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ABSTRACT
Genome-wide association studies (GWAS) using high-density genotyping platforms offer an unbiased strategy to identify new candidate

genes for osteoporosis. It is imperative to be able to clearly distinguish signal from noise by focusing on the best phenotype in a genetic

study. We performed GWAS of multiple phenotypes associated with fractures [bonemineral density (BMD), bone quantitative ultrasound

(QUS), bone geometry, and muscle mass] with approximately 433,000 single-nucleotide polymorphisms (SNPs) and created a database

of resulting associations. We performed analysis of GWAS data from 23 phenotypes by a novel modification of a block clustering

algorithm followed by gene-set enrichment analysis. A data matrix of standardized regression coefficients was partitioned along both

axes—SNPs and phenotypes. Each partition represents a distinct cluster of SNPs that have similar effects over a particular set of

phenotypes. Application of this method to our data shows several SNP-phenotype connections. We found a strong cluster of association

coefficients of high magnitude for 10 traits (BMD at several skeletal sites, ultrasound measures, cross-sectional bone area, and section

modulus of femoral neck and shaft). These clustered traits were highly genetically correlated. Gene-set enrichment analyses indicated

the augmentation of genes that cluster with the 10 osteoporosis-related traits in pathways such as aldosterone signaling in epithelial

cells, role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis, and Parkinson signaling. In addition to several known

candidate genes, we also identified PRKCH and SCNN1B as potential candidate genes for multiple bone traits. In conclusion, our mining of

GWAS results revealed the similarity of association results between bone strength phenotypes that may be attributed to pleiotropic

effects of genes. This knowledge may prove helpful in identifying novel genes and pathways that underlie several correlated

phenotypes, as well as in deciphering genetic and phenotypic modularity underlying osteoporosis risk. � 2011 American Society

for Bone and Mineral Research.
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Introduction

Genome-wide association studies (GWAS) using high-density

genotyping platforms offer an unbiased strategy to identify

new candidate genes for different traits and diseases. A number

of candidate genes have been identified for traits associated

with fracture, such as bone mineral density (BMD),(1–3) bone

geometry,(4,5) and lean mass.(6) Although this is a powerful

approach for disease gene discovery, many GWAS focus only on

identification of candidate genes and provide no clues on gene
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networks that may underlie the trait variations. Genes do not

work alone, especially in the genetics of complex diseases. More

often, they work in an interactive network synergistically and

coregulate the expression of proteins that are implicated in a

trait variation. In the study of disease networks or interactomes, it

has been suggested that disease genes usually are located

centrally (‘‘hub’’) and are highly connected with other genes in

the interactome such that perturbations of candidate genes in

the same network are more likely to cause either the same or

similar disease phenotypes.(7,8) Given that many traits are
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correlated genetically, it is possible that common gene

network(s) underlie multiple correlated trait variations. In fact,

using a plethora of genetic information from high-throughput

technologies such as mRNA microarray and GWAS, it is now

feasible to ‘‘reverse phenotype’’ (whereby associations with

genetic markers are used to define phenotype groupings)(9,10)

and classify multiple traits based on the similarity of their genetic

organization. There is a need to develop innovative computa-

tional and informatics tools and high-throughput discovery

technologies for both gene network and phenomic research(11)

given the large numbers of multiple correlated traits that are

common in cohorts performing GWAS.

Age-related osteoporotic fractures are common in the United

States and represent a major public health threat that is likely to

increase in importance as the population ages.(12) Although

osteoporotic fracture per se is a heritable trait, the fracture

phenotype presents a challenge for a genetic study: Nontrau-

matic fractures typically do not occur until later in life. Therefore,

quantitative risk factors for fracture [such as BMD, quantitative

ultrasound (QUS), and bone geometry] are used traditionally,(13–

19) especially because these surrogate traits may be measured

consistently at any age. Combinations of BMD assessments in

more than one region,(20) as well as composite use of BMD with

QUS(17) or BMD with hip geometry,(21) have been suggested to

improve risk assessment in clinical practice. In addition, it seems

worthwhile to use information on muscle mass and strength

together with bone mineralization and its spatial arrangement to

assess the risk of fragility because loads that are applied to the

skeleton are attributable to both overall body weight andmuscle

contractions. These musculoskeletal anatomic structures are a

conglomeration of multiple traits; some of them are phenoty-

pically and genetically correlated. Therefore, it is important to

understand how the relationship among traits is regulated(22) so

as to gain more insights into complex disease etiologies.

