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Abstract
Background—With increased use of robotic surgery in specialties including urology,
development of training methods has also intensified. However, current approaches lack the ability
of discriminating operational and surgical skills.

Methods—An automated recording system was used to longitudinally (monthly) acquire
instrument motion/telemetry and video and for 4 basic surgical skills -- suturing, manipulation,
transection, and dissection. Statistical models were then developed to discriminate the human-
machine skill differences between practicing expert surgeons and trainees.

Results—Data from 6 trainee and 2 experts was analyzed to validate the first ever statistical
models of operational skills, and demonstrate classification with very high accuracy (91.7% for
masters, and 88.2% for camera motion) and sensitivity.

Conclusions—We report on our longitudinal study aimed at tracking robotic surgery trainees to
proficiency, and methods capable of objectively assessing operational and technical skills that
would be used in assessing trainee progress at the participating institutions.
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Introduction
Minimally invasive surgery has seen a rapid transformation over the last two decades with
the introduction and approval of robotic surgery systems [1,2]. Robotic surgery is the
dominant treatment for localized prostate cancer [5] with approximately 75,000 robotic
procedures being performed in the USA every year, up from only 18,000 procedures in
2005[3]. Advances in tools and techniques have also established minimally invasive surgery
as a standard of care in other specialties including, cardiothoracic surgery[4], gynecology[5],
and urology [6]. Over 1700 da Vinci surgical systems (Intuitive Surgical, Inc., CA) were in
surgical use by late 2010, up from 1395 systems in 2009 [2].

However, robotic surgical training in academic medical centers still uses the Halstedean
apprenticeship model where a mentor's subjective assessment forms the main evaluation.
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This subjective assessment during the course of training relies on analysis of recorded
training videos, direct procedure observations, and discussions between the mentor and the
trainee. It is challenging for both the mentor and the trainee to identify specific limitations
and objective recommendations, or skills where the trainee may have achieved significant
expertise. The need for objective assessment in robotic surgery training has long been
evident [7], along with the need for development and standardization of the environment in
which the skills are imparted [8–10]. Consequently, the development of training methods for
robotic surgery has also intensified [11–14] and training and assessment have become an
active area of research [15–17].

Robotic surgery skills consist of separate human-machine interface operational skills
(operating the masters and console interface), and surgical technique and procedural skills.
However, current robotic training approaches so far lack both the ability and separate
criteria for assessing and tracking man-machine interactions.

We are addressing these limitations systematically in a National Institutes of Health funded
multi-center study of robotic surgery training where we aim to track robotic surgery trainees
to human surgery proficiency, subject only to continued availability and access to the
subjects. Here we focus primarily on discriminating proficiency in human-machine interface
skills that are new to all trainees, and with a complex machine such as the da Vinci surgical
system, are also a major reason for steep learning curves in robotic surgeons. Below, we
establish that there are significant skill differences between experts who are comfortable
using the system, and trainees of varying experience who are still learning to use the system.
Such a test has many important uses, for example, to identify when a trainee has reached a
competent skill level in system operation skill to graduate to more complex training task that
emphasizes the skills where a trainee is still deficient. This customization, which would
require extensive oversight, and subjective and structured assessment by a mentor, is not
currently possible.

Materials and Methods
We utilize the Intuitive Surgical da Vinci surgical system [1] as our experimental platform.
The da Vinci consists of a surgeon’s stereo viewing console with a pair of master
manipulators and their control systems, a patient cart with a set of patient side manipulators,
and an additional cart for the stereo endoscopic vision equipment. Wristed instruments are
attached and removed from the patient side manipulators as needed for surgery. The slave
surgical instrument manipulators are teleoperated with the master manipulators, by
associating an instrument using the foot pedals and switches on surgeons console.

In addition to providing an immersive teleoperation environment, the da Vinci system also
streams all motions and events via an Ethernet application programming interface (API)
[18]. The API provides transparent and immediate access to instrument motion and system
configuration information. We record all 334 variables containing Cartesian position and
velocity, joint angles, joint velocities, torque data at 50Hz, as well as events for robotic
arms, console buttons, and foot pedals generated during a training procedure in an
unhindered manner. Such recording previously needed devices could not be easily
incorporated into the surgical and training infrastructure [20] without impacting surgical or
training workflow.

