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Abstract
The underlying genetic etiology of late onset Alzheimer’s disease (LOAD) remains largely
unknown, likely due to its polygenic architecture and a lack of sophisticated analytic methods to
evaluate complex genotype-phenotype models. The aim of the current study was to overcome
these limitations in a bi-multivariate fashion by linking intermediate magnetic resonance imaging
(MRI) phenotypes with a genome-wide sample of common single nucleotide polymorphism (SNP)
variants. We compared associations between 94 different brain regions of interest derived from
structural MRI scans and 533,872 genome-wide SNPs using a novel multivariate statistical
procedure, parallel-independent component analysis, in a large, national multi-center subject
cohort. The study included 209 elderly healthy controls, 367 subjects with amnestic mild cognitive
impairment and 181 with mild, early-stage LOAD, Caucasian adults, from the Alzheimer’s
Disease Neuroimaging Initiative cohort. Imaging was performed on comparable 1.5T scanners at
over 50 sites in the USA/Canada. Four primary “genetic components” were associated
significantly with a single structural network including all regions involved neuropathologically in
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LOAD. Pathway analysis suggested that each component included several genes already known to
contribute to LOAD risk (e.g. APOE4) or involved in pathologic processes contributing to the
disorder, including inflammation, diabetes, obesity and cardiovascular disease. In addition
significant novel genes identified included ZNF673, VPS13, SLC9A7, ATP5G2 and SHROOM2.
Unlike conventional analyses, this multivariate approach identified distinct groups of genes that
are plausibly linked in physiologic pathways, perhaps epistatically. Further, the study exemplifies
the value of this novel approach to explore large-scale data sets involving high-dimensional gene
and endophenotype data.
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Introduction
Late onset Alzheimer’s disease (LOAD), the commonest cause of late-life dementia (Bekris
et al., 2010) has high heritability (Gatz et al., 2006a; Gatz et al., 2006b). However, its
etiopathology, pathogenesis and major risk genes are only partly known, mainly due to its
genetic complexity and heterogeneity. The “amyloid hypothesis” seems insufficient to fully
explain LOAD etiology and alternative hypotheses continue to be advanced (Pimplikar et
al., 2010).

To date only one gene of major effect, apolipoprotein E ε4 (APOE4), replicates as
significantly influencing LOAD risk (Strittmatter et al., 1993), but does not account for all
genetic variability, suggesting the interplay of multiple, mostly unidentified susceptibility
loci of smaller effect size acting multiplicatively under a common disease variant model
(Eccles and Tapper, 2010) and/or with environmental factors (Traynor and Singleton, 2010).
Recent high-throughput genome wide association studies (GWAS) (van Es and van den
Berg, 2009)(Grupe et al., 2007; Harold et al., 2009; Seshadri et al., 2010) have identified
and replicated in addition to APOE4, other genes such as BIN1, CLU, ABCA7, CR1,
PICALM, MS4A6A, CD33, MSA4E and CD2AP, all of which (apart from APOE) have
modest effect sizes and cumulatively account for only 35% of the population attributable
risk (Ku et al., 2011; Naj et al., 2011). However, if LOAD risk is mediated in part by
common polymorphisms individually conferring low disease risk, acting in concert, typical
univariate GWAS might not have enough power to consistently detect these effects unless
they utilize very large sample sizes. This might be an inherent issue as obtaining such large
sample sizes are usually quite difficult. Also more importantly univariate studies do not take
into account the effect of multiple genes at once. This is important because major LOAD
risk factors include obesity, cerebrovascular disease and diabetes, all disorders with
significant genetic underpinnings (Profenno et al., 2010), suggesting causative genes might
belong to common biological pathways shared by these conditions. To circumvent some of
these issues, multivariate analyses have been suggested as an approach to identify important
genetic factors in LOAD (Gandhi and Wood, 2010).

MRI captures robust phenotypic neuroanatomical LOAD biomarkers, most consistently
implicating posterior cingulate and entorhinal cortices, hippocampus and other medial
temporal structures (Jack et al., 2010a; Jack et al., 2010b; Smith, 2010; Villain et al., 2010)
corresponding to sites of early, severe LOAD-related neuropathology. Imaging genetics
attempts to bridge genetic variations with phenotypic trait markers, relating genotypic
variations to underlying biological disease etiologies and increasing statistical power,
thereby requiring smaller sample sizes (Potkin et al., 2009). However, such strategies
require tools to simultaneously accommodate thousands of data points per feature set (e.g.
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~105 voxels from imaging data and up to 106 SNPs from genetic data), posing a major
statistical challenge. Often, large scale studies are performed in a univariate fashion that
significantly limits either one or both feature sets. However, these techniques can curtail the
usefulness of multidimensional data to identify potentially informative relationships.
Conventional voxel-wise analyses are computationally time consuming on a genome-wide
scale and ineffectively capture cumulative effects spread over multiple genes. Prior analyses
(Biffi et al., 2010; Potkin et al., 2009; Shen et al., 2010) on the multi-site MRI/genetic ADNI
dataset used massively univariate approaches: GWAS, that confirmed the risk status of
APOE4 and identified TOMM40 (Shen et al., 2010) and hypothesis-driven analyses using
pre-selected known affected brain regions plus GWAS, that reinforced the status of
promising individual genes of interest (Biffi et al., 2010). However, no analyses have
evaluated the premise that genetic determinants are not randomly distributed among relevant
biological pathways but instead grouped together among specific biological processes, nor
have they detected predicted groups of common, interactive risk polymorphisms.

