
J Pathol Inform Editor-in-Chief:
 Anil V. Parwani , Liron Pantanowitz,
 Pittsburgh, PA, USA Pittsburgh, PA, USA

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS
HTML format

Symposium - Original Research

Graphical processing unit implementation of an integrated shape-
based active contour: Application to digital pathology

Sahirzeeshan Ali, Anant Madabhushi1

Department of Electrical and Computer Engineering, 1Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

E-mail: *Sahirzeeshan Ali - sahirali@eden.rutgers.edu
*Corresponding author

Received: 20 October 11 Accepted: 20 October 11 Published: 19 January 12

This article may be cited as:
Ali S, Madabhushi A. Graphical processing unit implementation of an integrated shape-based active contour: Application to digital pathology. J Pathol Inform 2011;2:S13.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2011/2/2/13/92029

Copyright: © 2011 Ali S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

Abstract
Commodity graphics hardware has become a cost-effective parallel platform to
solve many general computational problems. In medical imaging and more so in
digital pathology, segmentation of multiple structures on high-resolution images,
is often a complex and computationally expensive task. Shape-based level set
segmentation has recently emerged as a natural solution to segmenting overlapping
and occluded objects. However the flexibility of the level set method has traditionally
resulted in long computation times and therefore might have limited clinical utility.
The processing times even for moderately sized images could run into several
hours of computation time. Hence there is a clear need to accelerate these
segmentations schemes. In this paper, we present a parallel implementation of a
computationally heavy segmentation scheme on a graphical processing unit (GPU).
The segmentation scheme incorporates level sets with shape priors to segment
multiple overlapping nuclei from very large digital pathology images. We report a
speedup of 19× compared to multithreaded C and MATLAB-based implementations
of the same scheme, albeit with slight reduction in accuracy. Our GPU-based
segmentation scheme was rigorously and quantitatively evaluated for the problem
of nuclei segmentation and overlap resolution on digitized histopathology images
corresponding to breast and prostate biopsy tissue specimens.
Key words: GPU Implementation, Parallel Processing, Level set, Medical imaging,
Segmentation, Digital Pathology, Histopathology, Fast Active Contour, Multi-threaded
programming

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.92029

Quick Response Code:

INTRODUCTION

In the rapidly developing field of digital pathology,[1]
ability to accurately segment structures on digitized
histology images, especially the ability to deal with
overlapping and occluded structures, is highly critical
in the context of a number of different diagnostic and
prognostic applications.[2,3] In the context of prostate
cancer (CaP) and breast cancer (BC), digitized

hematoxylin and eosin (H and E)-stained tissue samples
are often characterized by the presence of densely packed
nuclei, in which overlap between two or more nuclei has
proven to be a significant challenge to computerized
segmentation schemes.[1-3] Shape-based active contours
(level sets) have emerged as one of the natural solutions
to overlap resolution. Recently, Ali et al.[3] proposed
a shape-based hybrid active contour model that can
segment all of the overlapping and nonoverlapping nuclei

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

simultaneously in an image.

While level sets have found wide applicability for medical
image segmentation, their clinical utility has been limited
by (1) the amount of time needed for computation and
(2) a number of free parameters that must be fine tuned
for each specific application. These two limitations are
intertwined, whereby users find it impractical to explore
the entire space of possible parameter settings when
an example result from a point in that space requires
minutes or hours to generate. We have previously
addressed the latter issue by automating the parameter
selection associated with initialization.[3]

Higher level segmentation approaches, such as
deformable models, have been ported to GPU
architectures by considering implicit deformable models
such as image lattices (e.g., a 2D curve is implicitly
represented as the iso-value of a field encoded as a 2D
image). Level-set approaches have become particularly
popular in the GPU-segmentation community as
significant speedups and interactive rendering have
become available.[4,5] Geodesic active contours, which
are a combination of traditional active contours (snakes)
and level-set evolution, were efficiently implemented
in GPU by using the total variational formulation and
used primarily to separate foreground and background
structures in 2D images.[6] These implementations
were, however, designed for the evolution of a single
level set.