In this study we present a biclustering approach for identifying

common genetic architectures of different musculoskeletal traits

using GWAS data. Statistical model-based clustering is useful in

many applications, including gene expression analysis, but one

of its drawbacks is the necessity of allocating all samples (or

genes) to at least one cluster, which, owing to noise in the data,

may lead to artificial clusters that have no real biologic meaning.

One heuristic method that has been proposed to overcome

this problem is tight clustering,(23) in which only samples (or

variables) that are similar enough, according to some predefined

criterion, are clustered together, whereas the rest are left

ungrouped as outliers. However, this method works only in one

dimension, considering either samples or variables, and not if

both directions are to be considered simultaneously, as we wish

to do here. On the other hand, biclustering or block clustering(24–

28) is an approach to simultaneously cluster row and column

variables, deriving local subgroups within a data matrix. Many

biclustering methods also may be adapted so that not all

samples and variables need to be grouped (only ones that are

‘‘similar enough’’ according to some predefined measure). These

approaches have been used previously in discovering local

patterns in gene expression data.(25,26) Based on a Bayesian

statistical model framework proposed by Gu and Liu,(28) but with

modifications to increase the robustness and efficiency of the
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model for dealing with the more massive GWAS data, we

developed a fast and accurate algorithm to identify block

clusters of single-nucleotide polymorphisms (SNP) and traits in

data arising from GWAS.(29)

We applied this method to results from bone and muscle traits

from the Framingham Osteoporosis Study. We studied GWAS

data on 23 traits and approximately 433,000 SNPs by a modifi-

cation of our block-clustering algorithm.(29) The primary aim of

this study was to identify homogeneous genetic architectures

among different musculoskeletal traits and to classify these traits

based on a reverse-phenotyping approach.(9) We hypothesized

that correlated musculoskeletal phenotypes would cluster

together based on their SNP associations (thus representing

‘‘phenotypic moduli’’(9)) and that the shared SNPs would indicate

a gene network that contributes to the development and/or

maintenance of the musculoskeletal traits (thus reflecting a

‘‘genetic modularity’’(30)).

Methods

Sample

The sample used for our analyses was derived from two cohorts

of the population-based Framingham Heart Study. Details of

the Framingham Osteoporosis Study (FOS), an ancillary study

of the Framingham Heart Study, have been reported.(31,32) In

brief, the FOS original and the offspring cohorts represent

members of two-generational (mostly nuclear) families recruited

at different times. Descriptions of the family samples with

musculoskeletal phenotypes available for analyses in the FOS are

provided elsewhere,(32,33) as well as being available publicly

through the dbGaP at http://view.ncbi.nlm.nih.gov/dbgap. For

this study, a sample of 2211 women and 1633 men who had

phenotypic measurements and who consented to genetic

analyses was available. Details on the FOS sample also are

available elsewhere.(34,35) The study was approved by the

institutional review boards for human subjects research of

Boston University and Hebrew SeniorLife.

Musculoskeletal phenotypes

The following measures were available in members of both

cohorts of the FOS:

Bone densitometry

The participants underwent dual-energy X-ray absorptiometry

(DXA) with a Lunar DPX-L device (Lunar Corp., Madison, WI, USA)

between 1996 and 2001 to assess BMD at the lumbar spine (LS),

femoral neck (FN), trochanter (TR), and whole body (TOT). The

coefficients of variation (CVs) in normal subjects for the DPX-L

have been reported previously as 0.9% for LS, 1.7% for FN, and

2.5% for TR.(31)

Quantitative ultrasound (QUS)

QUS of the right heel was performed to obtain calcaneal

broadband ultrasound attenuation (BUA) and speed of sound

(SOS) with a Sahara bone sonometer (Hologic, Inc., Waltham, MA,

USA) between 1996 and 2001. Based on duplicate same-day
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measurements on 29 subjects, CVs for BUA and SOS were 5.3%

and 0.4%, respectively.(36)

Hip geometry

DXA scans were measured with an interactive computer

program(37) that derived a number of proximal femoral structural

variables, including gross anatomic [femoral neck length (FNL,

cm) and neck-shaft angle (NSA, degrees)] and cross-sectional

indices (outer, or subperiosteal, width, cm), cross-sectional bone

area (CSA, cm2), and section modulus (Z, cm3) at the two femoral

regions (narrow neck, NN, and femoral shaft, S). CVs were

reported previously to range from 3.3% (NN outer diameter) to

9.1% (FNL).(37)

Body composition

We obtained whole-body DXA scans from the study participants

with the same Lunar DPX-L machine used for BMD and at

the same visit. The scans were collected at medium speed for

all subjects regardless of weight or body thickness. Regions of

interest were analyzed using the extended analysis of the Lunar

software for body composition. Lean mass was derived by

subtracting regional bonemineral content from the fat-freemass

of the whole body and lower extremities.

