-order statistics, second-order 
statistics, and Gabor filter features. There are four first-
order statistical features comprising mean, standard 
deviation, median, and gradient magnitude of pixel 
intensity in the patch. For the second-order statistical 
features, we form the co-occurrence matrix for all the 
pixels in the patch and compute 13 features from this 
matrix[12] which include energy, correlation, inertia, 
entropy, inverse difference moment, sum average, sum 
variance, sum entropy, difference average, difference 
variance, difference entropy, and two information 
measures of correlation. For the Gabor filter-based texture 
features,[13] we create a bank of 10 filters by using two 
different scales and five different orientations. The mean 
and variance of the filter response are used as features. 
Thus, a total of 20 features are extracted by using Gabor 
filters. We obtain 37 features using these three feature 
types (4 first-order statistics features, 13 co-occurrence 
features and 20 Gabor features). By considering texture 
in each of the three normalized channels of the Lab color 
space of the image separately, we have a total of 3 × 37 
= 111 textural features for each patch.

DETECTION ALGORITHM

Since we do not have any prior information (size, shape, 
and boundary) about the cancer regions, we utilize a 
patch-based approach using a feature set combination 
method to detect the cancer regions. A grid of patches, 
each with S × S pixels, is superimposed on the image. 
Let { } 1

n
i i

x
=

 denote the n sets of features associated with 
each patch P. Each set xi may contain one or more 
features. We train n classifiers { } 1

n
i i

f
=

, one for each feature 
set. A patch P is classified as a cancer patch if

( ( ) 1) ( ( ) 0)
n n

i i i i
i i

p f x p f x= > =Õ Õ (3)

where ( ( ) 0)i ip f x =  and ( ( ) 1)i ip f x =  denote the probability 
that classifier fi classifies the feature set xi as normal or 
cancer, respectively. Otherwise, P is considered a normal 
patch. We apply this algorithm in our problem with 

two different feature sets (n=2), i.e., cytological feature 
set and textural feature set. The cytological feature set 
contains a single feature which is the number of pixels 
belonging to cancer nuclei in the patch. Both classifiers 
(f1 and f2) used for these two feature sets are Support 
Vector Machine (SVM) with RBF kernel and c = 1. The 
grid size and placement are chosen based on the method 
discussed in Ref.[6] where the authors superimposed the 
image with a uniform grid so that  the image is divided 
into 30×30 regions. The reported result using this grid 
was better than that of the pixel-based method proposed 
in the same paper. In a similar manner, we divide the 
image into 40×40 patches (S = 40) and perform patch 
classification.

Once cancer patches are identified, we create continuous 
cancer regions by grouping neighboring cancer patches. 
We divide cancer patches in the image into groups, 
where each group O contains a set of cancer patches 
{ } 1

m
i i

P
=

 such that ∀Pi ∈ O, ∃Pj ∈ O, where d(Pi, Pj) ≤ td. 
Groups with a small number of patches are discarded. For 
each remaining group, we create one continuous cancer 
region by generating a convex hull of all the patches 
and set all pixels in this convex hull as cancer pixels. 
Cancerous tumors are characterized by uncontrolled 
growth, which makes the spread and shape of the tumor 
extremely difficult to model. We, therefore, take the most 
reasonable simplification, i.e., capture the convex hull to 
get all  the cancer regions that may correspond to a single 
tumor. The grouping process and the removal of small 
groups (groups with small number of patches) follow the 
annotation strategy of the pathologist. We can observe 
in the ground truth that the pathologist only annotates 
large cancerous regions, including several neighboring 
cancerous glands but not individual glands. Hence, the 
minimum size of a group is chosen to be larger than the 
average size of a cancerous gland.

Many of the assessments made by pathologists are based 
on a gestalt of the entire region using years of training 
and experience in evaluating many tissues with cancer. 
For pathologists, this constitutes their “self evident 
truth” or heuristics that is usually not documented. 
The case when a pathologist identifies two neighboring 
regions as a single region and when he considers them 
two independent regions is very subjective. With the 
automated detection and grading research we are engaged 
in, we hope that some of the subjectivity will be codified 
and we will have a more consistent review and analysis of 
cancerous tissues.

