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The community structure of complex networks reveals both their organization and hidden relationships
among their constituents. Most community detection methods currently available are not deterministic,
and their results typically depend on the specific random seeds, initial conditions and tie-break rules
adopted for their execution. Consensus clustering is used in data analysis to generate stable results out of a
set of partitions delivered by stochastic methods. Here we show that consensus clustering can be combined
with any existing method in a self-consistent way, enhancing considerably both the stability and the accuracy
of the resulting partitions. This framework is also particularly suitable to monitor the evolution of
community structure in temporal networks. An application of consensus clustering to a large citation
network of physics papers demonstrates its capability to keep track of the birth, death and diversification of
topics.

N
etwork systems1–8 typically display a modular organization, reflecting the existence of special affinities
among vertices in the same module, which may be a consequence of their having similar features or the
same roles in the network. Such affinities are revealed by a considerably larger density of edges within

modules than between modules. This property is called community structure or graph clustering9–13: detecting the
modules (also called clusters or communities) may uncover similarity classes of vertices, the organization of the
system and the function of its parts.

The community structure of complex networks is still rather elusive. The definition of community is contro-
versial, and should be adapted to the particular class of systems/problems one considers. Consequently it is not yet
clear how scholars can test and validate community detection methods, although the issue has lately received
some attention14–18. Also, in order to deliver possibly more reliable results, methods should ideally exploit all
features of the system, like edge directedness and weight (for directed and weighted networks, respectively), and
account for properties of the partitions, like hierarchy19,20 and community overlaps21,22. Very few methods are
capable to take all these factors into consideration23,24. Another important barrier is the computational complexity
of the algorithms, which keep many of them from being applied to networks with millions of vertices or larger.

In this paper we focus on another major problem affecting clustering techniques. Most of them, in fact, do not
deliver a unique answer. The most typical scenario is when the seeked partition or individual clusters correspond
to extrema of a cost function25–27, whose search can only be carried out with approximation techniques, with results
depending on random seeds and on the choice of initial conditions. Allegedly deterministic methods may also run
into similar difficulties. For instance, in divisive clustering methods9,28 the edges to be removed are the ones
corresponding to the lowest/highest value of a variable, and there is a non-negligible chance of ties, especially in the
final stages of the calculation, when many edges have been removed from the system. In such cases one usually
picks at random from the set of edges with equal (extremal) values, introducing a dependence on random seeds.

In the presence of several outputs of a given method, is there a partition more representative of the actual
community structure of the system? If this were the case, one would need a criterion to sort out a specific partition
and discard all others. A better option is combining the information of the different outputs into a new partition.
Exploiting the information of different partitions is also very important in the detection of communities in
dynamic systems29–32, a problem of growing importance, given the increasing availability of time-stamped
network datasets33. Existing methods typically rely on the analysis of individual snapshots, while the history of
the system should also play a role32. Therefore, combining partitions corresponding to different time windows is
a promising approach.

Consensus clustering34–36 is a well known technique used in data analysis to solve this problem. Typically, the
goal is searching for the so-called median (or consensus) partition, i.e. the partition that is most similar, on
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average, to all the input partitions. The similarity can be measured in
several ways, for instance with the Normalized Mutual Information
(NMI)37. In its standard formulation it is a difficult combinatorial
optimization problem. An alternative greedy strategy34, which we
explore here, uses the consensus matrix, i.e. a matrix based on the
cooccurrence of vertices in clusters of the input partitions. The con-
sensus matrix is used as an input for the graph clustering technique
adopted, leading to a new set of partitions, which generate a new
consensus matrix, etc., until a unique partition is finally reached,
which cannot be altered by further iterations. This procedure has
proven to lead quickly to consistent and stable partitions in real
networks38.

