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Abstract
Purpose—Evaluation of genomic tests is often challenging because of the lack of direct evidence
of clinical benefit compared to usual care and unclear evidence requirements. To address these
issues, this study presents a risk-benefit framework for assessing the health-related utility of
genomic tests.

Methods—We incorporated approaches from a variety of established fields, including decision
science, outcomes research, and health technology assessment to develop the framework.
Additionally, we considered genomic test stakeholder perspectives and case studies.

Results—We developed a 3-tiered framework: first, we use decision-analytic modeling
techniques to synthesize data, project incidence of clinical events, and assess uncertainty. Second,
we define the health-related utility of genomic tests as improvement in health outcomes as
measured by clinical event rates, life expectancy, and quality-adjusted life-years (QALYs).
Finally, we display results using a risk-benefit policy matrix to facilitate the interpretation and
implementation of findings from these analyses.

Conclusion—A formal risk-benefit framework may accelerate the utilization and practice-based
evidence development of genomic tests that pose low risk and offer plausible clinical benefit,
while discouraging premature use of tests that provide little benefit or pose significant health risks
compared to usual care

INTRODUCTION
Few genomic testing technologies have reached routine clinical practice or been
incorporated into clinical guidelines to date.(1-4) Nonetheless, a multitude of genomic tests
are marketed to consumers and physicians, and genome-wide assays are available to
consumers for several hundred dollars.(5) These assays, coupled with the rapid growth of
somatic gene expression profiling in oncology, present a significant challenge to clinicians
and policy makers seeking to establish clinical practices that maximize benefit for patients
while minimizing harm.
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The efficient and appropriate translation of genomic discoveries into clinical practice is
particularly challenging due to an interrelated combination of factors.(6) First, there is a
notable lack of comparative effectiveness data for genomic applications due to regulatory
and reimbursement policies that neither require nor incentivize investment in such studies.
(7-9) Consequently, while randomized trials have been initiated for select genomic
applications such as CYP2C9/VKORC1 testing with warfarin therapy,(10, 11) CYP2D6
testing with antidepressant use,(12) and gene expression profiling in breast cancer treatment,
(13) there are generally few prospective comparative genomic tests evaluations planned or
underway.(14)

Second, the ease of market access for genomic tests makes the aforementioned lack of
evidence more problematic.(15, 16) For example, when investigators from the National
Institute of Mental Health reported an association between two genetic variants and suicidal
ideation in patients taking citalopram, (17) within a week a genomic testing company
announced plans to offer testing to “help to reduce a recently announced spike in suicide
rates among US youth”.(18) This situation is partly related to regulatory policy, but is also
related to the fact that providing information about genomic susceptibilities does not require
specialized medical facilities or training, and involves very little direct risk of immediate
harm to patients.

Lastly, there is a lack of consensus on evidence requirements or thresholds for genomic test
evaluation [19]. Some stakeholders accept the findings of retrospective analyses and clinical
plausibility, while others expect controlled clinical trial data.(20, 21) For example, in the
case of the anticoagulant warfarin, variants of the genes CYP2C9 and VKORC1 are clearly
associated with lower dose requirements, but no study to date has definitively demonstrated
that using this information improves patient outcomes.(22) Alternatively, warfarin patients
concomitantly taking amiodarone also require lower warfarin dosing (due to inhibition of
CYP2C9), and doing so is considered standard of care.(23) This lack of consistency in
evidence requirements, in addition to the other factors outlined above, creates a roadblock
on the translational pathway for genomic tests.

The Secretary’s Advisory Committee on Genetics, Health, and Society (SACGHS) recently
issued a report (15) emphasizing the importance of assessing and weighing potential harm
against potential benefit, so that patients do not inadvertently forgo real benefit because of
small or hypothetical harms. Additionally, regulatory authorities have shown heightened
interest in the use of quantitative approaches to assess risk-benefit tradeoffs for
pharmaceuticals.(24-31) A recent Institute of Medicine (IOM) study advised that FDA
“develop and continually improve a systematic approach to risk-benefit analysis.”(32) FDA
is currently evaluating various approaches to incorporate risk-benefit analyses into their
assessment processes. Although approaches have been developed to incorporate indirect
evidence (e.g., non-comparative data) in a semi-quantitative fashion, and decision-analytic
techniques are beginning to be applied in the assessment of genomic tests,(4, 33)
quantitative assessment of risk-benefit tradeoffs, and the uncertainty surrounding them, have
not been explicitly included in genomic test evidence recommendations to date.