In this paper, we present a novel, computationally efficient
framework for segmentation of histologic structures (e.g.,
nuclei and glands) in very large histopathology images.
The framework presented alleviates the computational
overhead of level set segmentation by marrying a very fast
solver with an intuitive speed function. We leverage a
powerful graphical processing unit (GPU) (via commodity
graphics hardware) to provide a computationally optimized
segmentation framework that allows for simultaneous
calculation of multiple, interacting level sets. We
demonstrate an application of our parallelized framework
using our previously published synergistic active contour
models (using multiple level sets)[3,7] for the problem of
segmenting nuclear and glandular structures on digitized
histopathology. We have previously shown that this
scheme[3,7] allows for accurately detecting and segmenting
overlapping lymphocytes and nuclei in H and E-stained
prostate and breast needle core biopsy images. Following
are the main contributions of this work:
• A GPU accelerated multiple level set-based hybrid

active contour framework, implemented using
the NVIDIA CUDA libraries, for the task of rapid
segmentation of nuclei in H and E images.

• Leveraging a parallelizable framework to
accommodate multiple level sets operating in parallel
with initialization via shape prior in conjunction with

boundary and region-based energy terms.
• Exploit parallelism and efficient memory

management in the GPU to achieve massive speedup
compared to using a CPU.

The rest of the paper is structured as follows. Overview of
GPU structure and programming paradigms are presented
in section 2. Section 3 describes our segmentation
algorithm. In Section 4 we describe our GPU-based
framework and its implementation on graphics hardware.
We present our analysis of the results in section 5. In
section 6 we present our concluding remarks and discuss
future improvements of our GPU-based implementation.

OVERVIEW OF GPGPU

General purpose computation on graphics processing
units (GPGPU) is the technique of using graphics
hardware to compute applications typically handled by
the central processing unit (CPU). Graphics cards over
the past two decades have been required to become highly
efficient at rendering increasingly complex 3D scenes at
high frame rates. This has forced their architecture to
be massively parallel in order to compute graphics faster
compared to general purpose CPUs.[4] GPUs are not
optimized for general purpose programs, and thus lack
the complex instruction sets and branch control of the
modern CPU. Although current high-performance CPUs
feature multiple cores for limited parallel processing,
GPUs are arguably a more attractive option in terms of
lower price and power usage.

Recently, languages have been developed that allow
the programmer to implement algorithms without any
knowledge of graphics application programming interface
(APIs) or architectures The GPGPU computations
performed in this work utilize the NVIDIA CUDA
(Compute Unified Device Architecture) technology.[8]
The C language model has at its core three key
abstractions:[9] a hierarchy of thread groups (to allow
for transparent scalability), shared memories (allowing
access to low-latency cached memory), and barrier
synchronization (to prevent race conditions). This breaks
the task of parallelization into three subproblems, which
allows for language expressivity when threads cooperate,
and scalability when extended to multiple processor
cores. CUDA allows a programmer to write kernels that
when invoked execute thousands of lightweight identical
threads in parallel. CUDA arranges these threads into a
hierarchy of blocks and grids, as can be seen in Figure 1,
allowing for runtime transparent scaling of code within
GPU. The threads are identified by their location within
the grid and block, making CUDA perfectly suited for
tasks such as level set-based image segmentations where
each thread is easily assigned to an individual pixel or
voxel.[10]

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

NUMERICAL MODELING OF THE SEGMEN-
TATION SCHEME

We present a slightly modified version of the previously
published method by Ali et al.[7] for the problem of
segmenting nuclei and lymphocytes in prostate and breast
cancer images. Our previous model comprised a hybrid
active contour (boundary and region based) integrated with
the shape prior. In this work, we eliminate the boundary-
based term in order to simplify the numerical modeling
of the variational formulation of the hybrid active contour
formulation, relying instead on the region and shape prior
terms within a multiple level set formulation. Figure 2
illustrates the individual modules comprising the scheme.