We stress that our goal is not finding a better optimum for the
objective function of a given method. Consensus partitions usually
do not deliver improved optima. On the other hand, global quality
functions, like modularity39, are known to have serious limits40–42,
and their optimization is often unable to detect clusters in realistic
settings, not even when the clusters are loosely connected to each
other. In this respect, insisting in finding the absolute optimum of
the measure would not be productive. However, if we buy the popular
notion of communities as subgraphs with a high internal edge den-
sity and a comparatively low external edge density, the task of any
method would be easier if we managed to further increase the in-
ternal edge density of the subgraphs, enhancing their cohesion, and
to further decrease the edge density between the subgraphs, enhan-
cing their separation. Ideally, if we could push this process to the
extreme, we would end up with a set of disconnected cliques, which
every method would be able to identify, despite its limitations.
Consensus clustering induces this type of transformation (Fig. 1)
and therefore it mitigates the deficiencies of clustering algorithms,
leading to more efficient techniques. The situation in a sense recalls
spectral clustering43, where by mapping the original network in a
network of points in a Euclidean space, through the eigenvector
components of a given matrix (typically the Laplacian), one ends
up with a system which is easier to clusterize.

In this paper we present the first systematic study of consensus
clustering. We show that the consensus partition gets much closer to
the actual community structure of the system than the partitions

obtained from the direct application of the chosen clustering
method. We will also see how to monitor the evolution of clusters
in temporal networks, by deriving the consensus partition from sev-
eral snapshots of the system. We demonstrate the power of this
approach by studying the evolution of topics in the citation network
of papers published by the American Physical Society (APS).

Results
Accuracy. In order to demonstrate the superior performance
achievable by integrating consensus clustering in a given method,
we tested the results on artificial benchmark graphs with built-in
community structure. We chose the LFR benchmark graphs, which
have become a standard in the evaluation of the performance of
clustering algorithms14–18. The LFR benchmark is a generalization
of the four-groups benchmark proposed by Girvan and Newman,
which is a particular realization of the planted ,-partition model by
Condon and Karp44. LFR graphs are characterized by power law
distributions of vertex degree and community size, features that
frequently occur in real world networks.

The clustering algorithms we used are listed below:

. Fast greedy modularity optimization. It is a technique developed
by Clauset et al.45, that performs a quick maximization of the
modularity by Newman and Girvan39. The accuracy of the estim-
ate for the modularity maximum is not very high, but the method
has been frequently used because it has been one of the first
techniques able to analyze large networks. We label it here as
Clauset et al..

. Modularity optimization via simulated annealing. Here the max-
imization of modularity is carried out in a more exhaustive (and
computationally expensive) way. Simulated annealing is a tra-
ditional technique used in global optimization problems46. The
first application to modularity has been devised by Guimerá
et al.47. In contrast to the standard design, we start at zero tem-
perature. This is necessary because if the method is very stable
there is no point in using the consensus approach: if the algorithm
systematically finds the same clusters, the consensus matrix D
would consist of m disconnected cliques and the successive clus-
terization of D would yield the same clusters over and over. For
the method we use the label SA.

. Louvain method. The goal is still the optimization of modularity,
by means of a hierarchical approach. First one partitions the
original network in small communities, such to maximize mod-
ularity with respect to local moves of the vertices. This first gen-
eration clusters turn into supervertices of a (much) smaller
weighted graph, where the procedure is iterated, and so on, until
modularity reaches a maximum. It is a fast method, suitable to
analyze very large graphs. However, like all methods based on
modularity optimization, including the previous two, it is biased
by the intrinsic limits of modularity maximization40–42. We refer
to this method as to Louvain.

. Label propagation method. This method48 simulates the spreading
of labels based on the simple rule that at each iteration a given
vertex takes the most frequent label in its neighborhood. The
starting configuration is chosen such that every vertex is given a
different label and the procedure is iterated until convergence.
This method has the problem of partitioning the network such
that there are very big clusters, due to the possibility of a few labels
to propagate over large portions of the graph. We considered
asynchronous updates, i.e. we update the vertex memberships
according to the latest memberships of the neighbors. We shall
refer to this method as LPM.