Metacarpal measurements by radiogrammetry

In the Framingham original cohort, right-hand radiographs were

obtained in 1967–1969, and the subsample of the offspring

cohort was radiographed using the same techniques in 1993–

1995(38,39) as part of the osteoporosis study. The digitized

radiographic images of the second, third, and fourth metacarpals

were measured semiautomatically (as described in detail

elsewhere(40)). CVs, calculated as root-mean-square average,(41)

ranged from 1.0% (bone length) to 7.0% (midshaft endosteal

diameter). Metacarpal length and midshaft width were mea-

sured directly, whereas cortical cross-sectional indices, such as

metacarpal cortical thickness (MCT, mm), cortical index (MCI, %),

and sectionmodulus (MZ, mm3), were calculated in themiddle of

bone diaphysis(42–44); values of metacarpals 2, 3, and 4 were

averaged.

Other measurements (covariates)

Information on age, sex, height, body mass index (BMI), and for

women, menopausal status and estrogen use were obtained at

the time of bone measurement. Details for these measurements

are available elsewhere.(31,45) Women were assigned to one of

two estrogenic status groups: (1) premenopausal or postmeno-

pausal on estrogen (estrogen replete) or (2) postmenopausal not

on estrogen (estrogen depleted).

Genotyping, quality control, and population structure

Genotyping was conducted through the FHS SHARe (SNP Health

Association Resource) project initiated in 2007 on all Framing-

ham Study participants with DNA available using the Affymetrix

500K (250K Sty and 250K Nsp) mapping array with addition of the

Affymetrix 50K MIP (gene-centric) supplemental array (Santa

Clara, CA, USA). Sample-level exclusions were a participant call
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rate of less than 97%, a per-subject heterozygosity of�5 SD from

the mean, or a per-subject number of Mendelian errors greater

than 165 (99th quantile). Genotyping from 433,510 SNPs in 8481

individuals passed these quality-control measures. Eigenstrat

principal-components analysis(46) was applied to evaluate

population structure using a subset of 425,173 SNPs (minor

allele frequency [MAF]� 0.01, Hardy–Weinberg equilibrium

[HWE] p� 10�6, and call rate� 0.95). Ten principal components

(PCs) were calculated. Since the first 4 of the 10 top PCs were

significantly associated with some musculoskeletal traits

(p< .01), we consistently adjusted for PCs 1 through 4 in the

SNP association analyses.

Statistical analysis

Multivariable regression analysis was performed separately in

men and women from each cohort (original and offspring) to

obtain normalized residual phenotypes adjusted for concurrent

covariates. Cohort- and gender-specific residuals were combined

in ensuing analyses. Musculoskeletal traits were adjusted for age,

age2, height, PC1 through PC4, and estrogenic status. Bone

geometry traits additionally were adjusted for BMI.

Genome-wide association study

We performed GWAS analyses using population-based additive

linear mixed-effects (LME) models(47) with 433,510 SNPs in men

andwomen, separately. LME regressionmodels adjust for within-

family correlations in pedigrees of arbitrary sizes and varying

degrees of relationship. Additive genetic associations were

modeled using R-Kinship software (http://cran.r-project.org).

GWAS database mining

We extracted association statistics for SNPs nominally signifi-

cantly associated at a level less than 10�4 with any trait from the

list of 23 fracture-related phenotypes in LME analyses. There

were 1109 autosomal SNPs in the initial data set. To avoid

artifacts of clustering SNPs owing to patterns of linkage

disequilibrium (LD), we filtered SNPs using the Tagger software

(http://www.broadinstitute.org/mpg/tagger)(48) to exclude SNPs

in higher LD (pairwise genotypic r2� 0.5); we also used two

additional thresholds: a liberal (r2� 0.2) and a conservative, with

r2� 0.8. Since we randomly selected tag SNPs among a group of

SNPs in LD at each threshold, there were several replicates for

each data set. Randomly selected tag SNPs that are representa-

tive of a group at each LD threshold (r2� 0.2, 0.5, or 0.8) were

included in the biclustering procedure to reduce the effect of

correlation between the markers.

Block-clustering model and fitting algorithm

We used a Bayesian model framework for our biclustering (block-

clustering) algorithm. The details of the statistical model and

fitting algorithm are provided in the supplementary materials.