Integrated Shape-based Active Contour
We combine shape force and region force (Chan-Vese)[11]
into a variational formulation:

F=βs ∫Ω (φ(x)–ψ(x))2dx+ βr ∫Ω θin Hφdx+∫Ω θoutH-φdx
(1){ {

Shape force Region force

where βs, βr > 0 are constants that balance contributions
of the shape prior and the region term, {φ} is a level
set function, and ψ is the shape prior. This formulation
effectively integrates the shape prior with regional
intensity information.

The level set formulation in Equation (1) is limited in
that it allows for segmentation of only a single object
at a time. To allow for simultaneous segmentation of
multiple objects, we allow each pixel to be associated with
multiple objects or the background instead of partitioning
the image domain into mutually exclusive regions.[7]
Specifically, we try to find a set of characteristic functions

xi such that we associate one level set per object in such
a way that objects are allowed to overlap with each other
within the image. Then simultaneous segmentation of two
objects Oa, Ob with respect to ψ is solved by minimizing
the following modified version of Equation (1):

1 2 1 2

2
2

1 2
1

(, , ,)

()

in out r in x x out x x

N

x x i i
i

F u u H dx H dx

H dx dx

b

w f y

Ú ÚW W

=

ÙW W
=

F Y = Q + Q -

+ + -

ò ò

åò ò
(2)

with 1 2 1 2 1 2 1v 2 1 2, ,x x x xH H H H H H H Hn y y y y y y= + - = , where Φ =(φ1,φ2)
and Ψ=(ψ1,ψ2). The fourth term penalizes the overlapping
area between the two segmenting regions, and prevents
the two evolving level set functions from becoming
identical.

Discretized Iterative Scheme
Minimizing Equation (2) iteratively with respect to
dynamic variables yields the associated Euler-Lagrange
equations, parameterizing the descent direction by an

Figure 1: GPU architecture; (a) CUDA hardware interface, (b) CUDA software interface

Figure 2: Flow chart showing the various modules comprising our
segmentation scheme. First panel illustrates shape prior and region-
based term. Second panel illustrates the synergy of both the terms

ba b

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

artificial time t > 0 as follows:

2 2((() ())(1)) 2 ()
| |

2 ()()

2 ()()

2 ()()

, {1,2},

i
i in out j i i

i
i i i i

i
i i i T i

i
i i i s i

f u f u H
t

A dx
t
T

A dx
t
s i

A dx
t s

i j i j

f
f fdf m u f y

f
f u f y y

u f y y

yu f y y

QW

W

W

é ùæ ö¶ Ñ
= Ñ× - - + - - - -ê úç ÷¶ Ñè øë û

¶
= - Ñ ×Ñ

¶
¶

= - Ñ ×Ñ
¶
¶

= - - +Ñ ×Ñ
¶
Î ¹

ò

ò

ò

(3)

where ψ1 is defined in Ref.[3]. Similar to the Chan-Vese
model, we update uin and uout for each iteration as follows:

1 2 1 2

1 2 1 2

(1)
,

(1) .
x x x x

in out
x x x x

fH dx f H dx
u u

H dx H dx
Ú ÚW W

Ú ÚW W

-
= =

-
ò ò
ò ò

(4)

The above model can be adapted for N objects (proof
shown in Ref.[3]). The solution to the equations in
Equation (4) first requires discretization on a regular two-
dimensional M-by-N grid. We let h denote the spacing
between the cells and (x1,y1)=(ih,jh) be the grid points
with 0 ≤ i ≥M and 0 ≤ j ≤ N. Discretizing uin and uout is
straightforward, as long as we fix a regularized Heaviside
function. For our discretization we have chosen

1, if
() 0 if

1 1
sin if | |

2 2 2

z
H z z

z z
z

p
p

ì ü
ï ï>Îï ïï ï= < -Îí ý
ï ïì üï ï+ + £Îí ýÎ Îï ïî þî þ

(5)

To discretize Q

Q

Ñ
Ñ×

Ñ
 (i.e., divergence of the normalized

gradient of φ), we let φx, φy denote partial derivatives of φ
and similarly let φxx, φyy and φxy denote the second-order
partial derivatives. Thus, we obtain

2 2

3/2

2

| | ()
xx y xy x y yy x

x y

f f f f f f f
f f

Q

Q

- +Ñ
Ñ× =

Ñ +
(6)

which we discretize with simple finite central differences:

