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Abstract
Commodity graphics hardware has become a cost-effective parallel platform to 
solve many general computational problems. In medical imaging and more so in 
digital pathology, segmentation of multiple structures on high-resolution images, 
is often a complex and computationally expensive task. Shape-based level set 
segmentation has recently emerged as a natural solution to segmenting overlapping 
and occluded objects. However the flexibility of the level set method has traditionally 
resulted in long computation times and therefore might have limited clinical utility. 
The processing times even for moderately sized images could run into several 
hours of computation time. Hence there is a clear need to accelerate these 
segmentations schemes. In this paper, we present a parallel implementation of a 
computationally heavy segmentation scheme on a graphical processing unit (GPU). 
The segmentation scheme incorporates level sets with shape priors to segment 
multiple overlapping nuclei from very large digital pathology images. We report a 
speedup of 19× compared to multithreaded C and MATLAB-based implementations 
of the same scheme, albeit with slight reduction in accuracy. Our GPU-based 
segmentation scheme was rigorously and quantitatively evaluated for the problem 
of nuclei segmentation and overlap resolution on digitized histopathology images 
corresponding to breast and prostate biopsy tissue specimens.
Key words: GPU Implementation, Parallel Processing, Level set, Medical imaging, 
Segmentation, Digital Pathology, Histopathology, Fast Active Contour, Multi-threaded 
programming
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INTRODUCTION

In the rapidly developing field of digital pathology,[1] 
ability to accurately segment structures on digitized 
histology images, especially the ability to deal with 
overlapping and occluded structures, is highly critical 
in the context of a number of different diagnostic and 
prognostic applications.[2,3] In the context of prostate 
cancer (CaP) and breast cancer (BC), digitized 

hematoxylin and eosin (H and E)-stained tissue samples 
are often characterized by the presence of densely packed 
nuclei, in which overlap between two or more nuclei has 
proven to be a significant challenge to computerized 
segmentation schemes.[1-3] Shape-based active contours 
(level sets) have emerged as one of the natural solutions 
to overlap resolution. Recently, Ali et al.[3] proposed 
a shape-based hybrid active contour model that can 
segment all of the overlapping and nonoverlapping nuclei 
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simultaneously in an image.

While level sets have found wide applicability for medical 
image segmentation, their clinical utility has been limited 
by (1) the amount of time needed for computation and 
(2) a number of free parameters that must be fine tuned 
for each specific application. These two limitations are 
intertwined, whereby users find it impractical to explore 
the entire space of possible parameter settings when 
an example result from a point in that space requires 
minutes or hours to generate. We have previously 
addressed the latter issue by automating the parameter 
selection associated with initialization.[3]

Higher level segmentation approaches, such as 
deformable models, have been ported to GPU 
architectures by considering implicit deformable models 
such as image lattices (e.g., a 2D curve is implicitly 
represented as the iso-value of a field encoded as a 2D 
image). Level-set approaches have become particularly 
popular in the GPU-segmentation community as 
significant speedups and interactive rendering have 
become available.[4,5] Geodesic active contours, which 
are a combination of traditional active contours (snakes) 
and level-set evolution, were efficiently implemented 
in GPU by using the total variational formulation and 
used primarily to separate foreground and background 
structures in 2D images.[6] These implementations 
were, however, designed for the evolution of a single 
level set.

In this paper, we present a novel, computationally efficient 
framework for segmentation of histologic structures (e.g., 
nuclei and glands) in very large histopathology images. 
The framework presented alleviates the computational 
overhead of level set segmentation by marrying a very fast 
solver with an intuitive speed function. We leverage a 
powerful graphical processing unit (GPU) (via commodity 
graphics hardware) to provide a computationally optimized 
segmentation framework that allows for simultaneous 
calculation of multiple, interacting level sets. We 
demonstrate an application of our parallelized framework 
using our previously published synergistic active contour 
models (using multiple level sets)[3,7] for the problem of 
segmenting nuclear and glandular structures on digitized 
histopathology. We have previously shown that this 
scheme[3,7] allows for accurately detecting and segmenting 
overlapping lymphocytes and nuclei in H and E-stained 
prostate and breast needle core biopsy images. Following 
are the main contributions of this work:
•	 A GPU accelerated multiple level set-based hybrid 

active contour framework, implemented using 
the NVIDIA CUDA libraries, for the task of rapid 
segmentation of nuclei in H and E images.