We believe there is a significant opportunity to use existing decision modeling methods to
synthesize genomic, clinical, epidemiological, and patient outcome data to explicitly
evaluate risk and benefit trade-offs of genomic tests, and the uncertainty surrounding their
utility. The objective of this study was to develop a systematic and comprehensive approach
to help clinicians and policy-makers estimate health outcomes of genomic testing in the
absence of definitive data. The novel aspect of the risk-benefit framework described in this
manuscript is the synthesis of approaches from a variety of fields in order to systematically
and quantitatively evaluate the risk-benefit profile of genomic tests – the use of decision
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modeling, the projection of multiple clinical outcomes (including quality-adjusted life-years,
QALYs, as a summary measure of clinical utility), and a recommendation framework that
enables utilization of the information generated. These estimates are intended to help guide
decisions about clinical test use and coverage, and provide a framework for encouraging
practice-based evidence development for tests with plausible net health benefit.

Methods
The risk-benefit framework presented herein is based on work from the fields of decision
science, outcomes research, and health technology assessment. Traditional evidence-based
processes have generally relied on direct evidence of clinical utility (e.g. data from RCTs).
Recently, however, advisory bodies have recognized that direct evidence will not always be
available to answer questions of interest. For example, the U.S. Preventive Services Task
Force (USPSTF) developed an approach for evaluating indirect evidence with a focus on
evaluating net health benefit, and the uncertainty around estimates.(34, 35) The Task Force
constructs a “chain of evidence” within an analytic framework, and assesses the level of
certainty based on specific questions. If the certainty of net benefit is moderate or high, the
magnitude of benefit is assessed, and modeled event rates are provided in an outcomes table.
For example, Nelson and colleagues utilized this approach to evaluate BRCA mutation
testing for breast and ovarian cancer susceptibility, although a summary measure of the net
health benefit was not determined.(36)

More recently, the U.S. Centers for Disease Control and Prevention (CDC) has sponsored
the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative.(37)
EGAPP’s methods are analogous to that of the USPSTF, and involve use of an analytic
framework to assess indirect evidence. Three of the seven EGAPP evidence reports
commissioned to date have explicitly conducted decision-analytic modeling. (38) In two
cases, evidence supporting a valid association between variants and clinical outcomes was
lacking, and the models were used in an exploratory capacity.(39, 40) In the other case, the
model was used to assess efficiency of case detection, but not patient outcomes.(41) A
summary measure of net health benefit was not calculated in any of these cases.

The private sector has also pursued analogous, evidence-based approaches. Notably, the
BlueCross BlueShield Association’s Technology Evaluation Center (TEC) has conducted
extensive evidence-based evaluations of genomic tests.(42) The TEC uses five criteria to
evaluate health technologies such as genomic tests: 1) it must have regulatory approval, 2)
the evidence must permit conclusions regarding its effect on health outcomes, 3) it must
result in an improvement in net health outcomes, 4) it must be at least as good as current
alternatives, and 5) it’s benefits must be attainable outside of the investigational setting.
Quantitative evaluation of indirect evidence has not been utilized for TEC assessments to
date.