. Infomap. The idea behind this method is the same as in car-
tography: dividing the network in areas, like counties/states in a
map, and recycling the identifiers/names of vertices/towns
among different areas. The goal is to minimize the description
of an infinitely long random walk taking place on the network23.

Figure 1 | Effect of consensus clustering on community structure.
Schematic illustration of consensus clustering on a graph with two visible

clusters, whose vertices are indicated by the squares and circles on the (I)

and (II) diagrams. The combination of the partitions (I), (II), (III) and

(IV) yields the (weighted) consensus graph illustrated on the right (see

Methods). The thickness of each edge is proportional to its weight. In the

consensus graph the cluster structure of the original network is more

visible: the two communities have become cliques, with ‘‘heavy’’ edges,

whereas the connections between them are quite weak. Interestingly, this

improvement has been achieved despite the presence of two inaccurate

partitions in three clusters (III and IV).
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When the graph has recognizable clusters, most of the time the
walker will be trapped within a cluster. That way, the additional
cost of introducing new labels to identify the clusters is compen-
sated by the fact that such labels are seldom used to describe the
process, as transitions between clusters are unfrequent, so the
recycling of the binary identifiers for the vertices among different
clusters leads to major savings in the description of the random
walk. We shall refer to this method as Infomap.

. OSLOM. The method relies on the concept of statistical signifi-
cance of clusters. The idea here is that, since random graphs are
not supposed to have clusters, the subgraphs of a network that are
deemed to be communities should be very different from the
subgraphs one observes in a random graph with similar features
as the system at study. The statistical significance is then esti-
mated through the probability of finding the observed clusters
in a random network with identical expected degree sequence24.
Clusters are identified by maximizing locally such probability. We
shall refer to this method as OSLOM.

All the above techniques can be applied to weighted networks, a
necessary requisite for our implementation of consensus clustering
(see Methods).

In Fig. 2 we show the results of our tests. Each panel reports the
value of the Normalized Mutual Information (NMI) between the
planted partition of the benchmark and the one found by the algo-
rithm as a function of the mixing parameter m, which is a measure of
the degree of fuzziness of the clusters. Low values of m correspond to
well-separated clusters, which are fairly easy to detect; by increasing
m communities get more mixed and clustering algorithms have more
difficulties to distinguish them from each other. As a consequence,
all curves display a decreasing trend. The NMI equals 1 if the two
partitions to compare are identical, and approaches 0 if they are very
different. In Fig 2a and 2b the benchmark graphs consist of 1000
and 5000 vertices, respectively. Each point corresponds to an average
over 100 different graph realizations. For every realization we have
produced 150 partitions with the chosen algorithm. The curve
‘‘Original’’ shows the average of the NMI between each partition
and the planted partition. The curve ‘‘Consensus’’ reports the NMI
between the consensus and the planted partition, where the former
has been derived from the 150 input partitions. We do not show the
results for Infomap and OSLOM because their performance on the
LFR benchmark graphs is very good already16,24, so it could not be

sensibly improved by means of consensus clustering (we have veri-
fied that there still is a small improvement, though). The procedures
to set the number of runs and the value of the threshold t for each
method are detailed in the Supplementary Information (SI) (Figs. S1
and S2). In all cases, consensus clustering leads to better partitions
than those of the original method. The improvement is particularly
impressive for the method by Clauset et al.: the latter is known to
have a poor performance on the LFR benchmark16, and yet in an
intermediate range of values of the mixing parameter m it is able to
detect the right partition by composing the results of individual runs.
For m small the algorithm delivers rather stable results, so the con-
sensus partition still differs significantly from the planted partition of
the benchmark. In the Supplementary Information we give a math-
ematical argument to show why consensus clustering is so effective
on the LFR benchmark (Figs. S3 and S4).