•	 Leveraging a parallelizable framework to 
accommodate multiple level sets operating in parallel 
with initialization via shape prior in conjunction with 

boundary and region-based energy terms.
•	 Exploit parallelism and efficient memory 

management in the GPU to achieve massive speedup 
compared to using a CPU. 

The rest of the paper is structured as follows. Overview of 
GPU structure and programming paradigms are presented 
in section 2. Section 3 describes our segmentation 
algorithm. In Section 4 we describe our GPU-based 
framework and its implementation on graphics hardware. 
We present our analysis of the results in section 5. In 
section 6 we present our concluding remarks and discuss 
future improvements of our GPU-based implementation.

OVERVIEW OF GPGPU

General purpose computation on graphics processing 
units (GPGPU) is the technique of using graphics 
hardware to compute applications typically handled by 
the central processing unit (CPU). Graphics cards over 
the past two decades have been required to become highly 
efficient at rendering increasingly complex 3D scenes at 
high frame rates. This has forced their architecture to 
be massively parallel in order to compute graphics faster 
compared to general purpose CPUs.[4] GPUs are not 
optimized for general purpose programs, and thus lack 
the complex instruction sets and branch control of the 
modern CPU. Although current high-performance CPUs 
feature multiple cores for limited parallel processing, 
GPUs are arguably a more attractive option in terms of 
lower price and power usage.

Recently, languages have been developed that allow 
the programmer to implement algorithms without any 
knowledge of graphics application programming interface 
(APIs) or architectures The GPGPU computations 
performed in this work utilize the NVIDIA CUDA 
(Compute Unified Device Architecture) technology.[8]  
The C language model has at its core three key 
abstractions:[9] a hierarchy of thread groups (to allow 
for transparent scalability), shared memories (allowing 
access to low-latency cached memory), and barrier 
synchronization (to prevent race conditions). This breaks 
the task of parallelization into three subproblems, which 
allows for language expressivity when threads cooperate, 
and scalability when extended to multiple processor 
cores. CUDA allows a programmer to write kernels that 
when invoked execute thousands of lightweight identical 
threads in parallel. CUDA arranges these threads into a 
hierarchy of blocks and grids, as can be seen in Figure 1, 
allowing for runtime transparent scaling of code within 
GPU. The threads are identified by their location within 
the grid and block, making CUDA perfectly suited for 
tasks such as level set-based image segmentations where 
each thread is easily assigned to an individual pixel or 
voxel.[10]
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NUMERICAL MODELING OF THE SEGMEN-
TATION SCHEME

We present a slightly modified version of the previously 
published method by Ali et al.[7] for the problem of 
segmenting nuclei and lymphocytes in prostate and breast 
cancer images. Our previous model comprised a hybrid 
active contour (boundary and region based) integrated with 
the shape prior. In this work, we eliminate the boundary-
based term in order to simplify the numerical modeling 
of the variational formulation of the hybrid active contour 
formulation, relying instead on the region and shape prior 
terms within a multiple level set formulation. Figure 2 
illustrates the individual modules comprising the scheme.

Integrated Shape-based Active Contour
We combine shape force and region force (Chan-Vese)[11] 
into a variational formulation:

F=βs ∫Ω (φ(x)–ψ(x))2dx+ βr ∫Ω θin Hφdx+∫Ω θoutH-φdx
(1){ {

Shape force Region force

where βs, βr > 0 are constants that balance contributions 
of the shape prior and the region term, {φ} is a level 
set function, and ψ is the shape prior. This formulation 
effectively integrates the shape prior with regional 
intensity information.

The level set formulation in Equation (1) is limited in 
that it allows for segmentation of only a single object 
at a time. To allow for simultaneous segmentation of 
multiple objects, we allow each pixel to be associated with 
multiple objects or the background instead of partitioning 
the image domain into mutually exclusive regions.[7] 
Specifically, we try to find a set of characteristic functions 

xi such that we associate one level set per object in such 
a way that objects are allowed to overlap with each other 
within the image. Then simultaneous segmentation of two 
objects Oa, Ob with respect to ψ is solved by minimizing 
the following modified version of Equation (1):
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with 1 2 1 2 1 2 1v 2 1 2, ,x x x xH H H H H H H Hn y y y y y y= + - = , where Φ =(φ1,φ2) 
and Ψ=(ψ1,ψ2). The fourth term penalizes the overlapping 
area between the two segmenting regions, and prevents 
the two evolving level set functions from becoming 
identical.