In summary, although approaches to date have incorporated various aspects of a quantitative
risk-benefit framework, they have not included a formal and explicit approach to assessing
indirect evidence, a summary measure of risk-benefit, and a decision-making framework
that synthesizes this information. Below, we propose a quantitative risk-benefit approach
that incorporates these aspects within a single framework. We utilized stakeholder feedback
and previous experience with case studies and regulatory science to inform development of
the framework. (19, 43-45)

I. Decision-analytic framework
Decision-analytic modeling provides an explicit framework for evaluating technologies by
incorporating data from various sources in a quantitative and transparent fashion, and

Veenstra et al. Page 3

Genet Med. Author manuscript; available in PMC 2012 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



comparing the likely results of technology use versus the next best alternative. By assessing
the incremental outcomes compared to the next best alternative (e.g., no genomic testing),
the ‘opportunity cost’ of genomic testing can be captured. Weinstein and Fineberg
characterize the decision-analytic approach as: 1) identifying and bounding the decision
problem, 2) structuring the decision problem over time, 3) characterizing the information
needed to inform the structure, 4) choosing a preferred course of action.(46) This approach
is advantageous in that there is an explicit framework for evaluating risks and benefits,
decision makers must identify quantitative estimates of risks and benefits, the approach can
be applied to a wide variety of technologies, and complexity and timing of analyses can be
suited to the decision-making task.(24)

To illustrate the decision-modeling process, we consider a hypothetical cohort of patients
initiating long-term warfarin therapy for the prevention of thromboembolic events. During
the warfarin initiation period, determination of the dose required to achieve an optimal level
of anticoagulation can be challenging. Clinicians monitor the international normalized ratio
(INR), a measure of anticoagulation status that can serve as a surrogate marker for adverse
events. INR values between 2 and 3 are considered within therapeutic range for most
patients - INR values above 3 are associated with higher risk of serious bleeding events,
while INR values below 2 are associated with increased risk of thromboembolic events.
Most patients are initiated on 5mg warfarin per day, and clinical and demographic variables
that indicate warfarin sensitivity such as older age, drug interactions, or co-morbidities are
used to adjust doses downward. Information about the patients’ CYP2C9 and VKORC1 gene
status (hereafter referred to as “genotype-guided” dosing) also could be incorporated in the
initial dose selection. Below, we demonstrate how decision modeling can be used to
quantitatively evaluate the risks and benefits of each approach based on an analysis
conducted as part of this risk-benefit framework project, as well as the results of a
previously published warfarin decision analytic model.(43, 47)

Decision structure, data sources, and outcomes—At the core of the risk-benefit
framework is what could be described as a clinical disease-based model. The goal of this
approach is to incorporate relevant clinical effects attributable to a genomic test and
subsequent actions in order to estimate impact on patient outcomes. A schematic of the
process is depicted in Figure 1.

Consider this approach in the context of genomic testing to guide warfarin therapy described
earlier. First, clinicians receive genomic test results reporting patients’ CYP2C9 and
VKORC1 genomic status. Next, informed by the test results, an estimated initial dose is
calculated and warfarin therapy is administered – assuming the clinician and patient agree
with the suggested dosing. During the subsequent weeks, clinicians will monitor INR and
adjust warfarin dose in response. The goal is to achieve stable INR values in therapeutic
range, and a standard measure of anticoagulation management success is the time in
therapeutic range (TTR) over the first month (or months) of warfarin therapy. (48)

We developed a risk-benefit analysis for warfarin pharmacogenomic testing based on
extensive interaction with various stakeholders, particularly practicing anticoagulation
clinicians.(47) Because of their familiarity with INR as an outcome, clinicians indicated that
a model that projected bleed and clot events based on INR over the first 1-3 months of
warfarin therapy would be most useful to assess the potential net benefit of testing (Figure
2). The probabilities of achieving different levels of INR control ideally would be informed
by the results of comparative, randomized clinical trials. In this instance we utilized results
from the highest quality RCT available to date conducted by Anderson and colleagues
(N=200).(49) Additionally, the relationship between time in INR range and the risk of
clinical events can be derived from longitudinal cohort studies, as was done with data from
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van Walraven and colleagues in the warfarin model under consideration.(50) These
probabilities are then multiplied to compare the overall likelihood of having specific events
within each dosing strategy.

We estimated in a cohort of 10,000 patients observed for the first month of warfarin therapy
approximately 44 and 45 patients would experience serious bleeding events and
approximately 27 and 28 would experience serious thromboembolic events in the genotype-
guided and standard dosing strategies, respectively.(47).