We use amodified version of the evolutionary Monte Carlo (EMC)

algorithm(49) to fit the model. After monitoring the algorithm

until it reaches convergence, we ultimately obtained the best

estimate of the block clusters given the observed data. In the

general case, when we can have more than one cluster in the
Journal of Bone and Mineral Research 1263



Table 1. Number of Significant Associated SNPs for the Indivi-

dual Phenotypes (at a< 10�4)

Trait

No. of SNPs

at a< 10�4 Lowest p value

1 TOT BMD 56 3.84� 10�6

2 FN BMD 53 3.86� 10�6

3 TR BMD 42 1.95� 10�6

4 LS BMD 46 1.45� 10�5

5 BUA 49 5.25� 10�6

6 SOS 51 3.43� 10�7

7 NSA 43 7.98� 10�7

8 FNL 44 5.57� 10�7

9 NN WID 58 4.15� 10�8

10 NN CSA 55 2.73� 10�6

11 NN BR 49 4.70� 10�6

12 NN Z 50 8.31� 10�8

13 S WID 34 9.71� 10�6

14 S Z 45 1.87� 10�7

15 S CSA 70 3.54� 10�6

16 S BR 56 3.02� 10�6

17 Metacarpal length 81 4.54� 10�7

18 Metacarpal WID 53 3.14� 10�7

19 MCI 65 2.61� 10�7

20 MCT 50 3.47� 10�7

21 MZ 62 1.37� 10�6

22 WBLM 61 2.18� 10�6

23 LLM 65 5.88� 10�7
data, we iteratively apply the algorithm repeatedly, adding block

clusters one at a time after one cluster is found in the data until

no more clusters can be found or at least one of the axes has

been completely allocated to block clusters (no more rows or

columns could be added to a cluster).

Bioinformatic analysis

Annotation

The gene annotation was done based on the UCSC table browser

for all RefSeq (hg18) genes. If the SNPwas located outside known

genic region, the nearest RefSeq gene was assigned as the gene

annotation. The distance between nongenic SNPs and the

nearest gene ranged from 32 to 1757 kbp.

Identification of enriched canonical pathway in
clustered genes

To determine whether any canonical pathway was enriched in

the clustered SNPs, the clustered genes were imported into

Ingenuity Pathways Analysis (IPA) software (Ingenuity Systems,

Redwood City, CA, USA) to obtain networks for further analysis.

We used IPA to identify the top enriched canonical pathways.

The enriched canonical pathways were ranked by the p values of

the Fisher’s exact test, which indicated the probabilities that the

input genes (from the biclustered gene set) were associated with

genes in the canonical pathways by chance.

Gene network inference via knowledge-based data mining

We next analyzed biologic interactions among clustered genes

using the IPA tool. The gene annotations from the biclustered

SNPs were entered into the IPA analysis tool to construct

the biologic networks of the clustered genes. Networks are

generated from the biclustered gene set by maximizing the

specific connectivity of the input genes, which represents their

interconnectedness with each other relative to other molecules

with which they are connected in Ingenuity’s knowledge

database. Networks were limited to 35 molecules each to keep

them at a functional size. The p value of probability for the

genes forming a network was calculated with the right-tailed

Fisher’s exact test based on the hypergeometric distribution.

To gain biologic insights on whether this novel gene network

is associated with any known canonical pathways, we further

overlaid the novel gene network with canonical pathways using

IPA.

Because musculoskeletal traits are sexually dimorphic and the

genetic mechanisms are likely to be sex-specific,(50) the analyses

were performed separately in men and women. We focused on

results from the 2038 women because osteoporotic fractures are

more common in women, genetic regulation has been shown to

differ by gender,(50,51) and our sample size for women was

greater than for men.

Results

GWAS data set

GWAS analysis by linear mixed-effects models resulted in 1109

unique SNPs associated with the 23 studied traits at the lowest p
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values ranging from p¼ 1.45� 10�5 to p¼ 4.15� 10�8 (Table 1).

The number of SNPs associated with each trait at a p value of less

than 10�4 ranged from 34 SNPs for femoral shaft width to 81

SNPs for metacarpal length. When filtered for LD, there were 668

SNPs at threshold r2� 0.5 (at thresholds r2� 0.8 and r2� 0.2,

there were 722 and 589 SNPs, respectively).