Discretized Iterative Scheme
Minimizing Equation (2) iteratively with respect to 
dynamic variables yields the associated Euler-Lagrange 
equations, parameterizing the descent direction by an 

Figure 1: GPU architecture; (a) CUDA hardware interface, (b) CUDA software interface

Figure 2: Flow chart showing the various modules comprising our 
segmentation scheme. First panel illustrates shape prior and region-
based term. Second panel illustrates the synergy of both the terms

ba b
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artificial time t > 0 as follows:
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where ψ1  is defined in Ref.[3]. Similar to the Chan-Vese 
model, we update uin and uout for each iteration as follows:
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The above model can be adapted for N objects (proof 
shown in Ref.[3]). The solution to the equations in 
Equation (4) first requires discretization on a regular two-
dimensional M-by-N grid. We let h denote the spacing 
between the cells and (x1,y1)=(ih,jh) be the grid points 
with 0 ≤ i ≥M and 0 ≤ j ≤ N. Discretizing uin and uout is 
straightforward, as long as we fix a regularized Heaviside 
function. For our discretization we have chosen
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To discretize Q
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 (i.e., divergence of the normalized 

gradient of φ), we let φx, φy denote partial derivatives of φ 
and similarly let φxx, φyy and φxy  denote the second-order 
partial derivatives. Thus, we obtain
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which we discretize with simple finite central differences:
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Sequential Algorithm and Implementation
The iterative evolution of the level set φ is described in 
algorithm 1 using the individual components defined in 
section 3.2. We start by initializing φ with some initial 
contour (an ellipse) and set n=0. We then compute uin 
(φn) and uout (φn)  from Equation (4). For computing 
curvature forces, n+,n–, we direct the reader to the 
formulation.[11] Next we compute Equation (3) with the 
given discretization above to obtain 1n n

t
t ff f+ ¶
¶

= + ×  with 
explicit forward Euler. Finally, we update n=n+1. Note 
that we initialize the distance function every RIth (user 
defined parameter) iteration.

GPU IMPLEMENTATION OF INTEGRATED 
SHAPE-BASED ACTIVE CONTOUR SCHEME

The GPU-based implementation of the segmentation 
scheme (described in section 3) is performed with the 
NVIDIA CUDA toolkit.

Parallel Algorithm and Implementation
The parallel implementation of the segmentation scheme 
follows the structure shown in algorithm 2. Input image, 
I, and an initial contour φ (an ellipse) are both discretized 
and generated on equally sized 2D grids on CPU. We 
copy both the image and φ onto the GPU. From this 
point on, the GPU has everything it needs and requires 
no further copying of data, thus effectively optimizing 
memory transfers between the CPU and GPU.

Kernel Threads Setup
In CUDA, it is assumed that both the host (CPU) and 
device maintain their own DRAM.[8] Host memory is 
allocated using malloc and device memory is allocated 
using cudaMalloc. Since memory bandwidth between the 
host memory and device memory is low (it is much lower 
than the bandwidth between the device and the device 

Algorithm 1: Sequential level set segmentation
Input: Feature image I, Initial Mask m, threshold T, Range ∈ 
Iterations n, Reinitialize Every RI
Output: Nuclear contours (boundaries)
Initilize φ0  to Signed Euclidean Distance Transform (SEDT) from 
mask m
Calculate Data Speed Term D(I)=∈− I-T For all the n Iterations do

Calculate First Order Derivatives φx
, φy

Calculate Second Order Derivatives φxx
, φyy φx

, φxy

Calculate Curvature Terms n+, n–

Calculate Gradient ∇φ

Calculate Speed Term F=αD(x)+ (1-α) Q

Q

Ñ
Ñ×

Ñ

Update Level Set Function φ(t+ ∆t)= (t)+∆tF|∇φ|
if Iterations % RI= = 0 then

| Reinitialize φ to SEDT
end

end
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memory), it is recommended to keep the number of 
transfers to a minimum. In order to minimize the latency 
of accessing the shared memory it is recommended 
to make the block size a multiple of 16 and use the 
cudaMallocPitch routine to allocate memory with padding 
if the X dimension of the image is not a multiple of 16. 
Hence, most CUDA programs follow a standard structure 
of (1) initialization, (2) host to device data transfer, (3) 
performing computations, and (4) finally memory transfer 
of computed results from device to host.

CUDA threads are assigned a unique thread ID that 
identifies its location within the thread block and grid. 
This provides a natural way to invoke computation across 
the image and level set domain, by using the thread 
IDs for addressing. This is best explained with Table 1. 
Assume that our image has dimensions 4 × 4 and the 
block size is 2 × 2. Invoking the kernel with a grid size of 
2 × 2 blocks results in the 16 threads shown in Table 1, 
in the form (threadIdx.y,threadIdx.x). These threads are 
grouped into blocks of four.