1 1

1 1

1 1
2

1 1
2

1 1 1 1 1 1 1 12

(,) (,)
(,)

2
(,) (,)

(,)
2

(,) (,) 2(,)
(,)

(,) (,) / 2 2(,)
(,)

1
(,) ((,) (,) (,) (,))

4

i j i j
x

i j i j
y

i j i j i j
xx

i j i j i j
yy

xy i j i j i j i j

x x x x
i j

h
x x x x

i j
h

x x x x x x
i j

h
x x x x x x

i j
h

i j x x x x x x x x
h

f

f

f

f

f

- +

- +

- +

- +

+ + - + + - - -

-
=

-
=

- +
=

- +
=

= + + + .

(7)

Sequential Algorithm and Implementation
The iterative evolution of the level set φ is described in
algorithm 1 using the individual components defined in
section 3.2. We start by initializing φ with some initial
contour (an ellipse) and set n=0. We then compute uin
(φn) and uout (φn) from Equation (4). For computing
curvature forces, n+,n–, we direct the reader to the
formulation.[11] Next we compute Equation (3) with the
given discretization above to obtain 1n n

t
t ff f+ ¶
¶

= + × with
explicit forward Euler. Finally, we update n=n+1. Note
that we initialize the distance function every RIth (user
defined parameter) iteration.

GPU IMPLEMENTATION OF INTEGRATED
SHAPE-BASED ACTIVE CONTOUR SCHEME

The GPU-based implementation of the segmentation
scheme (described in section 3) is performed with the
NVIDIA CUDA toolkit.

Parallel Algorithm and Implementation
The parallel implementation of the segmentation scheme
follows the structure shown in algorithm 2. Input image,
I, and an initial contour φ (an ellipse) are both discretized
and generated on equally sized 2D grids on CPU. We
copy both the image and φ onto the GPU. From this
point on, the GPU has everything it needs and requires
no further copying of data, thus effectively optimizing
memory transfers between the CPU and GPU.

Kernel Threads Setup
In CUDA, it is assumed that both the host (CPU) and
device maintain their own DRAM.[8] Host memory is
allocated using malloc and device memory is allocated
using cudaMalloc. Since memory bandwidth between the
host memory and device memory is low (it is much lower
than the bandwidth between the device and the device

Algorithm 1: Sequential level set segmentation
Input: Feature image I, Initial Mask m, threshold T, Range ∈
Iterations n, Reinitialize Every RI
Output: Nuclear contours (boundaries)
Initilize φ0 to Signed Euclidean Distance Transform (SEDT) from
mask m
Calculate Data Speed Term D(I)=∈− I-T For all the n Iterations do

Calculate First Order Derivatives φx
, φy

Calculate Second Order Derivatives φxx
, φyy φx

, φxy

Calculate Curvature Terms n+, n–

Calculate Gradient ∇φ

Calculate Speed Term F=αD(x)+ (1-α) Q

Q

Ñ
Ñ×

Ñ

Update Level Set Function φ(t+ ∆t)= (t)+∆tF|∇φ|
if Iterations % RI= = 0 then

| Reinitialize φ to SEDT
end

end

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

memory), it is recommended to keep the number of
transfers to a minimum. In order to minimize the latency
of accessing the shared memory it is recommended
to make the block size a multiple of 16 and use the
cudaMallocPitch routine to allocate memory with padding
if the X dimension of the image is not a multiple of 16.
Hence, most CUDA programs follow a standard structure
of (1) initialization, (2) host to device data transfer, (3)
performing computations, and (4) finally memory transfer
of computed results from device to host.

CUDA threads are assigned a unique thread ID that
identifies its location within the thread block and grid.
This provides a natural way to invoke computation across
the image and level set domain, by using the thread
IDs for addressing. This is best explained with Table 1.
Assume that our image has dimensions 4 × 4 and the
block size is 2 × 2. Invoking the kernel with a grid size of
2 × 2 blocks results in the 16 threads shown in Table 1,
in the form (threadIdx.y,threadIdx.x). These threads are
grouped into blocks of four.