EXPERIMENTS

Our dataset contains independent training and test sets. 
The training set includes six images (approximate size 
is 4,000×7,000 pixels at 20× magnification). In each 
training image, all the cancer glands were marked by a 
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pathologist. In the remaining noncancerous area, we 
manually selected a number of training normal regions 
which contain various benign structures of the tissue 
(stroma, normal glands with different sizes, normal 
nuclei). Figure 4a shows part of a training image. The 
independent test set consists of 11 whole slide images 
at 20× magnification (approximate size is 5,000×23,000 
pixels). The difference in size of the training and testing 
images is not an important issue because what we need 
for training is the local information of the patches but 
not the global information of the entire image. The 
ground truth for the test images (all cancer regions) were 
also manually labeled by a pathologist. All the nonlabeled 
regions are considered normal. While in the ground 
truth of the test set, the pathologist annotated the entire 
cancer region (including neighboring cancer glands and 
the intervening normal structures such as stroma), only 
pixels belonging to the cancer glands are annotated as 
cancer in the training set. In other words, the training 
data are more reliable.

To evaluate the robustness of the cytological feature as 
well as of the proposed feature combination method, we 
compare the performance of the three methods, i.e., the 
feature combination method, the texture based method 
and the cytological feature based method. In the texture 
based method, we only use the textural feature set 
(section 4) and a single classifier (SVM with RBF kernel 
and c = 1) for the detection. Similarly, we only use the 
cytological feature set for the cytological feature based 

method. For a quantitative comparison, we compute the 
true positive rate TPR = TP/(TP + FN) and the false 
positive rate FPR = FP/(TN + FP), where TP, FP, TN, 
and FN denote the true positive, false positive, true 
negative, and false negative, respectively, for every test 
image. The TPR and FPR are then averaged over all test 
images.

The value of the threshold td has a significant influence 
on both TPR and FPR. Since the training set only 
includes annotations of cancer glands separately and 
not the entire cancer region, it is difficult to estimate 
td. Further, it is difficult for a pathologist to tell which 
value he uses to annotate the cancer region. Hence, 
it is necessary to test all methods with different values 
of td. Figure 4b depicts the ROC curves illustrating the 
relationship between TPR and FPR obtained by the three 
methods when td is varied from 0 pixels to 530 pixels (a 
relatively large distance in the image). When td increases, 
both TPR and FPR increase, i.e., there are more true 
cancer regions being detected while at the same time, 
more normal regions get incorrectly classified as cancer. 
For the same FPR, the feature combination method 
always gets a higher TPR than the other two methods. 
Since the test set is not large, we choose the best trade-
off between TPR and FPR by a qualitative observation 
of the detection outputs. We determine that for td = 
90 pixels, the feature combination method provides the 
most satisfactory detection results (TPR = 78% at FPR 
= 6%). Figure 5 shows the detection results of the three 

ba
Figure 4: Experimental results. (a) A region of a training image in which cancer gland regions are highlighted in blue and selected normal 
regions are highlighted in yellow. (b) ROC curves, which plot the average FPR vs. TPR over all test images, for the proposed feature 
combination method, the texture based method and the cytological feature based method obtained by varying the neighboring threshold 
td from 0 pixels to 530 pixels. Note that the scales for TPR and FPR are different
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Figure 6: Detection results of the proposed feature combination method (a), the texture based method (b), and the cytological feature 
based method (c) in a close-up region sampled from the images in Figure 5

a b c

Figure 5: Detection results on a test image. The blue contour depicts the annotated cancer region by the pathologist and the green contours 
depict the outputs by the algorithm. (a) Result of the texture based method; (b) result of the cytological feature based method and (c) 
result of the proposed feature combination method. td = 90 pixels is used for all three methods

c

b

a
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methods on a whole slide image when td = 90 pixels 
and Figure 6 shows a close-up region of the same image 
for better details. In this image, all three methods can 
find most of the cancer regions. However, the feature 
combination method has fewer false detections than the 
other two methods.

To save computation time, we perform background 
removal by using a simple thresholding operation on 
the L channel of the Lab color space. By doing this, the 
white area (non-tissue area) is discarded prior to the 
patch feature extraction. However, to be able to compare 
our results with reference[5,6] in which the authors did 
not perform background removal, we use all the image 
pixels when computing the TPR and the FPR. Although 
different datasets were used, we can still have an indirect 

a

c d

b

Figure 7: Comparison of the three nucleus segmentation methods. (a) A sampled region of a whole slide image. (b) Result of the Otsu 
method. (c) Result of the Bayesian method. (d) Result of the MOLB method

comparison among the three studies. At a TPR of 87% 
(which was the most satisfactory result in Ref.[5]), the 
FPR obtained by their method was roughly 10%, in 
Ref.[6] it was roughly 28% and in the proposed feature 
combination method it is roughly 9%. In the context of 
this paper, since we use background removal for all three 
methods (texture based, cytological feature based and 
feature combination methods) and compute the TPR 
and the FPR for them in the same way, the comparison 
among these three methods is still valid.