As each thread has access to its ownthreadIdx and 
blockIdx, global indices (i, j) can be determined using 
the equations,

int i = blockIdx.x * blockDim.x + threadIdx.x;	 (8)int j = blockIdx.y * blockDim.y + threadIdx.y;

where blockDim.x and blockDim.y represent the 
dimensions of the block (which in this case are both 
equal to 2). Of course, much larger block sizes are used, 
keeping the block X dimension (BX) a multiple of 16 
for maximum speed. The effect of different block sizes 
on performance is analyzed in section 5.5. Once these 
indices are set up, it is relatively straightforward to 
transfer the level set update code to a CUDA kernel.

2D Shared Memory Optimization
Since we use finite differences to compute the curvature 
force in a grid cell, we need to access the value of φ 
from the neighboring cells (blocks). Unfortunately the 
GPU is not optimized for this sort of memory access 

pattern, and memory accesses can suffer a significant 
performance penalty.[8] In order to keep the number of 
costly accesses to device memory at a minimum, effective 
use of the on-chip shared memory is essential. This along 
with maximizing parallel execution and optimization 
of instruction usage form the three main performance 
optimization strategies for CUDA.[8]

Integrating use of the shared memory into the CUDA 
kernel requires partitioning the level set domain into tiles. 
For first-order finite difference problems such as ours, 
each tile must also contain values for neighbor nodes 
(often known as halo nodes) for i+1 and j+1 elements, 
which would be stored in separate tiles, so these must 
also be read into shared memory. As the size of the 
shared memory is only 16 KB, the sizes of the tiles and 
corresponding halo are limited. Micikevicius[12] outlined 
a framework for handling such a process. While such 
a process may serve as a good model for a multi-GPU 
implementation, the kernel will need to be modified as 
it is optimized for higher order stencils (without cross-
derivative terms). Instead, tiling code was adapted 
from Giles’ Jacobi iteration for Laplace discretization 
algorithm[13] which supports cross-derivatives well. The 
shared memory management technique in this finite 
difference algorithm accelerated the global memory 
implementation by over an order of magnitude.

For a block (and tile) size of BX×BY there are 
2×(BX+BY+2) halo elements, as can be seen in Figure 3  
where darker elements represent the thread block (the 
active tile) and the lighter elements represent the halo. It 
is in this manner that the domain of the computation is 
partitioned and results in overlapping of halo nodes.

Each thread loads φn values from global memory to the 
active tile stored in shared memory. However, depending on 
the location of the thread within the thread block it may also 
load a single halo node into the shared memory. Therefore 
in order to load all halo nodes, this technique assumes that 
there are at least as many interior nodes as there are halo 
nodes. Before data can be loaded into the halos, the thread 
ID needs to be mapped to the location of a halo node both 
within the halo and within the global indices.

The first 2×(BX+BY+2) threads are assigned to load 
values into the halo in this manner. This is best visualized 
with the example of a 6 × 6 thread block as shown in 
Figure 3b. This method of loading elements has been 
chosen in order to maximize coalescence, the merging 

Algorithm 2: Parallel Implementation
Initialize φ0

i,j, D on host memory
Allocate memory for φn, φn+1, D on device
Copy φ0 , D from host device for all the n Iterations do
    Execute Level Set Update CUDA Kernel φn+1

i,j    =φn
i,j +∆tF|∇φn

i,j|
Swap pointers of φn

i,j, φn+1
i,j  

if Iterations % RITS = = 0 then

Copy φ from device to host
Reinitialize φ to Signed Euclidean Distance Transform
Copy φ from host to device

end
end
Copy φ from device to host

Table 1: Sample arrangement of 16 threads 
grouped into blocks of 4
(0,0) (0,1) (0,1) (0,1)
(1,0) (1,1) (1,0) (1,1)
(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)



J Pathol Inform 2011, 2:13	 http://www.jpathinformatics.org/content/2/1/13

of adjacent blocks of memory to fill gaps caused by 
deallocated memory. Not only are the interior tile nodes 
loaded coalesced, but as can be seen above, the first 12 
elements of the thread block load the y halos (above and 
below the interior tile excluding corners) in a coalesced 
manner. The side halos (x halos) loads are noncoalesced. 
When writing back results to global memory, as only the 
interior nodes have updated values they are written to 
global memory coalesced.