As each thread has access to its ownthreadIdx and
blockIdx, global indices (i, j) can be determined using
the equations,

int i = blockIdx.x * blockDim.x + threadIdx.x; (8)int j = blockIdx.y * blockDim.y + threadIdx.y;

where blockDim.x and blockDim.y represent the
dimensions of the block (which in this case are both
equal to 2). Of course, much larger block sizes are used,
keeping the block X dimension (BX) a multiple of 16
for maximum speed. The effect of different block sizes
on performance is analyzed in section 5.5. Once these
indices are set up, it is relatively straightforward to
transfer the level set update code to a CUDA kernel.

2D Shared Memory Optimization
Since we use finite differences to compute the curvature
force in a grid cell, we need to access the value of φ
from the neighboring cells (blocks). Unfortunately the
GPU is not optimized for this sort of memory access

pattern, and memory accesses can suffer a significant
performance penalty.[8] In order to keep the number of
costly accesses to device memory at a minimum, effective
use of the on-chip shared memory is essential. This along
with maximizing parallel execution and optimization
of instruction usage form the three main performance
optimization strategies for CUDA.[8]

Integrating use of the shared memory into the CUDA
kernel requires partitioning the level set domain into tiles.
For first-order finite difference problems such as ours,
each tile must also contain values for neighbor nodes
(often known as halo nodes) for i+1 and j+1 elements,
which would be stored in separate tiles, so these must
also be read into shared memory. As the size of the
shared memory is only 16 KB, the sizes of the tiles and
corresponding halo are limited. Micikevicius[12] outlined
a framework for handling such a process. While such
a process may serve as a good model for a multi-GPU
implementation, the kernel will need to be modified as
it is optimized for higher order stencils (without cross-
derivative terms). Instead, tiling code was adapted
from Giles’ Jacobi iteration for Laplace discretization
algorithm[13] which supports cross-derivatives well. The
shared memory management technique in this finite
difference algorithm accelerated the global memory
implementation by over an order of magnitude.

For a block (and tile) size of BX×BY there are
2×(BX+BY+2) halo elements, as can be seen in Figure 3
where darker elements represent the thread block (the
active tile) and the lighter elements represent the halo. It
is in this manner that the domain of the computation is
partitioned and results in overlapping of halo nodes.

Each thread loads φn values from global memory to the
active tile stored in shared memory. However, depending on
the location of the thread within the thread block it may also
load a single halo node into the shared memory. Therefore
in order to load all halo nodes, this technique assumes that
there are at least as many interior nodes as there are halo
nodes. Before data can be loaded into the halos, the thread
ID needs to be mapped to the location of a halo node both
within the halo and within the global indices.

The first 2×(BX+BY+2) threads are assigned to load
values into the halo in this manner. This is best visualized
with the example of a 6 × 6 thread block as shown in
Figure 3b. This method of loading elements has been
chosen in order to maximize coalescence, the merging

Algorithm 2: Parallel Implementation
Initialize φ0

i,j, D on host memory
Allocate memory for φn, φn+1, D on device
Copy φ0 , D from host device for all the n Iterations do
 Execute Level Set Update CUDA Kernel φn+1

i,j =φn
i,j +∆tF|∇φn

i,j|
Swap pointers of φn

i,j, φn+1
i,j

if Iterations % RITS = = 0 then

Copy φ from device to host
Reinitialize φ to Signed Euclidean Distance Transform
Copy φ from host to device

end
end
Copy φ from device to host

Table 1: Sample arrangement of 16 threads
grouped into blocks of 4
(0,0) (0,1) (0,1) (0,1)
(1,0) (1,1) (1,0) (1,1)
(0,0) (0,1) (0,0) (0,1)
(1,0) (1,1) (1,0) (1,1)

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

of adjacent blocks of memory to fill gaps caused by
deallocated memory. Not only are the interior tile nodes
loaded coalesced, but as can be seen above, the first 12
elements of the thread block load the y halos (above and
below the interior tile excluding corners) in a coalesced
manner. The side halos (x halos) loads are noncoalesced.
When writing back results to global memory, as only the
interior nodes have updated values they are written to
global memory coalesced.