Parallel independent component analysis (Para-ICA) a novel multivariate data-driven,
hypothesis-free statistical technique, extends ICA to analyze multiple modalities
simultaneously (Calhoun et al., 2009). Para-ICA identifies simultaneously clusters of
associated, likely interacting genes related to either: (a) functional brain networks, (b)
related structural brain regions, or (c) physiologic processes e.g. EEG patterns or other
potential endophenotypes and shows their relationships (Calhoun et al., 2009). Beginning
with two modalities (here, SNP’s and MRI-derived regional brain volume/thickness), we
sought to discover underlying factors from both modalities and their connections. Similar to
conventional ICA analyses, extracted structural MRI components are maximally
independent within modality and loading coefficients represent variation among individuals.
Networks or components extracted from genetic data are groups of interacting SNP loci,
contributing with varying degrees to a genetic process affecting a downstream biological
function, i.e. linear SNP combinations highly associated with related phenotypes. To date,
this technique has been used mainly in schizophrenia and healthy controls to find genes
responsible for brain structure and function using MRI and EEG patterns (Jagannathan et al.,
2010; Liu et al., 2008; Meda et al., 2010). However, subject and SNP numbers in those
studies were typically small.

Genetic and structural MRI data from the ADNI sample provide an ideal test bed to explore
LOAD and to validate application of Para-ICA to larger datasets. The subject number
(>800) and large genotypic dataset (>600,000 SNPs) allow for examination of feasibility of
scaling up this technique where some valid results are published in this dataset from
conventional, hypothesis-driven analyses (Biffi et al., 2010). Because many LOAD risk
genes remain to be discovered, the technique can simultaneously be used to identify novel
risk genes, as it identifies clusters of related, interacting SNPs.

We had the following goals: 1) to evaluate whether Para-ICA could be scaled up to deal
with larger populations and many more SNPs than previously analyzed; 2) to identify new
risk genes for LOAD and their corresponding endophenotypes and 3) to explore the different
LOAD-mediating biological interactive pathways in which the identified risk genes might
participate. We hypothesized that the method might identify previously unknown LOAD
risk genes, as well as known candidate genes. We hypothesized that identified genes would
group into LOAD-associated physiologic pathways and processes.

Materials and Methods
We evaluated associations between two data modalities, structural MRI (sMRI), (regional
brain volumes and cortical thicknesses), and genome-wide genotypic data (SNPs), to reveal
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multivariate relationships between structural brain regions and SNP’s that differed between
healthy controls, MCI and AD subjects.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) Study
Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.ucla.edu). ADNI results from efforts of many co-investigators from a broad range
of academic institutions and private corporations, with subjects recruited from over 50 sites
across the U.S. and Canada. For up-to-date information, see www.adni-info.org. The
Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and
University of California – San Francisco.

Study Participants—Data derived from the ADNI database on 818 subjects included
baseline 1.5 T MRI scans, Illumina SNP genotyping data, APOE genotype status and
demographic information. We limited analyses to European-American ADNI subjects
(classified initially into respective ethnic groups based on self-report and validated
subsequently using genetic markers) to prevent confluence of population stratification
effects on data, yielding a total of 209 HC (Mean/SD Age = 76.05/4.94; 113 Males) with no
past history of neurological or psychiatric disorder, 367 subjects with MCI (Mean/SD Age =
74.95/7.37; 239 Males) and 181 subjects with clinically-assessed AD (Mean/SD Age =
75.57/7.48; 100 Males) for analysis.

Single Nucleotide Polymorphisms (SNP’s) - Genotype—Sample collection and
Single nucleotide polymorphism (SNP) genotyping for more than 620,000 target SNPs
across the whole genome was completed on all ADNI participants as described in (Saykin et
al., 2010; Shen et al., 2010).