Uncertainty: Scenario and Sensitivity Analysis—The decision structure described
above does not allow traditional statistical analyses and hypothesis testing because not all
data are derived from the same study, nor typically obtained at the patient level. However, it
is possible to explicitly evaluate uncertainty – particularly related to lack of data. To
accomplish this, scenario analyses can be conducted in which model inputs are varied over
plausible ranges, and the impact on results assessed – for instance in ‘most likely’, ‘best
case’, and ‘worst case’ scenarios. Each model input can be varied individually to identify
inputs that drive the analysis and are associated with the greatest uncertainty in the results.

For example, in the decision tree depicted in Figure 2, uncertainty about the proportion of
time patients spend within the target INR range in the first month of warfarin therapy could
be explored by examining the modeled outcomes of a plausible range of values. Perhaps in
the “most likely”, “best”, “worst” scenarios patients are within the INR target range for
66%, 82%, and 50% of the time, respectively. Downstream outcomes of these times in target
INR range can be modeled to see how use of genotype-guided dosing compares to standard
dosing under each assumption. In the model, the “most likely”, “best”, and “worst”
genotype-guided dosing scenarios are estimated to result in approximately 44, 40, and 52
serious bleeding events and 27, 24, 28, serious thromboembolic events, respectively.(47)

Additionally, overall uncertainty related to data inputs can be evaluated using probabilistic
sensitivity analysis (PSA), in which distributions are assigned to the model inputs, and
Monte Carlo simulation is used to repeatedly draw sets of model inputs.(51, 52) Although
the use of PSA is considered best practice for health outcomes modeling, use of individual
parameter sensitivity analyses and multiple-parameter scenario analyses may be more
intuitive for stakeholders.(53, 19)

II. Summary Measure of Health-Related Utility
Analogous to the USPSTF approach to presenting the results of indirect evidence
assessments, we suggest presenting both benefits and risks in an outcomes table, as well as
reporting ranges of results obtained from evaluations of uncertainty and assumptions, as
described above.(35) However, assessing the overall balance of risks and benefits can be
more challenging. Clinical events differ in their severity and frequency, and projecting their
impact without an explicit framework or summary outcome measure is difficult. For
example, considering the warfarin therapy cohort, should serious bleeding events
experienced or thromboembolic events avoided receive a greater weight? Projected life
expectancy is an important summary measure of mortality and should be assessed in all risk-
benefit analyses for which there is uncertainty about clinical utility. However, life
expectancy does not account for patient morbidity and quality of life impacts.

Quality-Adjusted Life-Years—The challenge of comparing different types of outcomes
across different diseases and interventions has been addressed in health outcomes research
using the metric of the quality-adjusted life-year (QALY).(54) The use of QALYs as the
preferred measure in health outcomes research has been established in the US and a variety
of other countries.(54, 55) In addition, the recent IOM Committee to Evaluate Measures of
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Health Benefits for Environmental Health and Safety Regulation in the United States stated
that analyses that “integrate morbidity and mortality impacts in a single effectiveness
measure should use the quality-adjusted life year to represent net health effects.”(56)

The QALY represents an adjustment to length of life for the estimated quality of life.
Quality of life is measured with a preference scale or index, where 0 represents the value or
“utility score” for death and 1 represents normal “full” health. Thus, ten years of life
expectancy at a utility of 0.5 is equivalent to five years with full health. There are several
approaches to measuring preferences including time trade-off, standard gamble, and
population-weighted surveys.(54) These measures evaluate physical, mental, emotional, and
social functioning domains to varying extent, and can be general or condition specific.

Grosse and Khoury suggested using the term ‘utility’ to include both ‘clinical utility’
(health-related outcomes) and ‘social utility’ (primarily psychological effects).(57) We
propose defining the utility of genomic testing from a health policy perspective as an
improvement in life expectancy or quality of life for patients and their families, and term
this measure ‘health-related utility’ (HRU). The psychological impacts of testing, whether
benefits or harms, would be included if they have a measurable impact on patient’s health-
related quality of life, defined in general as mental, emotional, or social functioning related
to their knowledge of genomic test results. In this construct, clinical events can be assessed
through their impact on patient life expectancy (i.e., attributable mortality) and morbidity
(i.e., patient quality of life). This definition combines attributes of ‘clinical utility’ and
‘social utility’, but does not include effects, such as impact on diagnostic thinking, if there is
no associated influence on clinical outcomes or quality of life.