Block clustering of SNP data

We first applied the block-clustering algorithm to the data set

that consisted of regression coefficients from a single-SNP,

single-trait association test with an LD cutoff at r2� 0.5 to avoid

the artifact of clustering SNPs in linkage disequilibrium. The SNPs

were chosen randomly among the three replicates for the

specified LD cutoff. From Fig. 1, a clear cluster of traits and SNPs is

observed, the SNPs being negatively correlated with a group of

10 traits: BMD (LS, FN, TR, and TOT), both ultrasound measures,

and cross-sectional area (CSA) and section moduli (Z) of the

femoral neck and shaft.

Next, in order to test the consistency and robustness of our

algorithm to (1) initial choices of SNPs under the same LD cutoff

and (2) different LD cutoffs, we applied the block-clustering

algorithm to all the separate data sets under different LD cutoffs

(at thresholds r2� 0.8 and r2� 0.2). The same 10 traits, namely,

LS, FN, TR, and TOT BMD, both ultrasound measures, and CSA,

and Z of femoral neck and shaft, were clustered in each data set.

Similarly, the same SNPs were selected to be in the bicluster,

almost irrespective of LD thresholds (Supplemental Fig. S1).
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Fig. 1. Biclustering results. Heat map: yellow corresponds to the positive association; red, the negative. The resulting cluster is outlined in blue.

Table 2. Difference in Mean Magnitude of Genetic Correlation

(rg) Between (A) One Tested Clustered Trait and Other Clustered

Traits (n¼ 9) and (B) a Tested Clustered Trait and All Nonclus-

tered Traits (n¼ 13)

Clustered trait

rg with other

clustered traits

(n¼ 9)

rg with

non-clustereda

traits (n¼ 13)

Mean SD Mean SD

BUA 0.40� 0.25 0.17� 0.14

FNBMD 0.58� 0.24 0.31� 0.16

LSBMD 0.61� 0.16 0.18� 0.12

NNCSA 0.59� 0.22 0.17� 0.14

NNZ 0.37� 0.28 0.25� 0.19

SCSA 0.61� 0.23 0.18� 0.18

SOS 0.42� 0.26 0.20� 0.13

SZ 0.42� 0.24 0.21� 0.14

TOTBMD 0.61� 0.28 0.31� 0.19

TRBMD 0.55� 0.24 0.28� 0.19

Overall meanb 0.52� 0.10 0.23� 0.06c

aNonclustered traits include NSA, FNL, NN WID, NN BR, S WID, S BR,
metacarpal length, metacarpal WID, MCI, MCT, MZ, WBLM, and LLM.
bMean was calculated using absolute value of rg regardless of the

direction of association.
cPaired t test p< .001.
There was a substantial overlap between the sets of SNPs in

clusters: From 64.1% to 78.5% of SNPs were shared between the

SNP clusters.

Phenomic analysis

We further carried out phenomic analyses and gene network

inference procedures on the results of block clustering. Since 10

bone traits were clustered with a distinct set of SNPs, this may

imply that these 10 traits share homogeneous genetic

architecture to a certain extent. To evaluate this hypothesis,

we performed pairwise genetic correlation analyses of all tested

musculoskeletal traits and examined whether these 10 clustered

traits had stronger genetic correlations than the unclustered

traits (see ‘‘Supplemental Methods’’ for details). Pairwise genetic

correlations of all traits are provided in Supplemental Table S1.

Table 2 shows the mean magnitude of the genetic correlation of

the analyses. As follows from the table, the mean magnitudes of

the genetic correlation were significantly higher in tested

clustered traits with other clustered traits (except for femoral

neck Z) than with nonclustered traits. This observation confirmed

that the block-clustering algorithm identified a cluster of genes

that might underlie similarities between correlated traits.

Canonical pathway identification and novel gene
network inference

To evaluate the potential associated canonical pathway in the SNPs

cluster, we annotated the clustered SNP sets using the IPAmethod
BLOCK CLUSTERING OF GENOME-WIDE ASSOCIATIONS Journal of Bone and Mineral Research 1265



Table 3. Top Three Enriched Canonical Pathways in Clustered Data Set 05_01

Canonical pathways p Valuea Ratiob Molecules

Aldosterone signaling in epithelial cells .003 0.04 (4/95) PIK3R1, SCNN1B, NR3C2, PRKCH

Role of osteoblasts, osteoclasts, and chondrocytes in

rheumatoid arthritis

.006 0.03 (6/228) SFRP4, PIK3R1, WNT16, DKK2, BMP7, DKK1

Parkinson’s signaling .008 0.12 (2/17) GPR37, PARK2

aFisher exact p value.
bRatio¼ number of molecules in a given pathway that meet cutoff criteria/total number of molecules in that pathway (numbers shown in

parentheses).
(hereafter, we refer to the gene annotation of the clustered SNPs as

clustered genes). The top three enriched canonical pathways are

listed in Table 3 (the full list of the top enriched canonical pathways

in clustered data sets is provided in Supplemental Table S2). The

aldosterone signaling in epithelial cells; role of osteoblasts,

osteoclasts, and chondrocytes in rheumatoid arthritis (RA); and

Parkinson’s signaling pathways are the top three canonical

pathways implicated in the analyzed data set (Fisher exact

p� .01). Other significant pathways that associated with the data

set are provided in Supplemental Table S3.