Quality Control/Pre-processing: Prior to Para-ICA, genotyped SNP’s underwent two pre-
processing stages. First, quality control parameters were employed to discard data unsuitable
for further analysis. Samples (both subjects and SNP’s) were checked for missing data and
those with missing call rates >5% were excluded. Remaining samples were imputed for
missing values (<1%) by replacing data with the corresponding major genotype. Following
this, all uninformative SNP’s (constant variance) were excluded. SNP’s were then checked
for minor allele frequency (MAF); rare SNP variants with MAFs <0.01 were excluded.
Highly correlated SNP’s (r>0.95) (in block sizes of 100kb) were removed. Finally, SNPs (in
controls only) were checked for Hardy-Weinberg equilibrium set at a threshold of p<1E-7.
QC SNP’s (N=533,872) were then carried over to the next processing stage. The above
analyses were performed using custom scripts in Matlab 7.0 (www.mathworks.com).

The above pre-processed SNP’s were subjected to a univariate GWAS type case-control
association analysis to identify those differing significantly across the three diagnostic
groups. This 1) effectively restricted the core analysis to disease-related genetic data in the
current sample, 2) reduced potential noise from interacting genes with little or no
relationship to the disease model, providing hypothesis-free data-driven “enrichment,” and
3) improved accuracy and the linking coefficient of the Para-ICA algorithm (determined
based on previous simulation results (Liu et al., 2008)). All SNP’s (using an additive model)
were entered into a mass univariate ANOVA design with diagnostic group as the
independent factor, using Matlab 7.0. SNP’s surviving a liberal p<0.05 uncorrected
threshold were then advanced to the Para-ICA multivariate association analyses. As noted,
at this stage, no multiple comparison correction was performed. All significant SNP’s with a
p<0.05 uncorrected threshold (N=27,150) were carried forward to Para-ICA to determine
genetic associations (including weak effects spread across multiple SNPs) with brain
structures.
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MRI Structural Imaging - Phenotype—All subjects underwent a high-resolution 3D
structural MRI scan (MPRAGE) as detailed in http://www.adni-info.org. We utilized
recently published ADNI imaging data, analyzed in Freesurfer V4.1.0
(http://surfer.nmr.mgh.harvard.edu/fswiki) (Shen et al., 2010), thus, brain structure
preparation and analysis methods are described only briefly. An automated Freesurfer
Bayesian segmentation and parcellation routine extracted and labeled cortical and
subcortical tissue classes (Shen et al., 2010), yielding target region volumes, cortical
thicknesses and total intracranial volumes for pre-defined brain structure regions-of-interest
(ROIs). Freesurfer values for two independently collected MPRAGE scans per subject were
averaged to yield a single volume/cortical thickness value. Table 1 lists all imaging
phenotypes (N=94; bilateral volumes of interest and cortical thickness values). All values
were normalized by Z-score transformation before entry into Para-ICA.

Genotype-Phenotype Associations (Para-ICA)
Para-ICA was implemented using the Fusion ICA Toolbox v2.0a;
http://icatb.sourceforge.net in Matlab 7.0 to compute independent genetic/imaging networks
and simultaneously identify and quantify association between the two modalities/features.
This variant of ICA was designed for multimodality processing that extracts components
using an entropy term based on information theory to maximize independence and enhances
the interconnection by maximizing the linkage function in a joint estimation process
(Calhoun et al., 2009; Liu et al., 2008). In addition, Para-ICA estimated loading parameters
expressing the weight of the overall component for each subject. Overall correlation values
between loading coefficients of the two sets of imaging and genetic component(s) were
calculated component-wise for the aggregate sample to identify significantly associated
feature sets. Comprehensive mathematical details of the algorithm and methodology are
provided in (Liu et al., 2008). Data values from all three diagnostic groups were organized
as a matrix of subjects by SNP’s/imaging-ROI values. These genotype and phenotype data
matrices were input to the Para-ICA algorithm (see diagram in Figure 1). The number of
independent estimated components for both SNP (12 components) and imaging data (8
components) was separately estimated using Akaike information criteria (AIC) (Calhoun et
al., 2001). Resulting correlation values between the Para-ICA feature sets were
appropriately corrected for multiple comparisons at this stage and a Bonferroni correction
was applied based on 12×8=96 comparisons yielding a corrected p value threshold of
0.05/96 = 0.0005. Once significant feature set associations were identified, all contributing
SNPs/imaging ROIs across each significant feature/network/component were thresholded at
a supra level |Z|>2.0 to specifically identify dominant loadings for each individual network.
SNP’s or regions surpassing this threshold were deemed to be contributing significantly to
the overall signal of the corresponding component/network. Subsequently, loading
coefficients of significantly associated components were tested in a case-control fashion to
test if they differed significantly among diagnostic groups.

