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Bias correction for estimated QTL effects using the
penalized maximum likelihood method

J Zhang, C Yue and Y-M Zhang

A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative
trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite
directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present
study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance
parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show
that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in
opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance).
We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines
developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage
estimation of QTL effects is discussed.
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INTRODUCTION

Epistasis, the interaction between genes, is an important process in
genetics, selection and evolution (Lynch and Walsh, 1998; Carlborg
and Haley, 2004; Melchinger et al., 2007), and use of the epistatic
genetic model has been popular in genetic dissection of complex traits
(Cheverud and Routman, 1995; Carlborg and Haley, 2004; Zhang and
Xu, 2005; Melchinger et al., 2007; He and Zhang, 2008). However, the
model dimension increases quickly as the number of loci increases.
The number of parameters is often larger than the sample size,
producing what is known as an oversaturated model. In this situation,
the most commonly used least squares and maximum likelihood
methods are not feasible.

Recently, statistical methods have been proposed to handle such
oversaturated model. In general, there are two approaches: variable
selection (Akaike, 1973; Hocking, 1976; Schwarz, 1978; Ball, 2001;
Broman and Speed, 2002) and shrinkage estimation (Hoerl and
Kennard, 1970; Tibshirani, 1996; Xu, 2003, 2007a; Zhang and Xu,
2005). For variable selection, stepwise regression that progressively
adds or deletes a quantitative trait locus (QTL) as well as an epistatic
effect in the model (Moreno-Gonzalez, 1993) is one of the most
important methods. For the shrinkage estimation, ridge regression
(Hoerl and Kennard, 1970; Whittaker et al., 2000; Boer et al., 2002) is
not a viable choice for QTL mapping if the model includes all markers
of the entire genome. The reason for this is that the estimation treats
all effects equally across loci (Xu, 2003). In the stochastic search
variable selection of George and McCulloch (1993) and Yi et al.
(2003), effects included in the model have one common prior
variance, and effects excluded from the model have another common
prior variance. However, the two prior variances are artificially deter-

mined. To overcome this issue, the Bayesian shrinkage estimation
method was developed (Meuwissen et al., 2001; Xu, 2003; Wang
et al., 2005). In this method, each effect is assigned a normal prior
distribution with a mean of zero and a unique variance. The effect-
specific prior variance is further assigned a vague prior such that the
variance can be estimated from the data. Although this method has been
validated by rigorous statistical proof, it is an Markov chain Monte
Carlo implemented approach and thus is computationally demanding.
In addition, the least absolute shrinkage and selection operator
(LASSO) is commonly used (Tibshirani, 1996; Scott, 2007), but
this method is difficult to implement and often has a high false
positive rate in the detection of QTL, which will be demonstrated in a
later section of this study. To save computing time, Zhang and Xu
(2005) incorporated the idea of Bayesian shrinkage estimation into
the maximum likelihood method. This method, called penalized
maximum likelihood (PML), adopts a penalty that depends on the
values of the parameters. It allows spurious QTL effects to be shrunk
towards zero, while QTL with large effects is estimated with virtually
no shrinkage. The main advantages of this approach over other
methods are reflected by its simplicity and fast speed.

Zhang and Xu (2005) used the PML method to estimate epistatic
effects of an oversaturated genetic model. However, the PML method
is not optimal in two special cases: (1) closely linked QTL with effects
in opposite directions and (2) small-effect QTL. The reason for this is
that the method shrinks true small effects and spurious effects in the
same way and causes all effects (true and false) to bias downwardly. In
theory, shrinkage estimation refers to the biased estimation of a
regression coefficient towards zero using a prior variance as a factor
to control the degree of shrinkage (Xu, 2007b). To overcome the above
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shortcomings of the PML method, we should correct the bias in
the estimation of QTL effects. As for the correction, Guo (2007) used
the PML method to select QTL and employed the least squares
method to estimate the effects of the selected QTL, and Luo et al.
(2003) used the variance of estimate to correct the genetic variance of
each individual QTL. In this study, we consider an alternative
approach.