Calculation of Forces
To compute uin and uout, we start by computing the value
of uin and uout in each grid cell, storing it in a temporary
array. Since these are scalars values, we use reduction
operation,1 cutting the time spent to O (log n) time
assuming we have an infinite number of threads. In a
reduction, a binary function is performed on all elements
in an array; this can be done in a tree-like fashion, where
the given operation can be performed concurrently on
different parts of the array and allows for combining the
results at the end. NVIDIA has created an STL-like C++
library called thrust that, among other things, can do
reductions efficiently on the GPU.

Hereafter, we use the values for u1 and u2 computed above
to compute the image forces. By image forces, we mean
the terms λ1(f-u1)

2+λ2(f-u2)
2 and the Fshape from Equations

(3) and (4). This is straightforward and coalesced (reader is
referred to CUDA guide).[9] Lastly, we need to update φ for
the next iteration, which is straightforward since we have
the two grids containing the curvature force and the image
forces. The final step is to copy the new φ back to the CPU.

EXPERIMENTAL RESULTS AND DISCUS-
SION

Model Parameters, Implementation, and
Initialization
In this paper, for the shape model, we generate a
training set of 30 ellipses (nuclei and lymphocytes being
1Reduction operation: Variable has a local copy in each thread,
but the values of the local copies will be summarized (reduced)
into a global shared variable.

elliptical in shape) by changing the size of a principal
axis with a Gaussian probability function. The manner
of choosing the weighting parameters from Equations
(1) and (4) is as follows: λ1=1, λ2=2, and µ=0.2
determine the size of the neighborhood where the gray
value information is averaged by means of diffusion, βr
and βs are chosen such that the shape prior is attracted
toward the region to be segmented. Level sets are
manually initialized and the model assumes that the
level sets are strategically placed in the vicinity of the
objects. Some features such as the Courant--Friedrichs-
Lewy (CFL) condition could not be implemented in
this parallel version without slowing down computation
time significantly.[6] This is because such a condition
requires the determination of the largest element of ∇φ
which is computed roughly half way through the update
procedure. Therefore integrating this condition would
require transferring ∇φ and curvature terms back to host
memory to determine max {F|∇φ|}, or perhaps more
efficiently calling a CUDA kernel to determine the
largest element. The cost of this added complexity and
slowdown outweighed the benefits, and therefore ∇t was
chosen to be a fixed parameter.

All hardware testing was done on a single PC with an
Intel Core 2 Duo T8100 Processor with a clock speed of
2.1 GHz and 4 GB of RAM. The graphics hardware used
was the NVIDIA GeForce 8600M GT, with CUDA 2.2
software installed. Timing code used was from the cutil
library provided in the CUDA toolkit.

Data Description
Evaluation is done on two different histopathology
datasets: prostate cancer and breast cancer cohorts
comprising 14 and 52 images respectively [Table 2]. A
total of 70 cancer nuclei from 14 images for prostate and
504 lymphocytes from 52 images for breast cancer were
manually delineated by an expert pathologist (serving as
the ground truth annotation for quantitative evaluation).
For both datasets the objective was to detect, segment
the individual nuclei and lymphocytes, and where
appropriate, resolve the overlap between intersecting
objects. To evaluate the speedup, various patch sizes were
created from each of the data set [Table 3].

Evaluation of Segmentation and Detection
Accuracy
Results shown in Figure 4 for nuclei segmentation aim
to demonstrate the strength of our model in terms of
detection, segmentation, and overlap resolution accuracy.
Table 4 shows the segmentation accuracy (individual
lymphocytes and nuclei) compared to those of Chan-
Vese[11] (MCV) and Ali et al.[3] (MAli). Note that GPU-based
implementation (MGPU) underperforms in comparison
to MAli since MGPU lacks the hybrid boundary based term
present in MAli. Figure 5 showcases qualitative results of
nuclear segmentation achieved by the three models.