Returning to the warfarin case study, assessment of the potential impact of clinical events on
life expectancy and QALYs requires the tracking of events, mortality, and quality of life
over the lifetime of a patient cohort, which is commonly achieved in decision modeling
through the use of Markov models.(58) We previously developed a warfarin
pharmacogenomics health policy model employing such techniques, and estimated in the
base-case analysis that testing could lead to an improvement in QALYs of 0.003 (1 day).
(43) Notably, uncertainty analyses indicated that the difference in QALYs could range from
-0.005 to +0.010. These findings are relatively consistent with the results of similar analyses
recently conducted by Eckman and colleagues and Patrick and colleagues. (59,60)

Limitations of QALYs—There are several limitations to the use of QALYs as a summary
measure of HRU for genomic tests. First, there are limited data on the impact of testing on
patient and family quality of life or preferences.(61) Second, measuring the psychological
impacts of testing using a preference approach is challenging, as most instruments likely are
not sensitive, and disease and test specific instruments will need to be developed.(61) Third,
there is significant uncertainty associated with most preference estimates, further
complicating interpretation of the results of risk-benefit analyses. Fourth, different
individuals will vary in their utility ratings of the same health state, so clinical guidelines
should allow clinicians flexibility to address individual preferences, though population-level
clinical policies will generally aim to consider average or typical preferences.

Many of these concerns have been noted by genomic test stakeholders in the literature.(19)
Specifically, we found that while stakeholders are receptive to the concept of using decision-
analytic methods to evaluate genomic tests, many have concerns about lack of consistency
in the methods used to elicit preferences, the ability of QALYs to capture the psychological
value of test results, and the use of QALYs as a summary measure of HRU.(19) Perhaps
most importantly, stakeholders noted that use of QALYs as a summary measure of HRU is
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likely to lead to arguments about preference elicitation methods, and could ultimately limit
the use of decision-analysis to evaluate genomic tests.(19)

These limitations highlight the need for ongoing stakeholder dialogue in relation to the
development and use of decision-analytic methods to evaluate genomic tests, consideration
of the impact of patient treatment preferences on health outcomes, and the importance of
outcome measures in addition to QALYs. To help address these issues, we suggest that
analyses report a multitude of health outcomes, including: 1) proportion of patients with a
reclassified risk status, 2) proportion of patients indicated to receive an alternative treatment
strategy, 3) proportion of patients likely to choose the alternative treatment 4) clinical events
(benefits and harms), 5) life expectancy, and 6) quality-adjusted life-expectancy (Table 1).

III. Risk-benefit policy matrix
Health policy evaluations of genomic tests are complex and warrant a variety of clinical,
social, and political considerations. The framework established above serves to anchor one
of these domains, health-related utility. Given the results of a quantitative risk-benefit
analysis, in addition to other factors, decision-makers are faced with three options: 1)
recommend the technology, 2) reject it, or 3) wait and collect more data.

In reference to the latter option, there has been increasing regulatory interest in the use of
‘coverage with evidence development’ (CED). CED programs provide patients access to
technology while developing evidence to inform future policy decisions.(62) The U.S.
Medicare program has recently applied this approach in other areas where there is limited
evidence available (e.g. surgical interventions and medical devices). In such programs,
healthcare payers agree to cover medical services or technologies under the condition that
beneficiaries enroll in studies or registries to collect additional data on the use and outcomes
of the therapy. Thus, CED provides a process for moving technologies along the
translational pathway. For example, based on recommendation from the Medicare Evidence
Development & Coverage Advisory Committee (MEDCAC), CMS recently implemented a
CED policy for pharmacogenomic testing with warfarin therapy.(63)

To implement CED in a manner consistent with facilitating the appropriate translation of
genomics into healthcare, a ‘technology triage’ mechanism is needed to identify potential
candidates. We believe quantitative risk-benefit assessment can serve this important role.
Risk-benefit policy matrices can be used to categorize genomic tests based on potential
magnitude of HRU, and the uncertainty around these estimates. Our draft matrix (Figure 3)
provides 5 recommendation options, aiming to discourage use (or clinical development) of
tests that have a reasonable chance of overall ‘negative’ HRU, while encouraging entry into
a ‘post-marketing’ development pathway for tests that offer substantial promise but lack
evidence of HRU.