Under the Bayesian framework, a QTL effect is generally assigned a
normal prior. The variance parameter in the normal prior is further
assigned a uniform prior (Zhang and Xu, 2005), the Jeffreys prior
(Wang et al., 2005) or a scaled inverse chi-square prior (Chen et al.,
2010). The first two priors are special cases of the scaled inverse chi-
square prior (Xu, 2010). In Zhang and Xu (2005), we adopted the
uniform prior for the variance parameter. In this study, we substitute
the uniform prior with a more general scaled inverse chi-square prior.
We demonstrate that these modifications are able to correct the bias
and improve the power of QTL detection.

THEORY AND METHODS

Genetic model
Let yi (i¼1, 2,y, n) be the phenotypic value of the ith individual in a
backcross population of sample size n. The genetic model under
consideration is

yi ¼ b0+
Xq

l¼1

xilbl+
Xq�1

r¼1

Xq

s¼r+1

xirxisbrs+ei; ð1Þ

where b0 is the population mean, xil is a dummy variable indicating
the genotype of the lth marker for individual i, bl is the effect of
marker l (l¼1, 2,y, q), q is the total number of markers on the entire
genome, brs is the epistatic effect between markers r and s, and ei is the
residual error with an assumed N(0,s2) distribution. The dummy
variable is defined as xil¼1 for heterozygote and xil¼�1 for homo-
zygote for a backcross individual.

For clarity of notation, we use j to index the jth genetic effect,
including the additive and epistatic effects. Model (1) is then rewritten
as

yi ¼ b0+
Xp

j¼1

xijbj+ei; ð2Þ

where xij¼xil and bj¼bl if the jth effect is a main effect, xij¼xirxis and
bj¼brs if the jth effect is an epistatic effect and p¼q(q+1)/2. Now, we
have a simple model that includes both the main and the epistatic
effects.

Prior distribution
In the PML method of Zhang and Xu (2005), the penalty is a function
of the parameters, and the prior density of the parameters in the
Bayesian framework is an ideal choice for the penalty factor. The prior
distributions in Zhang and Xu (2005) are briefly described below. The
parameters b0 and s2 are always included in the model; therefore, their
inclusion should not be penalized. We adopt the normal prior for each
of the genetic effects (bj) in model (2),

pðbjÞ ¼ fðbj; mj; s
2
j Þ for j ¼ 1; � � � ; p; ð3Þ

where f(bj; mj,sj
2) is the normal density with mean mj and variance sj

2.
The normal and uniform priors are further assigned to mj and sj

2,
respectively,

pðmjÞ ¼ fðmj; 0; s2
j =ZÞ and pðs2

j Þ / 1 for

j ¼ 1; � � � ; p;
ð4Þ

where Z¼5 (Zhang and Xu, 2005). We replace the uniform prior with
a scaled inverse chi-square prior, of which the uniform prior is a
special case (Xu, 2010):

pðs2
j jt;oÞ ¼ Inv � w2ðs2

j jt;oÞ / ðs2
j Þ
�t+2

2 exp � o
2s2

j

 !
: ð5Þ

Monte Carlo simulation studies showed that (t, o)¼(�3.5, 0) is the
best choice for the set of hyperparameters because a higher power of
QTL detection and lower mean squared error (MSE) were achieved
(Supplementary Figure S1). Some theoretical considerations of our
method are given in Appendix A.

Bias correction
Define y¼{b0, b1,y, bp, s2} and x¼{m1,y,mp, s1

2,y,sp
2}. The

parameters are estimated by maximising the penalized log likelihood
function

cðy; xÞ ¼ LðyÞ+Pðy; xÞ ð6Þ
with respect to y and x simultaneously, where

LðyÞ ¼
Xn

i¼1

lnf yi; b0+
Xp

j¼1

xijbj; s2

 !
ð7Þ

and

Pðy; xÞ ¼
Xp

j¼1

½lnfðbj; mj; s
2
j Þ+ lnfðmj; 0; s2

j =ZÞ

+ ln pðs2
j jt;oÞ�

ð8Þ

To correct the bias of the estimated QTL effect, P(y,x) is replaced by

~Pðy; xÞ ¼
Xp

j¼1

kj½ lnfðbj; mj; s
2
j Þ+ lnfðmj; 0; s2

j =ZÞ

+ ln pðs2
j jt;oÞ�

ð9Þ

where kj is a bias correction coefficient. We will describe how to
determine the most suitable kj value in Result. Therefore, the PML
function is set to