Calculation of Forces
To compute uin and uout, we start by computing the value 
of uin and uout in each grid cell, storing it in a temporary 
array. Since these are scalars values, we use reduction 
operation,1 cutting the time spent to O (log n) time 
assuming we have an infinite number of threads. In a 
reduction, a binary function is performed on all elements 
in an array; this can be done in a tree-like fashion, where 
the given operation can be performed concurrently on 
different parts of the array and allows for combining the 
results at the end. NVIDIA has created an STL-like C++ 
library called thrust that, among other things, can do 
reductions efficiently on the GPU.

Hereafter, we use the values for u1 and u2 computed above 
to compute the image forces. By image forces, we mean 
the terms λ1(f-u1)

2+λ2(f-u2)
2 and the Fshape from Equations 

(3) and (4). This is straightforward and coalesced (reader is 
referred to CUDA guide).[9] Lastly, we need to update φ for 
the next iteration, which is straightforward since we have 
the two grids containing the curvature force and the image 
forces. The final step is to copy the new φ back to the CPU.

EXPERIMENTAL RESULTS AND DISCUS-
SION

Model Parameters, Implementation, and 
Initialization
In this paper, for the shape model, we generate a 
training set of 30 ellipses (nuclei and lymphocytes being 
1Reduction operation: Variable has a local copy in each thread, 
but the values of the local copies will be summarized (reduced) 
into a global shared variable.

elliptical in shape) by changing the size of a principal 
axis with a Gaussian probability function. The manner 
of choosing the weighting parameters from Equations 
(1) and (4) is as follows: λ1=1, λ2=2, and µ=0.2 
determine the size of the neighborhood where the gray 
value information is averaged by means of diffusion, βr  
and βs are chosen such that the shape prior is attracted 
toward the region to be segmented. Level sets are 
manually initialized and the model assumes that the 
level sets are strategically placed in the vicinity of the 
objects. Some features such as the Courant--Friedrichs-
Lewy (CFL) condition could not be implemented in 
this parallel version without slowing down computation 
time significantly.[6] This is because such a condition 
requires the determination of the largest element of ∇φ 
which is computed roughly half way through the update 
procedure. Therefore integrating this condition would 
require transferring ∇φ and curvature terms back to host 
memory to determine max {F|∇φ|}, or perhaps more 
efficiently calling a CUDA kernel to determine the 
largest element. The cost of this added complexity and 
slowdown outweighed the benefits, and therefore ∇t was 
chosen to be a fixed parameter.

All hardware testing was done on a single PC with an 
Intel Core 2 Duo T8100 Processor with a clock speed of 
2.1 GHz and 4 GB of RAM. The graphics hardware used 
was the NVIDIA GeForce 8600M GT, with CUDA 2.2 
software installed. Timing code used was from the cutil 
library provided in the CUDA toolkit.

Data Description
Evaluation is done on two different histopathology 
datasets: prostate cancer and breast cancer cohorts 
comprising 14 and 52 images respectively [Table 2]. A 
total of 70 cancer nuclei from 14 images for prostate and 
504 lymphocytes from 52 images for breast cancer were 
manually delineated by an expert pathologist (serving as 
the ground truth annotation for quantitative evaluation). 
For both datasets the objective was to detect, segment 
the individual nuclei and lymphocytes, and where 
appropriate, resolve the overlap between intersecting 
objects. To evaluate the speedup, various patch sizes were 
created from each of the data set [Table 3].

Evaluation of Segmentation and Detection 
Accuracy
Results shown in Figure 4 for nuclei segmentation aim 
to demonstrate the strength of our model in terms of 
detection, segmentation, and overlap resolution accuracy. 
Table 4 shows the segmentation accuracy (individual 
lymphocytes and nuclei) compared to those of Chan-
Vese[11] (MCV) and Ali et al.[3] (MAli). Note that GPU-based 
implementation (MGPU) underperforms in comparison 
to MAli since MGPU lacks the hybrid boundary based term 
present in MAli. Figure 5 showcases qualitative results of 
nuclear segmentation achieved by the three models.