We do not compare our selected features with 
morphological features because, to compute 
morphological features, we need to segment complete 
glands, which is not a trivial task. Since we do not have 
ground truth for the nucleus segmentation (it is indeed a 
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labor intensive task for pathologists to mark every single 
nucleus), we only qualitatively evaluate the proposed 
nucleus segmentation method (the MOLB method) 
by comparing with the popular Otsu’s method[14] and 
a Bayesian classification method which was used in 
reference.[15] Otsu’s method is an adaptive thresholding 
method which is used to create a binary image Ib from a 
grayscale image Ig. This method assumes that each image 
pixel belongs to one of the two classes, i.e., foreground 
and background. Then, it searches for an optimal 
threshold t0 ∈ [a, b], where [a, b] is the intensity range 
of Ig, to binarize Ig such that the interclass variance is 
maximized. The interclass variance corresponding to a 
threshold t is computed by

2 2
1 2 1 2( ) ( ) ( )[ ( ) ( ) ]b t t t t ts w w m m= - (4)

where ω1, ω2 denote the probabilities and µ1, µ2 denote 
the intensity means of the two classes. We apply Otsu’s 
method on the b channel of the Lab color space to 
obtain pixels belonging to the nuclei (foreground pixels). 
In their Bayesian method, Naik et al.[15] obtained training 
pixels of three different tissue classes which are lumen, 
nucleus and cytoplasm. For each class ωv, they learned 
a probability density function p(c, f(c)|ωv) for a pixel c 
with color f(c). By using Bayes Theorem, they computed 
the posterior probability P(ωv|c, f(c)) that each pixel c 
belongs to each class ωv in the image. A pixel c is classified 
as nucleus if P(ωN |c, f(c)) > TN where ωN denotes the 
nucleus class and TN denotes a pre-defined threshold. 
Since we cannot estimate the threshold TN being used in 
their method, we classify a pixel c as nucleus if P(ωN|c, 
f(c)) > P(ωC|c, f(c)) and P (ωN|c, f(c)) > P(ωL|c, f(c)), 
where ωC and ωL denote the cytoplasm and lumen classes, 
respectively. Similar to their work, we use 600 pixels per 
class for training. The results of the three methods are 
presented in Figure 7. It can be seen from these results 
that the MOLB method gives more satisfactory outputs 
than the other two methods. While the Otsu method 
does not employ any domain knowledge and the Bayesian 
method may suffer from the high color variation of the 
tissue structures among images, the MOLB method uses 
prior knowledge about nucleus features (which are mostly 
stable among images) and does not depend on color of 
some training pixels.

We also analyze the computational complexity of the 
MOLB algorithm by calculating the number of operations 
to be performed. There are three steps in this algorithm: 
(i) thresholding the grayscale image with a threshold t, (ii) 
performing the connected component labeling using all 
image pixels and (iii) computing features of the objects 
(connected components). These three steps are repeated 
for all T threshold values in [tmin, tmax]. In the thresholding 
step, there are n comparisons for an image with n 
pixels, yielding a complexity of Θ(n). In the connected 

component labeling, by using a two-pass algorithm 
(every pixel is visited twice) with 4-connectivity at every 
pixel, 2×4×n operations are needed, which corresponds 
to a complexity of Θ(n). To compute features (area and 
circularity) of each segmented object Oi with ni points, we 
need to visit all the points and consider the four neighbors 
at every point to find the object perimeter, which results 
in 4ni operations. The total number of operations for 
this step is 4 ii

nå , which corresponds to a complexity of  
Θ( 4 ii

nå ) = Θ(4n) = Θ(n) (since ii
n n<å ). In summary, 

the final complexity of the algorithm is T ×(Θ(n) + Θ(n) 
+ Θ(n)) = Θ(n), which is linear in terms of the number 
of pixels in the image.

CONCLUSIONS

We have introduced a novel cytological feature for 
automated prostate cancer detection, which is different 
from the structural features used in the Gleason grading 
method. An efficient adaptive binarization approach is 
proposed to extract this cytological feature, namely the 
cancer nucleus feature. Though the Gleason grading 
method is widely used in grading prostate cancer, there is 
still a need to examine the tissue at a high magnification 
and utilize the cytological features to enhance the 
diagnosis results. For a computer aided system, besides the 
use of well-known textural features, we can also include 
the cancer nucleus feature in particular and cytological 
features in general to boost the performance of the 
system. The results achieved on the test images reported 
here demonstrate the contribution of the cancer nucleus 
feature in detecting prostate cancer. In future work, we 
intend to obtain a larger dataset and explore additional 
cytological features. Moreover, we plan to perform gland 
segmentation and use the outputs to facilitate cancer 
detection. This means we can process cancer detection 
at a higher level (glandular level) instead of patch-based 
classification which relies mainly on image pixels.
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