cðy; xÞ ¼ LðyÞ+ ~Pðy; xÞ: ð10Þ
The PML estimate of the intercept is found by setting

q
qb0

cðy; xÞ ¼ � 1

2s2

Xn

i¼1

yi � b0 �
Xp

j¼1

xijbj

 !
ð�2Þ ¼ 0

and solving for b0, which is

b0 ¼
1

n

Xn

i¼1

yi �
Xp

j¼1

xijbj

 !
: ð11Þ

Setting

q
qbj

cðy; xÞ ¼ � 1

2s2

Xn

i¼1

ð�2xijÞ yi � b0 �
Xp

k¼1

xikbk

 !

�
2kjðbj � mjÞ

2s2
j

¼ 0

and solving for bj (j¼1,y, p), we obtain

bj ¼
Xn

i¼1

x2
ij+

kjs2

s2
j

" #�1 Xn

i¼1

xij yi � b0 �
Xp

k 6¼j

xikbk

 !
+

kjmjs
2

s2
j

" #
:

ð12Þ
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If sj
2-0, then bj-mj. Additionally, m̂j ¼ b̂j=ðZ+1Þ, so bj-0. This

explains why the estimate of a false QTL effect is close to zero. If sj
2 is

far away from zero, kj can be used to adjust the estimate of bj, and a
suitable kj value is used to obtain an unbiased estimate of bj.

The residual error variance is estimated by setting

q
qs2

cðy; xÞ ¼ � n

2s2
� 1

2ð�1Þðs2Þ2
Xn

i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

¼ 0

and solving for s2, which is

s2 ¼ 1

n

Xn

i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

: ð13Þ

The PML estimates of the nuisance parameters are

mj ¼ bj=ðZ+1Þ ðj ¼ 1; � � � ; pÞ; ð14Þ

s2
j ¼
ðbj � mjÞ2+Zm2

j +to

t+4
ðj ¼ 1; � � � ; pÞ: ð15Þ

The iterative steps in the estimation of parameters are identical to
those given by Zhang and Xu (2005). The criterion of convergence isP
jyðtÞ � yðt�1Þjo10�6.
In this study, we considered two new methods: (1) the method with

kja1 (bias correction only) and (2) the method with kja1 and ta�2
(bias correction and different level of shrinkage), which are abbreviated
as bias-correction PML (BPML) and bias-correction and shrinkage
PML (BSPML), respectively.

Likelihood ratio test
As stated by Zhang and Xu (2005), the usual likelihood ratio test
(LRT) cannot be carried out with the PML method because the model
is oversaturated. We proposed the following two-stage selection
process to scan the markers (Zhang and Xu, 2005). In the first
stage, all effects with jb̂j=ŝj410�6 are chosen. In the second stage,
the full model is modified such that only the markers that pass the first
round of selection are included in the model. Thanks to the smaller
dimension of the reduced model, we can use the maximum likelihood
method to re-analyse the data and perform the LRT.

The procedure for calculating the LRT statistic is the same as that
used in Zhang and Xu (2005). Let s be the total number of QTL effects
that have passed the first round of selection and y¢¼{b0, b(1),y, b(s), s2}
be the parameters that are subject to the maximum likelihood analysis
for the significance test. To test the null hypothesis that H0:b(j)¼0, that
is, the jth surviving QTL is not true, we use the following LRT statistic,

LRj ¼ �2½Lðy0�jÞ � Lðy0Þ� ð16Þ
where y¢�j¼{b0, b(1),y, b(j�1), b(j+1),y, b(s), s2} is the vector of
parameters that excludes b(j) (1,y, s). As pointed out by Kao et al.
(1999), the choice of the critical value for claiming a significant QTL
becomes complex for multiple QTL test. For simplicity, we use
logarithm of odds (LOD)X2.0 as the criterion (Lander and Kruglyak,
1995; Qin et al., 2008; He et al., 2011) for the simulated data and the
usual LODX2.5 (He et al., 2011) as the criterion for real data analysis,
where LOD¼LR/ln(10).

RESULTS

Monte Carlo simulation studies
The purpose of the simulation studies was to demonstrate that (1) the
BPML method is more efficient than the PML method and the

BSPML method is better than the BPML method and (2) the
BSPML method is as efficient as the currently adopted methods,
such as the empirical Bayes (eBayes) method (Xu, 2007a).