For example, in the warfarin case study, model estimates indicated that genotype-guided
dosing would result in a small increase in QALYs relative to standard dosing, but
probabilistic sensitivity analyses estimated that genotype-guided dosing would increase
QALYs in 84% of simulations and decrease QALYs in 16% of simulations.(43) Given these
findings indicate an approximately ‘neutral’ risk-benefit profile and a ‘moderate’ degree of
uncertainty, genotype-guided warfarin dosing could be classified as ‘use with evidence
development.’ In fact, this was the conclusion reached by the Centers for Medicare and
Medicaid Services (CMS) in August of 2009.(64) Although formal decision modeling did
not appear to have a direct role in this decision, CMS “considered the evidence in the
hierarchical framework of Fryback and Thornbury where Level 2 addresses diagnostic
accuracy, sensitivity, and specificity of the test; Level 3 focuses on whether the information
produces change in the physician’s diagnostic thinking; Level 4 concerns the effect on the
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patient management plan and Level 5 measures the effect of the diagnostic information on
patient outcomes.”(65) While the evidence considered was similar, a formal risk-benefit
approach may have provided greater transparency in regard to synthesis across levels of
evidence, and quantification of the potential net benefit and associated uncertainty.
Uncertainty analyses also could highlight the evidence gap in regard to the effectiveness of
testing, and the value of conducting an RCT.

The recommendation categories we propose for the risk-benefit framework offer a starting
point for stakeholders to develop dialogue about the merits of genomic tests. As with most
policy frameworks, we expect this approach to evolve over time, and be modified as needed
by individual stakeholder groups. For certain stakeholders, other considerations such as cost
and equity will be important and should be evaluated. Indeed, in our previous study of
stakeholder perspectives, payers indicated that tests with lower budget impacts might be
evaluated using a simpler matrix primarily focused on potential harm, while more expensive
tests or ones that have larger downstream cost impacts would require a careful evaluation of
risk-benefit as well as cost-effectiveness. (19)

Challenges
In some cases, formal risk-benefit assessment of genomic tests will be limited by lack of
sufficient or valid data to make utilization recommendations. In these cases, health outcomes
modeling can be used to conduct exploratory evaluations to identify key parameter values
that are required to produce health-related utility. For example, this approach was taken in
the recent EGAPP evidence reports evaluating CYP-P450 testing for antidepressant therapy
and ovarian cancer susceptibility testing.(39, 40) In the CYP-P450 for antidepressant
therapy evaluation, a decision analysis was conducted to examine under which conditions
genetic testing could lead to a better clinical outcome at six weeks, with the outcome of
proportion responders.(40) In the ovarian cancer susceptibility testing evaluation, a Markov
model with a lifetime horizon was used to assess what combinations of inputs would be
required to achieve a target of 20% reduction in cancer mortality.(39)

Quantitative evaluation of genomic tests is also complicated by their diverse applications
(66), and distinct ethical and policy implications, based on predictive value and the
availability of treatment for patients who test positive.(67) In this sense, the risks and
benefits of genomic testing extend beyond the usual endpoints measured in health
technology assessment. Consideration of risks like stigma and discrimination, false
reassurance, opportunity costs, and use of unproven therapies must be weighed against
potential benefits of genomic diagnosis to family members, and the value placed on risk
information by both patients and providers.(57, 67-71) Whether these risks and benefits
should drive health care decision-making is an open question, to be determined in part by
their relative weight compared to medical outcomes of testing.