In addition to the fact that the clustered genes contained

enriched canonical pathways, they also may represent a novel

functional gene network. Therefore, we generated functional

gene networks from the clustered genes using IPA. The most

significant gene network [26S proteasome, AGAP1, ALCAM, BMP7,

COL1A2, collagen a1, collagen(s), cyclin E, DAB1, DKK1, ERK1/2,

focal adhesion kinase, GPR37, Hsp70, LY96, MAP2K1/2, NFkB

(complex), NKX3-1, PARK2, PI3K, PLAUR, POLR2A, PRKCH, PTPRZ1,

PVR, RIOK3, RNA polymerase II, RORA, SCNN1B, SIRPA, SMYD3,

SPRY2, TBX3, TNFAIP2, ubiquitin) had p value of 1� 10�44 (Fig. 2).

This gene network is predicted by the IPA to participate in

cellular assembly and organization, embryonic development,

and cellular movement functions.

Association of bone-related canonical pathways with the
functional gene network

To gain insight on whether the functional networks were

associated with any known bone-related canonical pathways, we

overlaid the preceding functional network with canonical

pathways and focused on the top canonical pathways that

showed the greatest number of molecules within the gene

network that also participated in the pathway. In the gene

network presented in Supplemental Fig. S2, eight network

molecules showed association with two canonical pathways. The

top associated canonical pathways in this gene network are role

of osteoblasts, osteoclasts, and chondrocytes in RA and

molecular mechanisms of cancer.

Discussion

Osteoporosis is a complex trait with a relatively late age of onset,

making it a challenging disease to study. In terms of quantitative

genetics of complex traits, in the absence of a single valid

endophenotype (an internal feature of a disease(52)), pleiotropy

among the traits is expected to assist phenotypic prioritization
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for a study. For example, to decide which is the best phenotype

for a planned genetic study, it is imperative to be able to clearly

distinguish signal from noise. This approach also results in

increased power when mapping correlated phenotypes if they

share pleiotropic genetic effects.(53) Our novel Bayesian block-

clustering algorithm adapted the technique of evolutionary

Monte Carlo(49) for high-dimensional SNP-phenotype data using

genetic information from GWAS. Each partition represented a

distinct cluster of SNPs that had similar effects over a particular

set of traits. Application of this method to our data showed

several SNP-trait connections. Thus we identified (1) 10 traits

showing homogeneous genetic architecture and (2) the

pleiotropic gene networks implicated in these clustered traits

that were connected with several bone-related canonical

pathways.

In this study, we analyzed many musculoskeletal phenotypes

because neither is a perfect proxy for osteoporotic fracture. For

example, among the hip geometry indices, in addition to Z and

CSA, there were femoral neck length, neck shaft angles, and

estimates of mean cortical thickness, cross-sectional moment of

inertia, and an index of bone structural instability (buckling ratio)

that play a role in local susceptibility to fracture.(54) Metacarpal

bone geometry measures also had been used in epidemiologic

research as well as in primary care to identify patients with

osteoporosis.(55–57) We also included the lean mass measures

because the loss of muscle mass with age (‘‘sarcopenia’’) is

accompanied by a decrease in muscle strength and reduced

loading of the skeleton.(58) Using the biclustering approach, we

found a strong cluster of high-magnitude coefficients and/or

lower p values for some bone traits associated with a subset of

SNPs. These 10 traits included BMD of several skeletal locations,

heel ultrasound measures, and cross-section area (CSA) and

section moduli (Z) of the femoral neck and shaft. Biologically,

these 10 traits represent a functional unit of ‘‘bone strength.’’

Indeed, BMD and heel ultrasound measures are among best

predictors of fracture risk.(17,20) For long bones, Z is an index of

bone bending strength, and CSA is an indicator of bone axial

compression strength; both are important indicators of structural

capacity to resist bending or compressive forces, respectively.