Significant SNP’s from each component were then batch queried against the dbSNP
database http://www.ncbi.nlm.nih.gov/projects/SNP/ to extract corresponding known gene
information; genes from this query (derived for each component) were entered into the
functional annotation tool, DAVID (http://david.abcc.ncifcrf.gov/) to identify enriched
biological themes and visualize these genes on functional pathways e.g. KEGG and/or
BioCarta. The Ingenuity pathway analysis tool (IPA;
http://www.ingenuity.com/products/pathways_analysis.html) modeled and analyzed the
complex biology and genetic interactions as canonical pathway models within the identified
significant genetic network(s). SNPs associated with known genes were mapped to the
Ingenuity Pathways Knowledgebase to delineate biological networks. Genes were also input
to Funcassociate v2.0 (http://llama.mshri.on.ca/funcassociate/) to reveal significantly
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enriched functional attributes in each component compared against a gene ontology
database. Finally, we performed standard chi-square association analyses on the top 10 Z-
score-ranked genes from each Para-ICA-derived genetic network, to determine their relative
association with the disease model.

Results
Initial data pre-processing with a univariate “GWAS like” analysis (p<0.05 uncorrected)
revealed N=27,150 SNPs that differed significantly across groups. It confirmed SNPs from
APOE (ε4; p=6.6E-16; ε3; p=3.6E-09) and TOMM40 (p=7.25E-08) as the top three
candidate genes, whose genotypes differed significantly across diagnostic groups, as
identified in prior GWAS of the same parent dataset (Potkin et al., 2009).

Genotype-Phenotype associations using Para-ICA
From the 12 SNP and 8 anatomic principal component networks identified by AIC, Para-
ICA identified four different independent genetic networks significantly associated with a
single structural network (following Bonferroni correction). These four networks were
component/networks 1 (G1; consisting of 169 significant genes/332 SNPs), 2 (G2; 182
genes/377 SNPs), 3 (G3; 267 genes/482 SNPs) and 4 (G4; 169 genes/332 SNPs). G1 and G3
had significant loadings (Z>2) from APOE (ε4). All four networks were significantly
associated with only one structural brain network (S1) that encompassed 40 different
unilateral regions (a combination of both volumes and cortical thickness surpassing a Z=2
threshold). Key structural regions loading heavily in this component were entorhinal cortex
and middle temporal cortex thicknesses and amygdala and hippocampus volumes. A
complete list of significant regions is highlighted with double asterisks in Table 1 and
illustrated in Figure 2. Significant genotype-phenotype correlations (between loading
parameters of each modality or feature) were as follows: 1) G1-S1 (r=−0.53; p<0.0001) 2)
G2-S1 (r=0.32; p<0.0001) 3) G4-S1 (r=0.24; p<0.0001) and G3-S1 (r=−0.14; p=0.0001).
Figure 2 summarizes these data with the top 10 representative genes from each genetic
network along with their corresponding biological functions. Supplementary figure 1 (Fig
S1) shows correlation (scatter) plots for these associations. Testing loading coefficients of
the above networks for between-group differences revealed that in addition to having
significant associations they also significantly discriminated groups by baseline diagnosis
(AD, MCI, or healthy control). Mean loading coefficients across each genetic/structural
network are shown in supplementary Figure 2 (Fig S2).

Pathway analysis of genetic networks (components)
Ingenuity Pathway Analysis (IPA) software (http://www.ingenuity.com/) was used to detect,
visualize, and explore relevant biological networks associated with each genetic component.
Top networks for G1 were cellular assembly/organization, cell morphology and
development. G2 was enriched with genes related to cardiovascular disease, neurologic
disease and cardiac arteriopathy. Primary networks for G4 were cell cycle, cell death and
inflammatory response. G3 had an over-representation of genes related to neurological and
psychological disorders. All the above networks contained known Alzheimer’s-related
proteins in their pathway interactions. Top dynamic networks from each genetic component
are illustrated in Figure 3. Based on known gene functions, the top five IPA canonical
pathways for each gene network (sorted in terms of genotype-phenotype linkage
significance) were as follows:

G1: cAMP mediated signaling, sulfur metabolism, calcium signaling, vascular NO signaling
and regulation of IL-2 expression in T lymphocytes. G2: Neuro-protective role of THOP1 in
Alzheimer’s, NOS endothelial effects, Type 2 diabetes signaling, tyrosine metabolism,
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CYP450. G4: cAMP-mediated signaling, cardiac beta-adrenergic signaling, synaptic long-
term potentiation, molecular cancer mechanisms, NOS endothelial effects. Significantly
associated non-Neurologic disorders were type 2 diabetes (N=80), coronary artery disease
(N=71), Crohn’s/inflammatory bowel disease (N=65). G3: Protein kinase A signaling,
cardiac beta-adrenergic signaling, cAMP-mediated signaling, amino sugars metabolism,
glycosaminoglycan degradation. Significantly associated non-neurologic disorders were
Type 2 Diabetes (N=70), Crohn’s disease/IBD (N=57), coronary artery disease (N=57).