Figure 3: (a) 2D shared memory arrangement; (b) tile and halo
showing a block mapping of thread IDs to halo nodes

a b

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

We compute SN, PPV, OR (overlap detection ratio) for
each image, and then determine the average and standard
deviation across the 62 images. Note that overlap
detection ratio #

#
overlapresolved

OR
Total of overlaps

= is defined as the fraction of
total overlaps successfully resolved by the segmentation
scheme. These statistics are reported in Table 4 and they

Table 2: Description of the different data sets
considered in this study

Name Number

Dataset 1 Hematoxylin and Eosin (H and E) stained
prostate needle core biopsy images

14

Dataset 2 Hematoxylin and Eosin (H and E) stained
breast biopsy images

52

Table 3: Description of patch sizes from two data
sets for which MGPU and speedup was evaluated

Dataset 1 Dataset 2

Patch size No. of images No. of images
512 × 512 4 15
256 × 256 5 17
128 × 128 5 20

Figure 4: Segmentation results from our model applied to histological image patches of sizes (a), (b) 256x256, (c) 128 x 128 pixels. Note
that our model is able to segment intersecting, overlapping nuclei

Figure 5: Segmentation results comparing (a) traditional Chan‐Vese model[11], (b) Ali et al.,[3] our GPU-accelerated model

a b c

a b c

reflect the efficacy of MGPU in segmenting nuclei and
lymphocytes in CaP and BC images.

Evaluation of Speedup
We present results of various speedups achieved on data
set containing image sizes 256 × 256 and 512 × 512. First
we compare the average time taken for 2000 iterations in
MATLAB, C, and CUDA on histopathology data of good
contrast and dimensions 256 × 256 (a multiple of 16
implying no memory padding is required in CUDA). The
results shown in Table 5 reflect the speedup achieved by
our GPU-accelerated method.

The average runtime speedup attained from sequential
code in C to CUDA-optimized code is approximately
13×. The block size used for 2D CUDA compute was 32
× 8. In another experiment, we selected a set of images
with relatively poor contrast and dimensions 512 × 512.
This makes the image both a computationally demanding
segmentation (as it has relatively large dimensions) and
challenging in terms of accuracy. The average performance
speedup attained on this larger image set was 19×, greater
than the speedup attained for the smaller 256 × 256 images.
This motivates exploration into the effect of different image
sizes on CUDA speedup, discussed in the next section.

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

Evaluation of the Effects of Image Size on Speedup
Figure 6 shows the effect of multiple patch sizes on
computational time for up to 1000 iterations on the
optimized CUDA algorithm. It can be seen from Figure
6 that the speedup for smaller sized image patches is
relatively less compared to the speedup obtained for images
with larger sizes. The sequential algorithm performs almost
half as slowly for volume sizes larger than 642. This is most
likely due to the fast on board CPU cache being used for
smaller volume sizes (<642) volume sizes larger cannot
fit on the CPU cache and hence are stored on the slower
DRAM. Conversely, the CUDA code performs relatively
poorly for smaller image sizes and much more quickly
for larger images. This is essentially due to low numbers
of processors being used for such small images and many
more being used for larger images. Therefore the speedup
line essentially shows that the algorithm follows Amdahl’s
and Gustafson’s laws of parallel computation.[4]

Image sizes much larger than 2562 could not be tested
as the maximum amount of global memory available for
the 8600M GT is 256 MB. For example, an 3202 image
would take up 3202×size of (float) and there are three
of these arrays (for the image, previous level set iteration
and current level set iteration), which would take up 295
MB of graphics memory. It is however expected, for these
even larger volumes, that the speedup of the algorithm
will remain at the observed plateau [Figure 6].

CONCLUSIONS

We presented a novel GPU accelerated segmentation
scheme that can detect and segment multiple
overlapping objects in an image. Our implementation
was able to significantly reduce the computational time
required for the popular segmentation models, including

an integrated active contour scheme with shape priors,
inspired by Ali et al.[3] In future work, we intend to
extend the framework to incorporate automated model
initialization and to evaluate the model on larger image
sizes. To further improve the segmentation results, we
plan to incorporate a hybrid boundary and region based
model with Courant-Friedrichs-Lewy (CFL) condition
without compromising the speedup.