Stability. Another major advantage of consensus clustering is the fact
that it leads to stable partitions38. Here we verify how stability varies
with the number of input runs r. In Figs. 3 and 4 we present stability
plots for two real world datasets: the neural network of C. elegans49,50

(453 vertices, 2 050 edges); the citation network of papers published
in journals of the American Physical Society (APS) (445 443 vertices,
4 505 730 directed edges). Each figure shows two curves: the average
NMI between best partitions (circles); the average NMI between
consensus partitions (squares). Both the best and the consensus
partition are computed for r input runs, and the procedure is
repeated for 20 sequences of r runs. So we end up having 20
best partitions and 20 consensus partitions. The values reported
are then averages over all possible pairs that one can have out of
20 numbers. Each of the six panels corresponds to a specific
clustering algorithm. To derive the consensus partitions we used
the same values of the threshold parameter t as in the tests of
Fig. 2a (for Infomap and OSLOM t 5 0.5).

As ‘‘best’’ partition for Louvain, SA and Clauset et al. we take the
one with largest modularity. This sounds like the most natural
choice, since such methods aim at maximizing modularity. For the
LPM there is no way to determine which partition could be consid-
ered the best, so we took the one with maximal modularity as well.
On the other hand, both Infomap and OSLOM have the option to
select the best partition out of a set of r runs.

In Fig. 3 we show the stability plot for C. elegans. For all methods
the consensus partition turns out to be more stable than the best

Figure 2 | Consensus clustering on the LFR benchmark. The dots indicate the performance of the original method, the squares that obtained with

consensus clustering. The parameters of the LFR benchmark graphs are: average degree Ækæ 5 20, maximum degree kmax 5 50, minimum community size

cmin 5 10, maximum community size cmax 5 50, the degree exponent is t1 5 2, the community size exponent is t2 5 3. Each panel correspond to a

clustering algorithm, indicated by the label. The two sets of plots correspond to networks with 1000 (a) and 5000 (b) vertices.

www.nature.com/scientificreports
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partition. The only exception is the method by Clauset et al., but the
two curves are rather close to each other. We remark that increasing
the number of input runs does not necessarily imply more stable
partitions. In the cases of LPM and OSLOM, for instance, the best
partitions of the method get more unstable for r^10. On the other
hand, the stability of the consensus partition is monotonically
increasing for all six algorithms.

In Fig. 4 we see the corresponding plot for the APS dataset. The
analysis of the full dataset is too computationally expensive, so we
focused on a subset, that of papers published in 1960, along with the
papers cited by them. The resulting network has 5 696 vertices and
8 634 edges. Again, we see that the stability of the consensus partition
grows monotonically with the number of input runs r, and it remains
higher than that of the best partition.

In the Supplementary Information we show that the consensus
partition is not only more stable, but it also has higher fidelity than
the individual input partitions it combines (Figs. S5 and S6).

Dynamic communities. Consensus clustering is a powerful tool to
explore the dynamics of community structure as well. Here we show
that it is able to monitor the history of the citation network of the
APS, and to follow birth, growth, fragmentation, decay and death of
scientific topics. The procedure to derive the consensus partitions out
of time snapshots of a network is described in the Methods.

The evolution of the APS dataset is shown in Fig. 5a. The system
is too large to be meaningfully displayed in a single figure, so we
focused on the evolution of communities of papers in Statistical
Physics. For that, we selected only the clusters whose papers include

Figure 3 | Stability plot for the neural network of C. elegans. The network has 453 vertices and 2050 edges.