The DAVID functional annotation tool revealed that the significant genes from all four
genetic networks are involved in multiple biological pathways including Alzheimer’s
disease, adherens junction, arrhythmogenic right ventricular and dilated cardiomyopathy,
axon guidance, calcium signaling, cell adhesion, ECM receptor interaction, focal adhesion
and tight junction and smooth muscle contraction. Figure 4 illustrates (marked with red
stars) the significant genes in our study directly related to Alzheimer’s disease on a KEGG
pathway map derived from the above tool. Genes analyzed using the Funcassociate v2.0
toolkit revealed several (N=60) significantly over-represented attributes compared against
the gene ontology database. The results presented in Table 2 are rank ordered based on
adjusted p value along with the number of genes in the query, number of genes in the overall
attribute and their odds ratios.

Supplementary Association analysis of top genes from Para-ICA
Association analysis (to illustrate their relative disease association) of allelic frequencies for
the top ten genes (based on ranked Z-scores) from the four genetic components revealed that
the genes SLC9A7, SHROOM2, ZNF673, APOE (ε3, ε4), VPS13C and ATP5G2 showed
stronger effects of disease associations compared to other genes within the component.
Table 3 details the allelic frequency and the associated statistical value for each of the top 10
genes from all four genetic networks; due to partial overlap (1 gene could appear in more
than 1 component) totaling 32 unique genes. A weighting score was derived by normalizing
the chi-square value of each gene to the chi-square of the gene most associated with clinical
disease status within each component.

Discussion
As hypothesized, we validated a scaled-up Para-ICA approach to reveal novel interactive
genes and pathways for LOAD, thus highlighting one of the primary advantages of Para-
ICA which is the use of modest sample sizes compared to conventional GWAS analyses to
effectively capture genotype-phenotype relationships. Dominant loading coefficients were
contained in all major regions affected by LOAD pathology in the single structural
component significantly associated with four different SNP/genetic networks. Seven other
structural components were unassociated with other gene components. The genetic
components identified included SNPs from APOE4 plus multiple other risk genes (and
putatively protective SNPs, e.g. APOE2) either previously identified in LOAD risk (e.g.
ATF7 in G3 (Lin et al., 2006)) or involved in one or more biological processes thought to
contribute to LOAD pathology. Figure 5 summarizes the involvement of these four genetic
risk networks on a LOAD physiologic pathway diagram.

The most significant association was between G1-S1. This genetic network had significant
loading contributions from a total of 169 different genes (332 SNPs) and correlated
negatively with brain network S1, implying increased genetic load is related to decreased
brain volume/thickness within the network. This association was notable as the S1 had high
loadings from APOE4 (in the top 10 gene loadings) and S1 included regions known to be
affected early and severely in LOAD, including entorhinal, middle temporal and prefrontal
cortices and hippocampus. More importantly, this genetic network had high loadings from
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several other genes (SLC9A7/NHE7, ZNF673, SHROOM2) previously unidentified in
LOAD pathology. Given that they were part of the same independent genetic component as
APOE, this finding both confirms APOE’s established role as an important LOAD risk gene
and suggests that these additional SNPs may interact with APOE to influence disease risk,
supporting APOE’s role as a LOAD risk factor rather than a direct cause (Guerreiro et al.,
2010). The protein encoded by SLC9A7 mediates Na+/H+ exchange across cell surface
plasma membranes (Kagami et al., 2008) cycling between the cell surface and intracellular
trans-Golgi network and recycling endosomes, which are vital to APP processing (Marks
and Berg, 2010). SLC9A7 co-localizes with actin, implicated in tau formation (Gallo, 2007).
LOAD lymphoblasts show abnormalities modulated by sodium/hydrogen exchanger
blockers (Urcelay et al., 2001). Overall, this genetic network was enriched with genes
dominant in cell signaling pathways. Other strongly contributing genes are involved in lipid
transport and tau formation (via actin/myosin binding). ZNF673 is associated with X-linked
mental retardation, (Lugtenberg et al., 2006; Ramaswamy et al., 2010) and is close (~0.2
MB) to SCL9A7 on Xp11.3.

The second most significant association in genotype/phenotype correlation was G2-S1. This
correlation was positive. G2 comprised 182 unique genes (377 SNPs). Some top-ranked
genes from this component overlapped with those from G1, including ZNF673 and
SLC9A7. These genes had a significant differential distribution among diagnostic groups,
suggesting a role of actin localization and transcriptional regulation in LOAD. Other top
genes from this network involved in important AD-related processes included the
complement system, involved in amyloid-beta formation and inflammatory damage (van Es
and van den Berg, 2009).