By contrast, our data collection system (Figure 1) is designed to collect data from a surgical
training procedure without any modification of the procedure workflow, and using our
system, without on-site supervision. We also record high quality synchronized video from
the stereoscopic camera at real-time frame rates (30Hz). The archiving workstation does not
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need any special training to operate and can be left connected without affecting the system
operation.

This experimental data, de-identified at the source by a unique subject identifier
(approximately 20GB for each training session), is stored in a secure archive according to
our Johns Hopkins Institutional Review Board protocol. The unique identifiers permit
longitudinal analysis, such as computation of learning curves.

Our training protocol consists of a set of minimally invasive surgery benchmarking tasks
(Figure 2). This includes assessment of manipulation skills, and benchmarking of suturing,
transection, and dissection skills performed approximately monthly on training pods (The
Chamberlain Group, Inc.) commonly used for robotic surgery training. These tasks also
form part of the Intuitive Surgical robotic surgery training practicum [19].

The manipulation task involves moving rubber rings to pegs placed around the entire robotic
workspace. Subjects also perform suturing (3 interrupted sutures along an I-defect using
8--10cm length of Vicryl 3-0 suture), transect a pattern on a transection pod, and mobilize an
artificial vessel buried in a gel phantom using blunt dissection. In addition to the motion and
video data above, we also record the trainee’s practice and training hours between these
benchmarking sessions via a survey.

Recruitment and Status
Our subjects are robotic surgery residents and fellows from four institutions - Johns
Hopkins, Children’s Hospital, Boston, Stanford/VA Hospitals, and University of
Pennsylvania. Subjects (residents, fellows, practicing clinicians) had varying amounts of
surgical training, but typically no prior robotic surgery experience. We aim to track the
continued progress of our trainees limited only by their availability at the participating
institutions, and if possible, to human surgery proficiency upon completion of their training.
Practicing clinicians (experts) from these institutions were recruited to provide ground truth
data for computing proficiency levels of performance measures.

Objective Assessment
We are investigating automated assessment for differentiating experts and non-experts in
addition to the manual structured expert assessment. Previous similar studies (e.g. [21–22])
have used preliminary measures to identify skill with an emphasis only on comparing users
of different skill levels to the experts. The motion data from the da Vinci API has also been
previously used to classify skill using statistical machine learning methods. These studies
[11,16–17] have primarily focused on recognizing the surgical task being performed.

The motion data from the API is contains 334 total dimensions acquired at 50 Hz. We used
appropriately sampled API data for the relevant instruments or master handles for further
statistical analysis. This sampled API data is then used for training and validation of separate
models of human-machine operation skills using Support Vector Machines (SVM). A SVM
uses a kernel function and an optimization algorithm to finds a hyperplane with optimum
separation between the two classes. Given ground truth labels for the trials, sensitivity and
accuracy of the classifiers can be directly computed as performance measures.

Our expert collaborators have assigned OSATS scores [23] to these task executions to verify
facility with robotic operation. The OSATS global rating scale consists of six skill-related
variables in operative procedures that are typically graded on a 5 point Likert-like scale.
Experts (OSATS > 13) were well separated from other trainees (OSATS <10) at the start of
the training. This provides the ground truth for training and validating the statistical methods
above. We investigated the following human-machine interactions – a) managing the master
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workspace - due to motion scaling the master handle workspace in robotic surgery needs
frequent adjustment, b) the camera field of view adjustment, and c) maintaining the
instruments safely in the field of view of the camera.

The master workspace is adjusted by pressing a foot-pedal (clutch) which disconnects the
instruments from the master manipulators, allowing the master handles to be repositioned.
The current generation of the da Vinci surgical system (the Si model) also contains switches
on the master handles for independent hand adjustment. For adjusting the camera field of
view, the camera clutch, a different foot pedal allows constrained motion of the masters as if
they were attached to edges of the screen. As before, upon completion of a camera move, the
teleoperation relationships are recomputed and teleoperation mode is restored.

Proficiency with these short duration dexterous system configuration tasks (often less than a
second long) requires significant familiarity with system interfaces. Note also that the
motion during these events relates only to operational skills on the platform. Lastly, these
tasks relate mostly to simple and short motions, back to a comfortable hand position or to a
more favorable view of the camera. During these events, the instruments are disconnected
from the masters, and the user is focusing only on operation skills. Therefore, they are ideal
for assessing operative skills. Our 4 skill benchmarking laboratories above take
approximately 30 minutes to complete and many adjustments are needed during each task
providing multiple observations of these events for each training session.