Figure 4 | Stability plot for the citation network of papers published in journals of the American Physical Society (APS). The original dataset is too large

to get results in a reasonable time, so the plot refers to the subset containing all papers published in 1960 and the ones cited by them.

www.nature.com/scientificreports
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Criticality, Fractal, Ising, Network and Renormalization among the
15 most frequent words in their titles. Each vertical bar corresponds
to a time window of 5 years (see Methods), its length to the size of
the system. The time ranges from 1945 until 2008. The evolution
is characterized by alternating phases of expansion and contraction,
although in the long term there is a growing tendency in the number
of papers. This is due to the fact that the keywords we selected were
fashionable in different historical phases of the development of
Statistical Physics, so some of them became obsolete after some time
(i.e., there are less papers with those keywords), while at the same
time others become more fashionable. Communities are identified by
the colors. Pairs of matching clusters in consecutive times are marked
by the same color. Clusters of consecutive time windows sharing
papers are joined by links, whose width is proportional to the number
of common papers. We mark the clusters corresponding to famous
topics in Statistical Physics, indicating the most frequent words
appearing in the titles of the papers of each cluster. One can spot
the emergence of new fields, like Self-Organized Criticality, Spin
Glasses and Complex Networks.

In Fig. 5b we consider only papers with the words Network or
Networks among the 15 most frequent words in their titles. Here
we can observe the genesis of the fields Neural Networks and
Complex Networks. In order to have clearer pictures, in Fig. 5a we
only plotted clusters that have at least 50 papers, while in Fig. 5b the
threshold is 10 papers.

For a quantitative assessment of the birth, evolution and death of
topics, we keep track of each cluster matching it with the most similar
module in the following time frame (see Methods). This allows us to
compute one sequence for each cluster, which reports its size for all
the years when the community was present. In Fig. 6 we computed
the statistics of these sequences, centering them on the year when the
cluster reached its peak (reference year 0). To obtain smooth pat-
terns, clusters are aggregated in bins according to their peak mag-
nitude. Fig. 6 shows the average cluster size for each bin as a function
of the years from the peak. We computed the curves using Infomap
(left) and OSLOM (right). Around the peak, the cluster sizes are
highly heterogeneous, with some important topics reaching almost
1000 papers at the peak (for Infomap). The rise and decline of topics
take place around 10 years before and after the peak, with a remark-
ably symmetric pattern with respect to the maximum.

Discussion
Consensus clustering is an invaluable tool to cope with the stochastic
fluctuations in the results of clustering techniques. We have seen that
the integration of consensus clustering with popular existing tech-
niques leads to more accurate partitions than the ones delivered by
the methods alone, in artificial graphs with planted community
structure. This holds even for methods whose direct application gives
poor results on the same graphs. In this way it is possible to fully
exploit the power of each method and the diversity of the partitions,
rather than being a problem, becomes a factor of performance
enhancement.

Finding a consensus between different partitions also offers a nat-
ural solution to the problem of detecting communities in dynamic
networks. Here one combines partitions corresponding to snapshots
of the system, in overlapping time windows. Results depend on the
choice of the amplitude of the time windows and on the number of
snapshots combined in the same consensus partition. The choice of
these parameters may be suggested by the specific system at study. It
is usually possible to identify a meaningful time scale for the evolu-
tion of the system. In those cases both the size of the time windows
and the number of snapshots to combine can be selected accordingly.
As a safe guideline one should avoid merging partitions referring to a
time range which is much broader than the natural time scale of the
network. A good policy is to explore various possibilities and see if
results are robust within ample ranges of reasonable values for the
parameters. Additional complications arise from the fact that the
evolution of the system may not be linear in time, so that it cannot
be followed in terms of standard time units. In citation networks, like
the one we studied, it is known that the number of published papers
has been increasing exponentially in time. Therefore, a fixed time
window would cover many more events (i.e. published papers and
mutual citations) if it refers to a recent period than to some decades
ago. In those cases, a natural choice could be to consider snapshots
covering time windows of decreasing size.