We simulated a backcross population using a sample size of 600.
Two hundred forty-one evenly spaced markers were simulated on one
chromosome segment of 2400 cM in length. A total of 20 QTL were
simulated, all of which were placed at marker positions. The sizes and
locations of the QTL are listed in Table 1. These parameters were used
to generate the phenotypic observations of a quantitative trait with
a population mean b0¼100 and a residual error variance s2¼10.0.
We generated a total of 500 data sets (replications) from the same
parameter setup. Each of the 500 simulated data sets was analysed
by the PML, BPML, BSPML, eBayes and LASSO approaches (Xu,
2010). For each simulated QTL, we counted the samples in which the
LOD statistic exceeded 2.0. A detected QTL within 20 cM of the
simulated QTL was considered a true QTL. The ratio of the number m
of such samples to the total number of replicates (500) represented the
empirical power of this QTL. The false positive rate was calculated as
the ratio of the number of false positive effects to the total number of
zero effects considered in the full model. We used the MSE of
estimated QTL effects to further evaluate the performance of the
extended methods. The MSE for the jth QTL is defined as
MSEj ¼ 1

m

Pm
i¼1 ðb̂jðiÞ � bjÞ2, where b̂jðiÞ is the estimate of bj in the

ith sample.
To select a suitable kj value in the BPML and BSPML approaches,

each of the 500 simulated data sets was analysed by varying kj from 0.2
to 1.2 incremented by 0.2. The most suitable kj value was determined
by high power of QTL detection, low MSE and small bias of the
estimated QTL effect. For example, the highest power, the lowest MSE
and the least bias for the 7th and 8th QTL are always achieved using
kj¼0.2 (Supplementary Figure S2). This finding means that kj should
be set to 0.2 for the 7th and 8th QTL.

To achieve the first objective of the simulation experiment, each of
the 500 simulated data sets was analysed by the PML, BPML and
BSPML approaches. The results are shown in Figure 1. Compared
with the PML method, the BPML method increased the power of
detection for the 7th and 8th QTL (closely linked QTL) from 23 to
85%, decreased the MSE from 0.260 to 0.085, and reduced the
standard deviations of the positions and the effects for the simulated
QTL. The same trend was also observed for the 17th QTL (closely
linked to the 16th QTL with the same sign) (data not shown).
Compared with the PML method, the BPML method increased the
power of detection of the 19th QTL (small-effect QTL) from 56.0 to

Table 1 Effects and positions of the simulated quantitative trait loci

(QTL)

QTL True value QTL True value

Position (cM) Effect r2(%) Position (cM) Effect r2(%)

1 50 4.47 19.29 11 910 3.81 15.02

2 120 3.16 9.64 12 920 2.25 4.89

3 210 �2.24 4.85 13 1100 �1.30 1.63

4 240 �1.58 2.41 14 1210 �1.00 0.97

5 350 2.24 4.85 15 1300 �2.24 4.85

6 360 3.16 9.64 16 1340 1.58 2.41

7 610 1.10 1.17 17 1350 1.00 0.97

8 630 �1.10 1.17 18 1370 �1.73 2.89

9 800 0.77 0.57 19 1800 0.71 0.49

10 900 1.73 2.89 20 2300 0.89 0.76
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84.8% and decreased the standard deviation of the position and the
effect for the 19th QTL. When we further replaced the uniform prior
of the variance parameter by the scaled inverse chi-square prior, a
further improvement in QTL detection was achieved. For example, the
power of the detection of the 17th QTL increased from 37.4 to 60.2%
and the MSE decreased from 0.275 to 0.059. Therefore, the BSPML
method is the best of the three aforementioned methods.

To achieve the second objective of the simulation experiment,
each of the 500 simulated data sets was analysed by the BSPML,
eBayes and LASSO approaches. The results are shown in Figure 1.
Based on the power of QTL detection, the MSE and the standard
deviations of the estimated positions and the effects of QTL,
the LASSO method is the best of the three methods, and the
BSPML method is as efficient as the eBayes method. However, the
LASSO method has the highest false positive rate, whereas the others
have low false positive rates.

The computing times for completing a single data analysis using the
previously described methods, implemented by the SAS program, are
also given in Figure 2. The results show that the BSPML method is
faster than the other methods.