Computationally inexpensive segmentation schemes that
can accurately segment structures on digitized histology
images, especially the ability to deal with overlapping
and occluded structures, are highly critical in the context
of a number of different diagnostic and prognostic
applications. We applied our parallelized algorithm for
segmentation and detection of lymphocytes and nuclei in
breast and prostate histopathology imagery. We evaluated
our algorithm against two popular platforms and with
varying image sizes. Our results show that our GPU-
accelerated framework was able to segment nuclei and
lymphocytes with a speedup of 19×.

ACKNOWLEDGMENTS

Thanks to funding agencies: National Cancer Institute
(R01CA136535-01, R01CA140772 01, R03CA143991-01), and The
Cancer Institute of New Jersey. We would also like to thank Drs.
Michael Feldman, John Tomaszewski, Natalie Shih, and Shridar
Ganesan for providing the digitized data used in this study.

REFERENCES

1. Madabhushi A. Digital pathology image analysis: Opportunities and challenges
(editorial). Imag Med 2009;1:7-10.

2. Basavanhally A, Ganesan S, Agner S, Monaco J, Feldman M, Tomaszewski J,
et al. “Computerized Image-Based Detection and Grading of Lymphocytic
Infiltration in HER2+ Breast Cancer Histopathology,” IEEE Trans Biomed
Eng 2010;57:642-53.

3. Ali S, Madabhushi A. “Active Contour For Overlap Resolution Using

Table 5: Comparison of average runtimes
for our segmentation algorithm in different
programming environments. All comparisons
were performed for image patches of size on
256 × 256 and 512 × 512

256 × 256 512 × 512

Algorithm Version Time (s) Time (s)
MATLAB 2615.95 4415
C 960.44 1320.5
CUDA (MGPU) 80.73 69.4

Table 4: Quantitative evaluation of segmentation
results between models over 66 images

SN PPV OR

MCV 0.23 0.57 0.09
MAli 0.82 0.67 0.91
MGPU 0.73 0.64 0.87

Figure 6: Number of elements computed per second for different
volume sizes

J Pathol Inform 2011, 2:13 http://www.jpathinformatics.org/content/2/1/13

Watershed Based Initialization (ACOReW): Applications To Histopathology”.
IEEE Int Symp Biomed Imag: From Nano to Macro 2011. p. 614-7.

4. Kilgariff E, Fernando R. GPU Gems 2, ch. The GeForce 6 Series GPU
Architecture. Boston: Addison Wesley; 2005. p. 471491.

5. Ruiz A, Kong J, Ujaldon M, Boyer KL, Saltz JH, Gurcan MN. ”Pathological image
segmentation for neuroblastoma using the GPU”. Biomedical Imaging: From
Nano to Macro, IEEE International Symposium on, 2008. p. 296-9.

6. Lefohn AE, Whitaker R. ”GPU based, three-dimensional level set solver
with curvature flow”, technical report uucs-02-017, School of Computing,
University of Utah, 2002.

7. Ali S, Madabhushi A. “Segmenting multiple overlapping objects via an integrated
region and boundary based active contour incorporating shape priors:
Applications to histopathology”, SPIE Med Imag 79622W (2011).

8. NVIDIA CUDA Programming Guide ver 2.2.1. Available from: http://www.
nvidia.com/object/cuda-develop.html. [Accessed May 2011].

9. Schmid J, Guitin I, Jos, Gobbetti E, Magnenat-Thalmann N. “A GPU framework
for parallel segmentation of volumetric images using discrete deformable
model”. Vis Comput 2011;27:85-95.

10. Tejada E, Ertl T. “Large steps in GPU-based deformable bodies simulation.
Simulat Model Pract Theory 2005;13:703715.

11. Chan TF, Vese LA. “Active contours without edges”, IEEE Trans. on Image
Process 2001;10:266-77.

12. Micikevicius P. “3D Fnite difference computation on GPUs using CUDA”, In
GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing on
Graph Processing Units, ACM. New York, NY, USA, (2009. p. 79-84.

13. Giles M. Jacobi iteration for a laplace discretisation on a 3rd structured grid
2008. Available at people.maths.ox.ac.uk/gilesm/cuda/prac3/laplace3d.pdf.