Methods
The consensus matrix. Let us suppose that we wish to combine nP partitions found
by a clustering algorithm on a network with n vertices. The consensus matrix D is
an n 3 n matrix, whose entry Dij indicates the number of partitions in which vertices i
and j of the network were assigned to the same cluster, divided by the number of

Figure 5 | Time evolution of clusters in the APS citation network. In (a) we selected all the clusters that have at least one of the keywords Criticality,

Fractal, Ising, Network and Renormalization among the top 15 most frequent words appearing in the title of the papers, while in (b) we just filtered the

keyword Network(s). Both diagrams were obtained using Infomap on snapshots spanning each a window of 5 years, except at the right end of each

diagram: since there is no data after 2008, the last windows must have 2008 as upper limit, so their size shrinks (2004 – 2008, 2005 – 2008, 2006 – 2008,

2007 – 2008). Consensus is computed by combining pairs of consecutive snapshots (see Methods). A color uniquely identifies a module, while the width

of the links between clusters is proportional to the number of papers they have in common. In (b) we observe the rapid growth of the field Complex

Networks, which eventually splits in a number of smaller subtopics, like Community Structure, Epidemic Spreading, Robustness, etc..

www.nature.com/scientificreports
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partitions nP. The matrix D is usually much denser than the adjacency matrix A of
the original network, because in the consensus matrix there is an edge between any
two vertices which have cooccurred in the same cluster at least once. On the other
hand, the weights are large only for those vertices which are most frequently co-
clustered, whereas low weights indicate that the vertices are probably at the boundary
between different (real) clusters, so their classification in the same cluster is unlikely
and essentially due to noise. We wish to maintain the large weights and to drop
the low ones, therefore a filtering procedure is in order. Among the other things, in the
absence of filtering the consensus matrix would quickly grow into a very dense matrix,
which would make the application of any clustering algorithm computationally
expensive.

We discard all entries of D below a threshold t. We stress that there might be
some noisy vertices whose edges could all be below the threshold, and they would
be not connected anymore. When this happens, we just connect them to their
neighbors with highest weights, to keep the graph connected all along the procedure.

Next we apply the same clustering algorithm to D and produce another set of
partitions, which is then used to construct a new consensus matrix D9, as described
above. The procedure is iterated until the consensus matrix turns into a block diag-
onal matrix Dfinal, whose weights equal 1 for vertices in the same block and 0 for
vertices in different blocks. The matrix Dfinal delivers the community structure of the
original network. In our calculations typically one iteration is sufficient to lead to
stable results. We remark that in order to use the same clustering method all along, the
latter has to be able to detect clusters in weighted networks, since the consensus
matrix is weighted. This is a necessary constraint on the choice of the methods for
which one could use the procedure proposed here. However, it is not a severe lim-
itation, as most clustering algorithms in the literature can handle weighted networks
or can be trivially extended to deal with them.

We close by summarizing the procedure, step by step. The starting point is a
network G with n vertices and a clustering algorithm A.

1. Apply A on G nP times, so to yield nP partitions.
2. Compute the consensus matrix D, where Dij is the number of partitions in

which vertices i and j of G are assigned to the same cluster, divided by nP.
3. All entries of D below a chosen threshold t are set to zero.
4. Apply A on D nP times, so to yield nP partitions.
5. If the partitions are all equal, stop (the consensus matrix would be block-

diagonal). Otherwise go back to 2.

Consensus for dynamic clusters. In the case of temporal networks, the dynamics
of the system is represented as a succession of snapshots, corresponding to
overlapping time windows. Let us suppose to have m windows of size Dt for a time
range going from t0 to tm. We separate them as [t0, t0 1 Dt], [t0 1 1, t0 1 Dt 1 1],
[t0 1 2, t0 1Dt 1 2], …, [tm 2Dt, tm]. Each time window is shifted by one time unit to
the right with respect to the previous one. The idea is to derive the consensus partition
from subsets of r consecutive snapshots, with r suitably chosen. One starts by
combining the first r snapshots, then those from 2 to r 1 1, and so on until the interval
spanned by the last r snapshots. In our calculations for the APS citation network we
took Dt 5 5 (years), r 5 2.