Real data analysis in barley
The well-known barley data set from the North American Barley
Genome Mapping Project (Tinker et al., 1996) was used for the
demonstration. The data set was collected from a doubled haploid
population that contained 145 lines, each of which was grown in 25
different environments. The phenotype analysed was the average value
of the kernel weight across environments. A total of 127 markers
covering a genome of 1500 cM (seven linkage groups) were used in the
analysis. Xu (2007a) re-analysed this data set using eBayes and LASSO.
A total of six main-effect QTL were identified on five linkage groups.
The sizes of the identified QTL ranged from 1.01 to 30.30% of the
phenotypic variance (Tinker et al., 1996; Xu, 2007a). The overall
contribution of the six QTL to the phenotypic variance was from
28.70 to 62.18% across various methods.

This data set was re-analysed in this study. Due to incomplete
marker genotypic information and unevenly distributed marker

density, the procedure requires a pre-treatment. When the marker
density is high, choosing one marker from a cluster of highly linked
markers can avoid a high degree of multicollinearity. When the marker
density is too sparse (45 cM), a virtual marker (treated as missing
data) may be inserted (Xu et al., 2011). In the case of incomplete
marker information, marker imputation techniques can be used.
Usually, 30–50 imputed data sets are generated. In this study, we
imputed 100 samples for the missing genotypes using the conditional
probability of incomplete marker genotypes calculated by the multi-
point method (Rao and Xu, 1998). This approach requires multiple
analyses of the data sets; each of the 100 imputed data sets was
analysed by the BSPML, eBayes and LASSO methods. The total
number of QTL effects included in the model was q(q+1)/2, where
q¼127. The number of effects was B56 times the sample size. In other
words, the model was overloaded. In this case, a two-stage method was

Figure 1 Results of QTL mapping from the simulated data sets (500 replicates) using the PML, BPML, BSPML, eBayes and LASSO methods. Note that the

true effect values for the 7th, 8th, 9th, 19th and 20th QTL are 1.1, �1.1, 0.77, 0.71 and 0.89, respectively.

Figure 2 Computing time (in s) of a single analysis from a backcross
population of 600 lines using various approaches, implemented by the SAS

program, on a Pentium PC with 2.80GHz processor and 2.00 GB RAM.
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proposed. In the first stage, the full model including all the main and
pairwise epistatic effects was divided into many reduced models. Each
reduced model contained all the main effects and a portion (B500) of
the epistatic effects. It was feasible to estimate the parameters of each

reduced model. In the second stage, we modified our epistatic genetic
model such that only effects that have passed the first round of
selection were included in the model, and re-analysed the data under
the modified genetic model using the BSPML, eBayes and LASSO

Figure 3 The locations and effects of QTL detected with the BSPML (M1), eBayes (M2), LASSO (M3) and composite interval mapping (M4) methods. The

effects and LOD scores for the detected QTL are also given in the figure. For the main-effect QTL, effects and LOD scores are placed at the positions of the

detected QTL. For the epistatic QTL, the effects and LOD scores are placed along with the lines that connect the interacting loci. Solid lines indicate that

the interactions were detected by all three methods. Dotted lines indicate that the interactions were detected by only two methods.
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methods. The critical value of LOD score for declaration of significance
was set to 2.5. For the BSPML method, we needed to select a suitable
value for kj. Therefore, each of the 100 imputed data sets was analysed
by setting kj at 0.2, 1.0 and 1.2. A suitable kj value was determined as
the one that produced the highest ratio of the number of QTL detected
to the total number of imputed data sets. If the ratio ties, then the kj

value with the largest LOD value is recommended. This is because the
MSE and the bias of QTL effect estimates cannot be calculated when
the true value of the parameter is unknown. The results are listed in
Supplementary Tables S1 and S2. From the two tables, we were able to
determine the most suitable kj value. In addition, the original data set
was also analysed using composite interval mapping (Wang et al.,
2007), and its critical LOD score was calculated by performing 1000
permutation experiments. The results are shown in Figure 3. As a
result, eight main-effect QTL and seven epistatic QTL were detected.
The seven main-effect QTL that were originally identified by the eBayes
in Xu (2007a) were all detected by the BSPML method. The additional
main-effect QTL mapped in the analysis was confirmed by the LASSO
method, suggesting that the BSPML is more powerful. Results of all the
methods showed that main effects are more important than epistatic
effects (Xu, 2007a), because the main effects collectively explain 55.1%
of the total phenotypic variation of the trait. The corresponding
proportions obtained from the eBayes, LASSO and composite interval
mapping analyses are 77.1, 75.3 and 75.8%, respectively.