Figure 3 shows camera motion during the manipulation training task, and Figure 2 shows the
workspace adjustment (clutch on/off) highlighted on the motion trajectory of the master
handles. We treat camera on/off, and clutch on/off as four separate events, and focus on
master motion during and near these events. We generated fixed size feature vectors from
the API motion data corresponding to these events and use supervised classification for
assessment of each operation skill. Fixed size high-dimension feature vectors permit a range
of supervised classification methods for estimating skill levels, including Support Vector
Machines (SVM) [24]. SVMs have also been used in the art with motion data. For example,
with feature vectors containing force and torque data, a hybrid HMM-SVM model was used
to segment a teleoperated peg in-hole task into 4 states in [25] with 84% on line and 100%
for off line segmentation accuracy. For our expert vs. trainee classification, a binary SVM
classifier is directly applicable. During validation of such a trained classifier, held- out
observations may be directly classified to obtain performance measures as:

(2)

(3)

(4)

For each of the operational skills above, these performance measures allows us to assess
when a trainee has achieved proficiency by training a classifier with the experts as the
positive class and evaluating the trainee’s performance with the trained classifier. We
validated these methods using longitudinal data from subjects in our study including 2
expert users, and 6 trainees of varying skill levels for master workspace adjustment and 8
trainees for camera motion.

For master clutch operation, we sampled 2 seconds (100 observations) or more of motion
(134 observations) around each master clutch event, and then post-processed these segments
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to extract a feature vector containing Cartesian position (6 DOF), Cartesian velocity (6
DOF), and the gripper angle (1 DOF) for both left and right hand master motion. When
concatenated, this gives a fixed length (2600, and 3484 dimensions) feature vector for each
observed event. Each observation is assigned the skill class (expert or novice) of the user
performing this task. Over the 8 users in the experimental dataset, we obtain a total of 3998
events. Further dimension reduction can be performed given this high dimensions of the
feature vector, however, here we just used the high-dimension data. We then trained binary
SVM classifiers with polynomial kernel functions with the feature vectors extracted above
using the SVM implementation in the Bioinformatics toolbox of MATLAB (Mathworks Inc,
Natick, MA) on a windows workstation (Core i5, 4GB RAM). A subset of the experimental
data above was used as a training dataset for training the classifier, and the remaining for
validation.

Camera motions are even shorter than workspace adjustment motions, therefore, we segment
only 0.5 seconds (25 observations) of motion around each event and then post-process these
segments as before to extract a feature vector containing Cartesian position (6 DOF),
Cartesian velocity (3 DOF), for left hand, right hand, and the camera. Hand orientation is
constrained by the system during camera motion, so orientation velocities were not included
in the feature vector. When concatenated, this gives a fixed length (675 dimensions) feature
vector for each observed event. This feature vector is also assigned the skill class (expert or
trainee) of the user performing this task. As before, we use the concatenated feature vectors
without dimensionality reduction.

Results
Master Workspace Adjustment

The experimental dataset of 3998 events contains 352 expert events, 3646 novice clutch
events. Initial experiments used smaller portions of the data for training the SVM classifier
to select experimental parameters. Starting with 50% held-out data, the classifier was trained
on the other half of the data (1999 samples), followed by training on 90% of the data. We
also performed a 10-fold cross-validation on the experimental data set to assess statistical
significance. The SVM classifier was tested by performing 10 different tests, each using
approximately 10% of randomly selected data for testing, and the remaining for training.
These tests were performed both for 100, and 134 observations. Using a quadratic kernel,
the classifier correctly classified 91.75% of the observations using 50% of the data, rising to
92% with training on 90% of the data. Higher order polynomials did not significantly
improve these results.

With the larger number of observations (134), the classifier performance improved to
93.20% with training on 50% of the data. Increasing this training dataset size to 70% and
90% of the data resulted in precision rates of 94.99% and 95.70%. As durations of the
workspace adjustment events is limited, a longer time period would result in portions of the
task manipulation with instruments being included, and therefore motion vectors longer than
134 were not tested in these experiments.

Camera Manipulation Skills
The experimental dataset of 483 separate sampled camera motion trajectories contains 63
expert samples. Leave-one-out validation with 10% of the data for showed promising results
(87% accuracy and precision, 100% recall). Varying the held-out data size did not
significantly change the results. The classifier correctly classified 88.16% of the data, with a
100% recall during the 10-fold cross-validation. As before, higher order polynomial kernels
did not significantly alter the classifier performance. Camera motions are very short events -
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typically less shorter than a second in duration. A longer time period results in portions of
the task manipulation with instruments being included, and therefore motion vectors longer
than 0.5 seconds were not tested.