Figure 3: (a) 2D shared memory arrangement; (b) tile and halo 
showing a block mapping of thread IDs to halo nodes

a b
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We compute SN, PPV, OR (overlap detection ratio) for 
each image, and then determine the average and standard 
deviation across the 62 images. Note that overlap 
detection ratio #

#
overlapresolved

OR
Total of overlaps

=  is defined as the fraction of 
total overlaps successfully resolved by the segmentation 
scheme. These statistics are reported in Table 4 and they 

Table 2: Description of the different data sets 
considered in this study

Name Number

Dataset 1 Hematoxylin and Eosin (H and E) stained 
prostate needle core biopsy images

14

Dataset 2 Hematoxylin and Eosin (H and E) stained 
breast biopsy images

52

Table 3: Description of patch sizes from two data 
sets for which MGPU and speedup was evaluated

Dataset 1 Dataset 2

Patch size No. of images No. of images
512 × 512 4 15
256 × 256 5 17
128 × 128 5 20

Figure 4: Segmentation results from our model applied to histological image patches of sizes (a), (b) 256x256, (c) 128 x 128 pixels. Note 
that our model is able to segment intersecting, overlapping nuclei

Figure 5: Segmentation results comparing (a) traditional Chan&#8208;Vese model[11], (b) Ali et al.,[3] our GPU-accelerated model

a b c

a b c

reflect the efficacy of MGPU in segmenting nuclei and 
lymphocytes in CaP and BC images.

Evaluation of Speedup
We present results of various speedups achieved on data 
set containing image sizes 256 × 256 and 512 × 512. First 
we compare the average time taken for 2000 iterations in 
MATLAB, C, and CUDA on histopathology data of good 
contrast and dimensions 256 × 256 (a multiple of 16 
implying no memory padding is required in CUDA). The 
results shown in Table 5 reflect the speedup achieved by 
our GPU-accelerated method.

The average runtime speedup attained from sequential 
code in C to CUDA-optimized code is approximately 
13×. The block size used for 2D CUDA compute was 32 
× 8. In another experiment, we selected a set of images 
with relatively poor contrast and dimensions 512 × 512. 
This makes the image both a computationally demanding 
segmentation (as it has relatively large dimensions) and 
challenging in terms of accuracy. The average performance 
speedup attained on this larger image set was 19×, greater 
than the speedup attained for the smaller 256 × 256 images. 
This motivates exploration into the effect of different image 
sizes on CUDA speedup, discussed in the next section.
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Evaluation of the Effects of Image Size on Speedup
Figure 6 shows the effect of multiple patch sizes on 
computational time for up to 1000 iterations on the 
optimized CUDA algorithm. It can be seen from Figure 
6 that the speedup for smaller sized image patches is 
relatively less compared to the speedup obtained for images 
with larger sizes. The sequential algorithm performs almost 
half as slowly for volume sizes larger than 642. This is most 
likely due to the fast on board CPU cache being used for 
smaller volume sizes (<642) volume sizes larger cannot 
fit on the CPU cache and hence are stored on the slower 
DRAM. Conversely, the CUDA code performs relatively 
poorly for smaller image sizes and much more quickly 
for larger images. This is essentially due to low numbers 
of processors being used for such small images and many 
more being used for larger images. Therefore the speedup 
line essentially shows that the algorithm follows Amdahl’s 
and Gustafson’s laws of parallel computation.[4]

Image sizes much larger than 2562 could not be tested 
as the maximum amount of global memory available for 
the 8600M GT is 256 MB. For example, an 3202 image 
would take up 3202×size of (float) and there are three 
of these arrays (for the image, previous level set iteration 
and current level set iteration), which would take up 295 
MB of graphics memory. It is however expected, for these 
even larger volumes, that the speedup of the algorithm 
will remain at the observed plateau [Figure 6].

CONCLUSIONS

We presented a novel GPU accelerated segmentation 
scheme that can detect and segment multiple 
overlapping objects in an image. Our implementation 
was able to significantly reduce the computational time 
required for the popular segmentation models, including 

an integrated active contour scheme with shape priors, 
inspired by Ali et al.[3] In future work, we intend to 
extend the framework to incorporate automated model 
initialization and to evaluate the model on larger image 
sizes. To further improve the segmentation results, we 
plan to incorporate a hybrid boundary and region based 
model with Courant-Friedrichs-Lewy (CFL) condition 
without compromising the speedup.

Computationally inexpensive segmentation schemes that 
can accurately segment structures on digitized histology 
images, especially the ability to deal with overlapping 
and occluded structures, are highly critical in the context 
of a number of different diagnostic and prognostic 
applications. We applied our parallelized algorithm for 
segmentation and detection of lymphocytes and nuclei in 
breast and prostate histopathology imagery. We evaluated 
our algorithm against two popular platforms and with 
varying image sizes. Our results show that our GPU-
accelerated framework was able to segment nuclei and 
lymphocytes with a speedup of 19×.
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