Cross-validation
The entire barley data set was split into five subsets, each with 29 lines.
The training data consisted of four subsets for parameter estimation and
the testing data consisted of the remaining data set for the evaluation of
the predicted error of the kernel weight. Each of the five subsets was
treated as a testing data set in turn and eventually the kernel weights of
all lines were predicted. The mean prediction error (MPE), defined
below, was used as a measurement of the efficiency of a method,

MPE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 ð17Þ

A smaller MPE indicates a higher efficiency for a method. The second
index of the efficiency is the R2 value, defined as

R2 ¼ 1�MPE=mean squared deviation ð18Þ
where mean squared deviation ¼ 1

n

Pn
i¼1 ðyi � �yÞ2 is the phenotypic

variance of the trait. The final measurement is the Pearson’s correlation
coefficient squared (r2) between the observed phenotypic value y and
the predicted value ŷ. The five-fold cross-validation was applied to all
the four methods (PML, BSPML, eBayes and LASSO) for the barley
kernel weight trait. The results are listed in Table 2, from which we can

see that the BSPML method is comparable to the eBayes method,
although the LASSO method outperformed both methods.

DISCUSSION

Bias correction works well in the detection of both small and linked
QTL. This conclusion means that the method proposed in this study is
efficient in detecting small and closely linked QTL. To further validate
the new method, the idea of bias correction in this study was
incorporated into both eBayes and LASSO. The two extended methods
were also used to analyse the simulated data sets in the Monte Carlo
studies. The results show that the extended eBayes method is better
than the original eBayes method because a higher power of QTL
detection and lower MSE of QTL effect estimate were achieved
(Supplementary Figure S3). Moreover, the improvement in the
LASSO method was minor (data no shown). In addition, this idea
may be incorporated into Bayesian shrinkage analysis, which is
expected to yield a similar improvement.

The BSPML method is different from Zhang and Xu’s (2005)
original method in two aspects. First, the new method corrects the
bias in the estimated QTL effect by using tuning parameter. The
selected tuning parameters are based on simulations, and thus are valid
for the detection of QTL under the assumptions and overall range of
effect sizes included in the simulations. The idea is further confirmed
by real data analysis in this study. This correction is different from
those of the shrinkage interval mapping proposed by Guo (2007) and
Luo et al. (2003). For the two special situations in this study, the bias
correction increased the power of QTL detection and the precision of
the parameters by solving the two problems in Zhang and Xu (2005),
as demonstrated in Figure 1. Second, we replaced the uniform prior of
the variance parameter of the QTL effect by a more general scaled
inverse chi-square prior. As a result, the estimates of bj and sj

2 in the
BSPML method are different from those in the original PML method.

Although the scaled inverse chi-square has been considered as a
prior distribution for sj

2 in the PML method of Lü et al. (2009), there
are some subtle differences between that method and the one
proposed here. The former seeks to decrease the false positive rate
in the detection of QTL by increasing the value of t, whereas the latter
seeks to enhance the QTL detection ability by decreasing the value of
t. In this study, we selected a suitable value for t that maintained a
high statistical power and a low false positive rate.

The well-known barley data set has often been used to detect QTL
for kernel weight in barley (Tinker et al., 1996; Xu, 2007a). However,
the methodologies used in these previous studies differ greatly from
the technique used in this study. For example, Tinker et al. (1996)
used simplified composite interval mapping to detect main-effect QTL
and QTL-by-environment interactions. Among these main-effect
QTL, six were further detected in this study. Our results also agree
with the previously published results of Xu (2007a) because all the
kernel weight loci detected by the eBayes of Xu (2007a) were also
identified in this study. All methods indicated that markers Act8B and
MWG626 are closely associated with kernel weight. The two markers
may be used in marker-assisted selection.