Identification of this clustering of bone strength traits can be

interpreted as a potential measure of success of our reverse-

phenotyping efforts. Because high values of the coefficients were

achieved for 10 traits clustering with a group of SNPs, we

hypothesized that these traits should share a strong homo-

geneous genetic architecture. In agreement with the hypothesis,

the mean magnitudes of genetic correlations among these 10
GUPTA ET AL.



Fig. 2. Gene network predicted by the Ingenuity Pathways Analysis based on the clustered genes. Shaded genes are clustered genes identified using the

biclustering algorithm.
traits were higher than with the nonclustered traits, implying that

the block-biclustering algorithm identified a cluster of genes that

form a gene network (or genetic module) that underlies these

traits.
BLOCK CLUSTERING OF GENOME-WIDE ASSOCIATIONS
Our clustering was independent of LD threshold and random

reshuffling of the associated SNPs; indeed, to reduce the effect

of correlation between the markers on the cluster analysis, we

constructed data sets with three thresholds of r2� 0.2, 0.5, and
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0.8. Analyses of multiple replicates at the same LD threshold

demonstrated the consistency of our algorithm and its relative

robustness to LD threshold differences. The biclustering

approach also highlighted some aspects of how the SNPs were

selected. Although there was the expected variation in the SNPs

selected to be in a given bicluster based on the different LD-

based data sets, overall, the cluster was highly consistent with

regard to random reshuffling. Whether the selected genes are

truly associated with osteoporosis can only be shown empiri-

cally,(59) and it is not possible to validate our approach to

selection of ‘‘pleiotropic’’ candidate genes without further

functional investigation.

A closer investigation of the top connected networks

generated by IPA provided the following interesting biologic

insights: The most significant canonical pathway associated with

the gene clusters was aldosterone signaling in epithelial cells. It

has been well reported that aldosteronism affects bone

metabolism; for instance, bone mineral and bone strength are

lost in the presence of a high level of aldosterone.(60,61)

Interestingly, two (NR3C2 and PIK3R1) of four pathway genes

from the cluster have been demonstrated to be involved in bone

metabolism. NR3C2 encodes mineralcortical receptor (MR) that is

expressed in osteocytes, osteoblasts, and osteoclasts,(62) and

aldosterone activation of MR promotes osteoblastic differentia-

tion.(63) PIK3R1 encodes a subunit of phosphatidylinositol 3

kinase, which is an important mediator in both osteoblast and

osteoclast differentiation.(64–67) Although no known function of

PRKCH (protein kinase C, eta) and SCNN1B (epithelial sodium

channel) is reported in any bone cell or bone diseases, gene

expression of PRKCH in osteoblasts is correlated with other

bone markers (ie, osteocalcin, bone sialoprotein, and alkaline

phosphatase) at various differentiation and maturation

stages,(68) suggesting that PRKCH is a potential candidate gene

that affects bone metabolism.

The second most significant canonical pathway associated

with the gene clusters was the pathway responsible for

rheumatoid arthritis (RA). RA is a chronic inflammatory disease

that leads to strucutural destruction of both bones and joints.

The pathogenesis of RA in bone is an imbalance of the

osteoblast-osteoclast axis driven by inflammatory processes that

leads to excessive bone resorption by osteoclasts. Six genes

(SFRP4, WNT16, DKK2, BMP7, DKK1, and PIK3R1) from the cluster

are associated with this disease pathway. In fact, four among

these six genes also belong to the Wnt/b-catenin signaling

pathway,(69–71) except BMP7. BMP-7 plays a role in calcium

regulation and bone homeostasis by inducing cartilage and

bone formation. It is a Food and Drug Administration–approved

ectopic bone inducer for clinical use in long bone open fractures,

nonunion fractures, and spine fusion. Therefore, our findings

confirmed two important pathways that underlie the etiology of

osteoporosis and additionally identified PRKCH and SCNN1B as

the novel potential candidate genes that affect bone metabo-

lism.

The role of the third most significant canonical pathway,

the Parkinson’s signaling pathway, in bone strength is more

puzzling. Recent epidemiologic studies pointed out this con-

nection too. Thus, in community-dwelling older women with

Parkinson’s disease (PD), compared with those without it,
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women with PD had 7.3% lower BMD.(72) Very similarly, older

men with PD had a significantly greater rate of annualized total

hip bone loss than those without parkinsonism.(73) Dopamine

transporter (Dat)–deficient mice manifest a low-bone-mass

phenotype.(74) We therefore believe that this tantalizing finding

should be explored further, whether or not there is a

dopaminergic-related connection between the diseases.