Network G4 correlated positively with S1. G4 contained several genes associated with risk
for non-neurologic disorders, including diabetes and cardiovascular disease, both LOAD
risk factors (Profenno et al., 2010). Top genes from this network, previously unidentified in
the context of LOAD, belonged to the complement factor/inhibition pathway related to
amyloid-beta clearance (35) or are associated with major histocompatibility class III.
Additionally, AKAP9, a top 10 gene in this network, maintains neuronal Golgi integrity and
is involved in LOAD pathogenesis (Stieber et al., 1996). Regarding association analysis, no
top 10 gene from this network was significantly differentially distributed in the disease
groups, suggesting that G4 comprises multiple SNPs of low effect acting together through
diverse biological risk pathways, especially inflammation, (see Eikelenboom et al. 2006) to
significantly affect LOAD-related neuropathology.

The final genotype-phenotype association was a negative correlation between G3 and S1.
G3 included ATP5G2, a subunit of mitochondrial ATP-synthase, which was over-
represented in the disease group. Mitochondrial ATP-synthase in entorhinal cortex is a target
of oxidative stress in LOAD (Terni et al., 2010) and part of LOAD apoptosis pathways.
Several other G3 genes included dominant signaling from CNTN5, recently associated with
multiple AD MRI characteristics (Biffi et al., 2010), CEP57, a microtubular/centrosomal
localizer (Meunier et al., 2009), MTMR2, an endosomal regulator (Lee et al., 2010), and
ATF7, associated with LOAD in Lin et al. (Lin et al., 2006). The loading of previously
identified LOAD genes and associated pathobiological pathways further supports the
relevance of this genetic network.

Analyzing significant genes from all four components using DAVID and visualizing related
processes on KEGG pathways revealed that genes grouped in multiple LOAD-relevant
biological processes (see Figure 4). Additional prominent processes not shown in figure
included cellular communication, cardiovascular diseases, signal transduction, calcium
signaling, cell adhesion and neuronal developmental processes (e.g. axon guidance). Many
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such processes are implicated in LOAD pathology (e.g. neuronal calcium signaling (Kostiuk
et al., 2010; LaFerla, 2002; Mattson and Chan, 2003)). Semaphorin 3A, an axon-guiding
membrane protein, accumulates in hippocampus in AD (Koncina et al., 2007).

Major themes deriving from the top 32 Z score-defined genes in the 4 SNP components
suggest several major pathophysiological LOAD pathways, especially when such genes co-
occurred within a component. From G1, APOE may relate to LOAD risk through pathways
not directly linked to amyloid-beta, including actin-related mechanisms. Actin cytoskeletal
changes as a path to tau formation (Gallo, 2007) are implicated across all components by
SCLC987/NHE7 (Kagami et al., 2008; Ohgaki et al., 2008), SHROOM2 and COBL
(Dominguez, 2009) and microtubule-related genes including MTMR2, CEP57 and
CTNND2 (Bamburg and Bloom, 2009; Meunier et al., 2009). Three such genes were present
in component 1. Immune function, especially the complement system, related to amyloid-
beta clearance (Guerreiro et al., 2010; Kolev et al., 2009) and expressed in cerebrovascular
smooth muscle (Walker et al., 2008), is suggested by ATF7, CFB, C2, SKIV2L, C6orf10
and C6orf15 (Li et al., 2006; Veerhuis, 2010). These genes support the known role of the
complement system in LOAD pathogenesis (van Es and van den Berg, 2009), while adding
new gene candidates, e.g. C2. Complement is present in dystrophic LOAD neurites,
involved in immune response and linked to synaptic pruning (Hollingworth et al., 2010).
Five immune related/complement genes are present in G4.

CTNND2/Delta Catenin/NPRAP is associated with GSK3-beta, hence BAP and tau (Bareiss
et al., 2010). CNTN5 encodes contactin5; other contactins participate in LOAD risk, (Biffi
et al., 2010; Osterfield et al., 2008). The prominence of SCLC987/NHE7(and MTMR2)
suggests the importance of the trans-Golgi network and recycling endosome (Lee et al.,
2010). Endosomal processing of APP involving SorLA is of importance in LOAD (Lin et
al., 2005; Marks and Berg, 2010; Ohgaki et al., 2008). VPS proteins are related to this
process (He et al., 2005; Marks and Berg, 2010), although VPS13C has yet to be implicated.
VPS13C is associated with maintenance of plasma glucose levels (Saxena et al., 2010); the
related VPS26 is linked with BACE/memapsin2 (He et al., 2005). CL44A4 is involved in
choline uptake (Jurgensen and Ferreira, 2010). MTMR2 has relevance to excitatory synapses
(Lee et al., 2010). ZKSCAN3/ZNF263 is associated with vascular endothelial growth factor
(Yang et al., 2008).