In molecular breeding, identification of small-effect QTL remains a
challenging problem because it is difficult to identify and utilise small-
effect QTL in marker-assisted breeding. The improved method pro-
posed in this study produced high power, particularly in the detection
of closely linked and small-effect QTL. This suggests the feasibility of
utilising these QTL in future marker-assisted breeding.
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Table 2 Results of cross-validation experiment under the epistatic

genetic model for the barley kernel weight trait using the PML,

eBayes, BSPML and LASSO methods

Method Mean prediction error R2a r2b

PML 3.034 0.3557 0.4886

eBayes 2.657 0.4356 0.5075

BSPML 2.269 0.5182 0.5359

LASSO 2.229 0.5265 0.5402

Abbreviations: BSPML, bias-correction and shrinkage penalized maximum likelihood; LASSO,
least absolute shrinkage and selection operator; MPE, mean prediction error; PML, penalized
maximum likelihood.
aR2¼1�MPE/mean squared deviation, where MPE ¼ 1

n

Pn
i¼1ðyi � ŷi Þ2 and

mean squared deviation ¼ 1
n

Pn
i¼1 ðyi � yÞ2.

bPearson’s correlation coefficient squared.

Bias correction for estimated QTL effects using PML method
J Zhang et al

401

Heredity



ACKNOWLEDGEMENTS
We are grateful to three anonymous referees for their constructive comments and

suggestions that significantly improved the presentation of the manuscript. This

work was supported by grant 2011CB109300 from the National Basic Research

Program of China, grant 30971848 from the National Natural Science Foundation

of China, grant KYT201002 from the Fundamental Research Funds for the Central

Universities, grant 20100097110035 from Specialised Research Fund for the

Doctoral Program of Higher Education, PAPD, and grant B08025 from the 111

Project.

Akaike H (1973). Information theory and an extension of the maximum likelihood
principle. In: Petrox BN, Caski F (eds). Second International Symposium on Information
Theory. Akademiai Kiado: Budapest. pp 267–281.

Ball RD (2001). Bayesian methods for quantitative trait loci mapping based on
model selection: approximate analysis using the Bayesian information criterion. Genet-
ics 159: 1351–1364.

Boer MP, Braak CJF, Jansen RC (2002). A penalized likelihood method for mapping epistatic
quantitative trait loci with one-dimensional genome searches. Genetics 162: 951–960.

Broman KW, Speed TP (2002). A model selection approach for the identification of
quantitative trait loci in experimental crosses. J R Stat Soc B 64: 641–656.
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APPENDIX A

Some theoretical consideration of our method
The hierarchical priors of our method are given below,

pðbjjmj; s
2
j Þ ¼ Nðbjjmj; s

2
j Þ

and pðmjjs2
j ; ZÞ ¼ Nðmjj0; s2

j =ZÞ:

The joint distribution for bj and mj is

pðbj; mjjs2
j ; ZÞ ¼ Nðbjjmj; s

2
j ÞNðmjj0; s2

j =ZÞ:

The marginal distribution of bj is

pðbjjs2
j ; ZÞ ¼

Z+1
�1

Nðbjjmj; s
2
j ÞNðmjj0; s2

j

.
ZÞdmj

¼N 0; ð1+1=ZÞs2
j

h i
:

Comparing this prior with the zero mean normal prior

pðbjjs2
j Þ ¼ Nðbjj0; s2

j Þ;

we can see that we increased the standard prior variance to a larger
prior variance

s2
j ! 1+

1

Z

� �
s2

j :

This may explain why we can choose t¼�3.5 to composite this large
prior variance.

The proof of

pðbjjs2
j ; ZÞ ¼ N 0; 1+1

Z

� �
s2

j

h i
is straightforward because we can use the property of normal
distribution and the property of variance. Let

bj ¼ mj+xj

mj ¼ �xj

�
where

�xj ¼
1

Z

XZ
k¼1

xjk

is assumed to be the average of Z error terms, each of which is
sampled from the same distribution N(sj

2). This was the original idea
when we developed the penalized maximum likelihood method. Using

EðmjÞ ¼ 0

varðmjÞ ¼ varð�xjÞ ¼ s2
j =m

�
we can show that

EðbjÞ ¼ EðmjÞ ¼ 0

varðbjÞ ¼ varðmjÞ+varðxjÞ ¼ s2
j =Z+s2

j ¼ 1+ 1
Z

� �
s2

j

(
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