To further understand signaling cascades engaged by the

most significant gene networks, we overlaid the canonical

pathway genes with the gene network generated from our data

set. It was shown clearly that the top canonical pathways

associated with this new network are related to the skeletal

system (canonical pathway role of osteoblasts, osteoclasts, and

chondrocytes in rheumatoid arthritis). This observation sug-

gested that the gene network underlying bone strength is

governed by multiple signaling pathways and therefore that any

perturbation of these pathways may affect the gene network and

hence bone strength. Future experimentation will be required to

validate these bioinformatic observations.

This study is one of the first forays into phenomics of the

musculoskeletal system. Phenomics has a chance of changing

how we view heritable diseases first by defining latent

phenotypes that underlie genetically similar phenotype cate-

gories and second by revealing unexpected genetic links among

disease entities.(75) The incorporation of genetic data clearly

improves the quality of the predictions over those derived solely

from trait correlations,(76) although phenotypic overlap is often a

very good predictor of functional relatedness of the underlying

genes.(77) Thus van Driel and colleagues(78) found that similarity

between phenotypes did correlate positively with several

measures of gene function, including relatedness at the level

of protein sequence, protein motifs, functional annotation, and

direct protein-protein interaction. We similarly hypothesized that

the correlated phenotypes would share multiple associated

genetic variants. Obviously, there is also an effect of the shared

environmental factors or a confounding by an unmeasured—

intermediate—variable.(79) However, we recently found that the

phenotypic and genetic correlations between a pair of traits

rather than environmental correlation predict how many SNPs

are shared between the two traits.(35)

This study has several limitations. We used SNPs rather than

genes as a source of GWAS mining and later for the gene-

enrichment search. In rare cases where one SNP was located on

two overlapping genes, we mapped the SNP to both genes; by

this, we diminished a bias toward genes that were physically

close. Otherwise, genes with better annotation would be more

likely to be selected, which could result in a bias toward

assortment of well-investigated genes rather than novel

predicted or less well-characterized genes.(59,80) We focused

on SNP-based statistics for clustering because there is not a

widely agreed on and accepted theory for how to combine test

statistics on multiple SNPs in a gene into one single p value (to

obtain a maximum statistic to summarize association signals in

that gene). When multiple distinct variants in the gene

contribute to the overall association signal, the maximum

statistic no longer may be the best statistic to capture such

information.(81) As noted, our model was restricted to non-

overlapping clusters. We are cognizant that gene pathways
GUPTA ET AL.



overlap, as well as phenotypic modules, so that many gene

networks and pathways unavoidably will share the same

genes.(81) However, the restriction of clusters to not overlap

not only leads to a more rigorous model specification but also is

more likely to pick out nonredundant clusters, thus overcoming

one of the major drawbacks of other existing block-clustering

algorithms. Because of the inclusion and exclusion criteria that,

owing to redundant SNPs, might influence algorithm perfor-

mance, we checked the consistency of our results by analyzing

the data sets with several exclusion criteria based on LD between

the SNPs. We did not apply a similar threshold to the phenotypes,

whose selection was based on availability and epidemiologic

evidence of their associations with fracture rather than on

correlations among them. Because musculoskeletal traits are

sexually dimorphic and likely to be influenced by sex-specific

genetic mechanisms,(50) the analyses were performed separately

in men and women; however, we presented results from the

women because the sample size was greater, and women

experience more fractures than men. Results in men appear

similar; however, our study has insufficient power for a formal

comparison of the clustering results between the sexes. Finally,

in this study we adjusted musculoskeletal traits for age, height

(bone geometry for BMI), and estrogenic status; however, some

potentially important factors, such as exercise, diet, and shared

household among family members, were not accounted for.

In conclusion, we used GWAS results to examine pleiotropic

relationships between osteoporosis-related traits. We found a

distinct SNP cluster of negative coefficients of high magnitude

associated with 10 bone-strength phenotypes (mainly BMD,

ultrasound, and hip strength indices). The results of biclustering

can be used for finding modules within and between the

genome and the phenome,(9,30) data reduction, and choosing

the best phenotypes in the pathway to fracture. Accurate

understanding of disease phenotype can lead to success in

identifying genetic determinants for complex disease.(59)

Similarly, the SNP clusters pointed out the presence of potentially

pleiotropic genetic pathways involved in bone strength.

Targeting a gene network common for many aspects of a

disease may be a favorable approach for therapeutic agent

development or predicting the adverse effects of a drug. This

study thus presents a novel approach to the analysis of GWAS

data and provides directions for further refining of the

osteoporosis phenotype and genetic pathways on which to

focus in functional studies of osteoporosis.
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