The above data suggest involvement of multiple genes influencing varied, complex
pathways that might interact mutually to contribute to LOAD. Output from Para-ICA lends
itself readily to functional pathway analysis and ultimately systems biology. We also
identified novel putative LOAD risk genes, confirmed via testing allelic frequency
distributions among disgnostic groups in standard case-control association analyses. It is
notable that while none of these genes survived a standard GWAS study, they have high
impact when their effect is evaluated in the context of other SNPs. In addition, the SNP
components detected several genes previously unknown in the context of LOAD risk,
having high Z scores, exceeding those for APOE. Several of these (e.g. SLC9A7, ZNF673,
VPS13) were: (a) identified by multiple (up to 17) SNPs, (b) mediate processes plausibly
associated with LOAD risk from pathway analyses and prior publications, (c) had SNPs
differentially distributed among diagnostic groups and (d) are prominently expressed in
brain. These results suggest validity of these novel loci as candidate LOAD risk genes.

Examining loading coefficients of the gene and structural networks revealed a stepped
response pattern (see Fig S2), with MCI values falling between those of healthy control and
AD, except for in G3, where they were elevated in MCI compared to AD, suggesting that
this gene component may act to either protect against or hasten regional brain deterioration
in MCI to influence progression rate to AD.
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Our study has limitations. Although the Para-ICA method is data driven, we restricted the
genetic dataset to a disease-related subset. This focused analysis might fail to uncover genes
affecting LOAD pathology via other interactive pathways that may not straightforwardly
show group differences. However, since we employed a liberal statistical threshold to limit
the genetic dataset to disease-related genes, we were able to include numerous SNPs
discarded by conventional univariate studies. Our AD/MCI-focused gene set analysis may
not have detected other genetic associations to brain structure. The analysis was carried out
only in European-Americans, by far the most numerous ethnicity in the dataset. Future
studies could include larger mixed populations. Also, since para-ICA identified multivariate
relationships at the gene network level (comprised of linear combinations of SNPs), the
directionality and effect magnitude of individual SNPs is not immediately transparent. Our
supplementary association analysis to derive the top SNPs might be slightly biased, as they
were already pre-selected at a liberal cut-off to be included in the multivariate analysis.
Given these limitations and the novelty of our study, our results require further validation
and replication in more diverse and larger independent datasets.

In conclusion, we met our major study goals by 1) confirming the feasibility of a hypothesis-
blind, multivariate approach to corroborate LOAD genes associated with known pathologic
mechanisms and to discover new putative disease-relevant genes that interact but fail
individually to reach genome-wide significance. These data thus extend existing GWAS and
hypothesis-driven analyses on the same ADNI data set (Biffi et al., 2010; Saykin et al.,
2010; Shen et al., 2010). 2) The Para-ICA approach identifies genes in relatively modest
sized samples that are plausibly linked collectively in known physiologic pathways, perhaps
epistatically and suggests itself as a novel method for exploring other large-scale data sets
involving gene and endophenotype information such as BSNIP or COGS (Calkins et al.,
2007; Thaker, 2008), in psychotic disorders where the neuropathology and genetic basis are
less well-defined than LOAD. Finally, 3) we identified plausible new biological pathways
associated with AD neuropathology. Possible therapies resulting from our findings might
include agents targeted to the complement and/or immune systems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flow diagram illustrating the Para-ICA technique employed in this study.
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Figure 2.
Significant genotype-phenotype associations identified using the hypothesis-free Para-ICA
approach. Genetic factors combine effects from all risk loci, thus explaining more
phenotypic variability than traditional analytic approaches. Figure shows the top ten genes,
ranked by Z-scores, plus their known functions, from each of the four genetic networks that
were significantly correlated with the MRI network. Numbers of significant genes and SNPs
within each network is listed at top. * Indicates that the same gene appears among the top
ten genes of another network. Genes in red text have been previously implicated in LOAD
risk.
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Figure 3.
Representation of the top canonical pathways derived from Ingenuity pathway software for
all four significant genetic networks. G1: Pathway enriched for cellular assembly/
organization, cell morphology/development; G2: Pathway enriched for cardiac arteriopathy,
cardiovascular and neurological disease; G4: Pathway enriched for cell cycle, cell death and
inflammatory response; G3: Enriched for genetic, neurological and psychological disorders.
Key: red = known AD implicated gene; blue = involved in long-term memory, green =
involved in long-term potentiation of CA1 neurons.
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Figure 4.
Genes identified as part of the significant Para-ICA networks highlighted on a KEGG
Alzheimer’s pathway diagram derived from the DAVID functional association tool. Genes
identified using red stars occurred in 1 or more of our 4 gene networks. Genes indicated in
red text are the primary genes identified to date responsible for the early form of AD (PSEN,
APP) or account for a major proportion of LOAD risk (APOE).
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Figure 5.
A summary of different genetic components (circled in red) identified in the current study
projected onto an Alzheimer’s disease functional interaction pathway (modified from
Sleegers K et al., TIGS 2009)
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Table 1