Lastly, given the required assumptions and potential complexity of analyses, stakeholder
acceptance of a modeling approach is likely to be a major challenge.(72, 73) To address this
issue, collaboration with stakeholders to specify optimal approaches, interpretation, and
recognition of limitations is critical to the success of a genomic testing risk-benefit
framework. Such efforts are underway, but additional work is needed in this area. (19)
Issues that need to be addressed include: 1) data to be included in risk-benefit analyses, 2)
outcomes generated by the analyses, 3) a decision-making framework and corresponding
thresholds, and 4) transparency, acceptance, and communication of the results of the
analyses.
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Summary
We believe a formal risk-benefit framework is useful for evaluating genomic tests for
several reasons. First, while it must be recognized that the gold standard for direct evidence
of health-related utility of genomic tests will come from prospective randomized controlled
clinical trials, there is an opportunity to utilize quantitative risk-benefit analysis to derive at
least preliminary estimates of HRU. This approach could be particularly valuable for
genomic tests with a clear course of action that has been well studied.

Second, there will be a significant shortage of direct evidence of HRU for genomic tests in
the near future. In some cases, indirect evidence of a favorable risk-benefit profile will
suffice to recommend a test for use in clinical practice. Formal risk-benefit analysis offers a
pragmatic approach to assessing HRU in a reasonably timely yet systematic manner. Thus,
safe and potentially valuable genomic technologies will not be withheld from clinical use
due to lack of direct evidence.

Third, risk-benefit analysis provides a tool to quantify the risk of interventions that result
from testing in relation to potential benefit. Specifying risks can also aid in communicating
such risks to providers and policymakers, thus protecting patients’ and the public’s health.

Finally, there will be significant uncertainty surrounding the HRU of most genomic tests.
Scenario analysis and formal sensitivity analysis provide a mechanism for the quantification
of uncertainty in health-related utility. Risk-benefit analyses also provide a foundation for
assessing the value of additional research to reduce uncertainty and guide prioritization of
comparative effectiveness research in genomics.

In summary, quantitative risk-benefit analysis provides a valuable tool for prioritizing
genomic tests for development in the translational pathway. Specifically, tests that appear to
have a reasonable risk profile, but with significant uncertainty with regard to the magnitude
of benefit, can be recommended for use in clinical practice in coverage with evidence
development programs. These strategies provide a viable route to generating evidence of
health-related utility in the de facto ‘post-marketing’ environment of genomic tests. This
approach could serve as a foundation for assessment of population health impacts,
regulatory decisions, health economics studies, and for the incorporation of the personal
utility of prognostic information.
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Figure 1.
Schematic diagram of disease-based model
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Figure 2.
Warfarin Pharmacogenomics Decision Tree
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Figure 3.
Risk-Benefit Policy Matrix
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Table 1

Risk-Benefit outcomes table: Examples of potential outcomes for different types of genomic tests

Incremental results for testing vs.
comparator strategy

Type of Genomic Test

Pharmacogenomics Disease Risk Newborn Screening

Proportion of patients with a reclassified
risk status

% patients with reclassified
risk status

% individuals with
reclassified risk status

% children with reclassified risk
status

Proportion of patients indicated to
receive an alternative treatment strategy

% patients with dose or drug
change

% individuals
initiating lifestyle

change or preventative
interventions

% children receiving medical or
dietary intervention

Proportion of patients likely to choose
the alternative treatment

% patients choosing indicated
treatment strategy

% individuals
choosing indicated
lifestyle change or

preventative
intervention

% children receiving indicated
medical or dietary intervention

Incidence of clinical events: Benefits and
Harms (including NNT, NNS, NNB,

NNH)

serious adverse drug reaction,
myocardial infarction, stroke,

cancer recurrence

myocardial infarction,
stroke, cancer

recurrence

growth, mental functioning

Life expectancy life years life years life years

Quality of life (and patient preferences) impact of clinical events on
quality of life

impact of increased
fear vs. empowerment

impact of ‘right to know’ vs. harm
from uncertainty in diagnosis or

treatment

Quality-Adjusted Life-Years QALYs QALYs QALYs

NNT=Number Needed to Treat, NNS=Number Needed to Screen, NNB=Number Needed to Benefit, NNH=Number Needed to Harm,
QALY=Quality-Adjusted Life-Year
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