There are two sources of fluctuations: 1) the ones coming from the different
partitions delivered by the chosen clustering technique for a given snapshot; 2) the
ones coming from the fact that the structure of the network is changing in time. The
entries of the consensus matrix Dij are obtained by computing the number of times
vertices i and j are clustered together, and dividing it by the number of partitions
corresponding to snapshots including both vertices. This looks like a more sensible
choice with respect to the one we had adopted in the static case (when we took the
total number of partitions used as input for the consensus matrix), as in the

evolution of a temporal network new vertices may join the system and old ones may
disappear.

Once the consensus partitions for each time step have been derived, there is the
problem of relating clusters at different times. We need a quantitative criterion to
establish whether a cluster Ctz1 at time t 1 1 is the evolution of a cluster Ct at time t.
The correspondence is not trivial: a cluster may fragment, and thus there would be
many ‘‘children’’ clusters at time t 1 1 for the same cluster at time t. In order to assign
to each cluster Ct of the consensus partition at time t one and only one cluster of
the consensus partitionPtz1 at time t 1 1 we compute the Jaccard index51 between Ct

and every cluster ofPtz1, and pick the one which yields the largest value. The Jaccard
index J(A, B) between two sets A and B equals

J A,Bð Þ~ A\Bj j
A|Bj j : ð1Þ

In our case, since the snapshots generating the partitions refer to different moments of
the life of the system and may not contain the same elements, the Jaccard index is
computed by excluding from either cluster the vertices which are not present in both
partitions. The same procedure is followed to assign to each cluster Ctz1 of the
consensus partition at time t 1 1 one and only one cluster of the consensus partition
Pt at time t. In general, if cluster A at time t is the best match of cluster B at time t 1 1,
the latter may not be the best match of A. If it is, then we use the same color for
both clusters. Otherwise there is a discontinuity in the evolution of A, which stops at t,
and its best match at time t 1 1 will be considered as a newly born cluster.
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7. Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical processes on complex

networks (Cambridge University Press, Cambridge, UK, 2008).
8. Cohen, R. & Havlin, S. Complex Networks: Structure, Robustness and Function

(Cambridge University Press, Cambridge, UK, 2010).
9. Girvan, M. & Newman, M. E. Community structure in social and biological

networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).
10. Schaeffer, S. E. Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007).
11. Porter, M. A., Onnela, J.-P. & Mucha, P. J. Communities in networks. Notices of

the American Mathematical Society 56, 1082–1097 (2009).
12. Fortunato, S. Community detection in graphs. Physics Reports 486, 75–174 (2010).
13. Newman, M. E. J. Communities, modules and large-scale structure in networks.

Nat. Phys. 8, 25–31 (2012).
14. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing

community detection algorithms. Phys. Rev. E 78, 046110 (2008).
15. Lancichinetti, A. & Fortunato, S. Benchmarks for testing community detection

algorithms on directed and weighted graphs with overlapping communities. Phys.
Rev. E 80, 016118 (2009).

16. Lancichinetti, A. & Fortunato, S. Community detection algorithms: A
comparative analysis. Phys. Rev. E 80, 056117 (2009).

Figure 6 | Evolution of average size of clusters. The time ranges of the evolution of the communities have been shifted such that the year when a cluster

reaches its maximum is 0. The two panels show the results obtained with Infomap (left) and OSLOM (right). The data are aggregated in four bins,

according to the maximum size reached by the cluster. The phases of growth and decay of fields appear rather symmetric.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 336 | DOI: 10.1038/srep00336 6



17. Orman, G. K. & Labatut, V. The effect of network realism on community detection
algorithms. In Memon, N. & Alhajj, R. (eds.) ASONAM 301–305 (IEEE Computer
Society, 2010).

18. Orman, G. K., Labatut, V. & Cherifi, H. Qualitative comparison of community
detection algorithms. In Cherifi, H., Zain, J. M. & El-Qawasmeh, E. (eds.) DICTAP
(2), vol. 167 of Communications in Computer and Information Science 265–279
(Springer, 2011).
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