Details all Freesurfer-derived regions of interest used as the imaging phenotype

Rank order Region Abs Z-Score for
Network S1

1 Left Superior Frontal ** 2.82

2 Right Superior Frontal ** 2.80

3 Left Entorhinal Cortex ** 2.74

4 Left Middle Temporal ** 2.72

5 Left Rostral Mid Frontal ** 2.65

6 Left Caudal Mid Frontal ** 2.64

7 Left Inferior Temporal ** 2.58

8 Right Middle Temporal ** 2.58

9 Right Hippocampus Volume ** 2.57

10 Right Entorhinal Cortex ** 2.56

11 Right Rostral Mid Frontal ** 2.54

12 Left Hippocampus Volume ** 2.52

13 Left Isthmus Cingulate ** 2.51

14 Right Caudal Mid Frontal ** 2.47

15 Right Isthmus Cingulate ** 2.43

16 Right Temporal Pole ** 2.39

17 Left Temporal Pole ** 2.37

18 Right Inferior Parietal ** 2.31

19 Right Inferior Temporal ** 2.29

20 Left Fusiform ** 2.29

21 Left Superior Temporal ** 2.28

22 Inferior Lateral Ventricle ** 2.27

23 Left Superior marginal ** 2.24

24 Right Superior marginal ** 2.21

25 Left Inferior Parietal ** 2.21

26 Right Post Cingulate ** 2.17

27 Right Precuneus ** 2.16

28 Right Superior Temporal ** 2.15

29 Right Amygdala Volume ** 2.13

30 Right Pars Operculum ** 2.11

31 Left Precentral ** 2.11
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Rank order Region Abs Z-Score for
Network S1

32 Left Pars Trianglaris ** 2.10

33 Left Amygdala Volume ** 2.10

34 Left BanksSTS ** 2.08

35 Right Pars Trianglaris ** 2.08

36 Left Post Cingulate ** 2.07

37 Left Lateral OrbFrontal ** 2.07

38 Left Precuneus ** 2.06

39 Right Parahippocampus ** 2.01

40 Right Fusiform ** 2.00

41 Right Lateral OrbFrontal 1.97

42 Left Pars Orb 1.97

43 Right Precentral 1.97

44 Left Pars Operculum 1.96

45 Left Parahippocampus 1.95

46 Right BanksSTS 1.90

47 Left Medial Orbito Frontal 1.84

48 Right Superior Parietal 1.82

49 Right Medial Orbito Frontal 1.82

50 Frontal Pole 1.79

51 Right Ventricle DC 1.79

52 Left Ventricle DC 1.78

53 Right Paracentral 1.75

54 3rd Ventricle 1.71

55 Left Paracentral 1.68

56 Left Superior Parietal 1.68

57 Left Frontal Pole 1.61

58 Right Pars Orb 1.56

59 Right Frontal Pole 1.52

60 Right Pallidum Volume 1.47

61 Left Post central 1.44

62 Left Rostral Ant Cingulate 1.41

63 Right Post central 1.38

64 CC_Mid Anterior 1.37

65 Left Pallidum Volume 1.32

66 CC_Central 1.32

67 Right Putamen Volume 1.24

68 Left Accumbens Volume 1.20
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Rank order Region Abs Z-Score for
Network S1

69 CC_Mid Posterior 1.18

70 Right Thalamus Volume 1.18

71 CC_Posterior 1.17

72 Left Putamen Volume 1.15

73 Left Left ingual 1.13

74 Left Lateral Occipital 1.11

75 Right Lateral Occipital 1.10

76 Right Accumbens Volume 1.06

77 CC_Anterior 1.05

78 Right Caud Ant Cingulate 1.03

79 Right Left ingual 0.95

80 Left TransverseTemporal 0.84

81 Right Rostral Ant Cingulate 0.75

82 Left Caud Ant Cingulate 0.69

83 Left Thalamus Volume 0.68

84 Right Corpus Collosum 0.66

85 Left Corpus Collosum 0.56

86 Right Cuneus 0.55

87 Right TransverseTemporal 0.51

88 Left Pericalc 0.46

89 Left Caudate Volume 0.31

90 Right Caudate Volume 0.31

91 Left Cuneus 0.30

92 Right Cerebellar Cortex 0.18

93 Right Pericalc 0.08

94 Left Cerebellar Cortex 0.05

**
Denotes regions with significant loadings on imaging network S1, ranked in order of Z-score loads. S1 was the only imaging network that was

significantly associated with any (in this case all four) genetic networks.
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