Unsafe Motion and Collisions
Analysis of unsafe instrument motions (e.g. those not visible to the trainee) is ongoing.
Figure 4 shows the instrument motions during the training task (Blue–left, Green–right
instrument). The red portions represent where an instrument was not visible in the camera
field of view. An adaptive threshold already distinguishes trainees from experts, and
statistical analysis of the motion data is currently in progress.

Discussion
We describe our novel unsupervised data collection infrastructure for robotic surgery
training the da Vinci surgical system, and the an initial evaluation of construct validity of
system skill classification based on the collected data. This infrastructure is in use for
capturing training data at four different training centers (Johns Hopkins, University of
Pennsylvania, Children’s Hospital, Boston and Stanford).

Training issues have received prior attention of many researchers, industry, and various
surgical education societies and several efforts are now underway both using simulators
[16–17], and on data obtained from real surgical systems [11,21–22,26–27]. Literature also
contains several attempts at designing training tasks and measuring skills in robotic surgery.
Such research typically only uses inanimate and bench top experiments simulating basic
minimally invasive skills (e.g. suturing) and was designed keeping the corresponding
analysis in view, often with special equipment not commercially available. Prior assessment
has also used elementary measures [16–17,22].

In [22], Judkins et al report on the comparison of 5 experts and 5 novices using ad-hoc
inanimate tasks using trends in pre and post-training evaluation with aggregate measures
such as task completion time, total instrument distance, and velocity. They note that after
only 10 trials trainees and experts performed the experimental tasks were indistinguishable
using their elementary metrics. 10 trials is clearly not adequate training for basic surgical
skills, even for trained users.

Robotic surgery also uses a complex man-machine interface and the complexity of this
interface contributes significantly towards the long learning curves even for laparoscopically
trained surgeons. These man-machine interface skill effects can be completely captured
using the telemetry available from the robotic system, and with appropriate tasks and
measures, separate learning curves can be identified. This work presents the first results for
such operational skills - master workspace adjustment, and camera manipulation - to assess
when a user may be classified as being comfortable with field of view reconfiguration. Over
data collected from 8 real surgical trainees, we achieve >90% accuracy in classifying
whether a system interaction was performed by an expert or a user of another skill level.
With 10 real surgical experts and trainees, we also achieve >87% accuracy, and 100%
sensitivity in separating users classes based on camera motions. We also identify other key
operational skills e.g. collisions, or unsafe motion. Analysis of our data for these additional
skills is ongoing.

These tools are being integrated into system skill training assessment that will allow us to
emphasize training experiments to a trainee's needs. In related publications [26], we have
reported learning curves based on the aggregate measures considered above, the structured
assessment by experts, and their correlation. In a parallel study [27], we are also extending
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and applying this assessment for simulation based training. Work in preparation for
publication also includes a consensus document describing the role of technology in robotic
surgery assessment based on a workshop held at World Robotic Symposium, 2011, and
reports of assessment from residency based robotic surgery curricula for urology and
otolaryngology. We are also working to assign skill levels beyond the two class separation
performed here, and to develop multi-class classification methods. Additional validation,
and utilization of validated methods in proficiency based training is also currently being
investigated
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Figure 1.
Information flow for the JHU/VISR archival system for the da Vinci system(left), and the
benchmarking task pod (right). A demonstration pod (not used for benchmarking), the
dissection pod, transection pod and the suturing pod (clockwise, respectively). The posts for
the manipulation task are in the center and on the periphery.
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Figure 2.
Master motion during a manipulation task with an overlay of master clutch events. The blue
triangles represent start of a workspace adjustment (clutch pedal pressed), and the red
triangles the end of the reconfiguration (clutch pedal depressed).
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Figure 3.
Expert (left) and trainee (right) endoscopic camera Cartesian trajectories during the
manipulation task. Expert manipulate the field of view to keep the instruments visible at all
times, while novices camera use is less structured. The points represent start of a camera
motion.
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Figure 4.
Expert (left) and trainee (right) instrument Cartesian trajectories for left (blue) and right
(green) instruments during a training task. The red portions represent where an instrument
was manipulated unsafely outside the field of view of the endoscopic camera.
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