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Biphasic Finite Element
Modeling of Hydrated Soft
Tissue Contact Using an
Augmented Lagrangian Method
A study of biphasic soft tissues contact is fundamental to understanding the biomechani-
cal behavior of human diarthrodial joints. To date, biphasic-biphasic contact has been
developed for idealized geometries and not been accessible for more general geometries.
In this paper a finite element formulation is developed for contact of biphasic tissues. The
augmented Lagrangian method is used to enforce the continuity of contact traction and
fluid pressure across the contact interface, and the resulting method is implemented in
the commercial software COMSOL Multiphysics. The accuracy of the implementation is
verified using 2D axisymmetric problems, including indentation with a flat-ended in-
denter, indentation with spherical-ended indenter, and contact of glenohumeral cartilage
layers. The biphasic finite element contact formulation and its implementation are shown
to be robust and able to handle physiologically relevant problems. [DOI: 10.1115/
1.4005378]
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1 Introduction

Understanding the biomechanical behavior of human diarthro-
dial joints is essential to better diagnostic techniques, improved
surgical interventions, and engineering of tissue replacements.
The study of soft tissue layers contact is fundamental to this
understanding. Analytical solutions for the biphasic contact
mechanics in axisymmetric joints have been developed [1–4], but
these solutions apply, understandably, to fairly idealized prob-
lems. In order to analyze the contact mechanics in physiological
joints, where geometry is far more complex, it is necessary to use
numerical approximation methods, such as the finite element
method. However, only a limited number of studies have
addressed these types of problems, and numerical computation of
the soft tissue contact mechanics remains challenging.

Three classes of methods have been used to enforce the contact
conditions in single-phase contact problems: the penalty method,
Lagrange multiplier method, and augmented Lagrangian method.
The augmented Lagrangian method incorporates strong features
from the penalty and Lagrange multiplier methods, and is more
robust than either individual method [5]. Beside the equality con-
ditions for displacement and traction that a single-phase contact
problem consists of, there are two additional equality conditions
on relative fluid flow and pressure in the biphasic contact problem
[6]. Therefore, it is not viable to directly adopt one of the three
methods for the biphasic contact problem. Spilker and co-workers
[7–9] developed a Lagrange multiplier method to investigate the
contact mechanics of biphasic cartilage layers in 2D and 3D under
small deformations. Chen et al. and Ateshian et al. investigated
contact mechanics of biphasic cartilage layers under large defor-
mations and sliding using a Lagrange multiplier method [10] and
an augmented Lagrangian method [11], respectively.

ABAQUS is a program widely used to study soft tissue contact
[12–16]. Though the program provides many powerful features,

its biphasic contact implementation exhibits significant limita-
tions. First, the “drainage-only-flow” boundary condition (i.e., the
fluid only flows from the interior to the exterior of the cartilage
layer) is inconsistent with the equation of conservation of mass
across the contact interface [6]. Second, the software is unable to
automatically enforce the free-draining condition outside of the
contact area. This limitation needs to be addressed by a user-
defined routine [13].

To date, there have been no successful developments of bipha-
sic finite element contact analysis for 3D geometries of physiolog-
ical joints. Our long-term goal is to create experimentally
validated, 3D computational models of the knee and other joints,
including proper modeling of the biphasic contact problem. The
objective of this paper is to develop a finite element contact for-
mulation for soft tissue, using an augmented Lagrangian method
to enforce the continuity of contact traction and fluid pressure
across the contact interface. The finite element contact formula-
tion is implemented in COMSOL Multiphysics, which can be later
extended for the necessary 3D geometries. Several example prob-
lems are provided to verify the accuracy of the implementation.

2 Methods

Consider two deformable bodies, labeled A and B, with boun-
daries CA and CB, under the assumption of infinitesimal deforma-
tion. The two bodies are in frictionless contact over portions of CA

and CB denoted by cA and cB, respectively. A standard continuum
mechanics nomenclature is adopted, and the indicial notation is
used.

2.1 Biphasic Continuum Equations for Soft Tissues. The
mixed velocity-pressure (v-p) formulation of linear biphasic
theory [17] is adopted in this study. The governing equations most
amenable to this formulation are

ðvs
i � jp;iÞ;i ¼ 0 (1)

rs
ij;j þ rf

ij;j ¼ ðCs
ijklekl � pdijÞ;j ¼ 0 (2)
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where superscripts s and f refer to the solid and fluid phases,
respectively; vs

i is the solid phase velocity, which is the time de-
rivative of the solid phase displacements us

i ; j is the permeability;
p is the fluid pressure; (),i denotes the partial derivative; rs

ij and rf
ij

are the solid and fluid phase stress tensors; ekl ¼ us
k;l is the solid

phase strain tensor (the superscript s is omitted); Cs
ijkl is the mate-

rial property tensor of the solid phase; and dij is the Kronecker d.
In addition, there are constitutive relations for each phase

rs
ij ¼ Cs

ijklekl � /spdij (3)

rf
ij ¼ �/f pdij (4)

where /s and /f are the solid and fluid volume fractions, respec-
tively, for the saturated (/s þ /f ¼ 1) mixture.

The initial and boundary conditions on the noncontacting boun-
daries of bodies A and B (we drop the superscripts A and B for
these equations) are

us
i ðt ¼ 0Þ ¼ �us

i0 and us
i ¼ �us

i on Cu (5)

vs
i ðt ¼ 0Þ ¼ �vs

i0 and vs
i ¼ �vs

i on Cv (6)

p ¼ �p on Cp (7)

rT
ijnj ¼ tTi ¼ �t T

i on Ct (8)

/f ðvf
i � vs

i Þni ¼ �jp;ini ¼ �Q on CQ (9)

where an overbar signifies a prescribed value of the quality; the
subscript ()0 denotes an initial value; total stress is defined as the
sum of the fluid and solid stress rT

ij ¼ rs
ij þ rf

ij; and the relative
fluid flow is defined as Q ¼ /f ðvf

i � vs
i Þni or Q ¼ �jp;ini. The

boundaries Cb, b¼ u, v, p, t, and Q, correspond to portions on
which displacement, velocity, pressure, total traction, and relative
flow, respectively, are prescribed. Note that these boundary por-
tions apply to either body A or body B, and that they do not apply
to the contact boundaries cA and cB.

2.2 Biphasic Contact Modeling. Contact boundary condi-
tions are taken from the theoretical work of Hou et al. [6]. Contact
boundary conditions defined on the boundaries cA and cB are

vsA
i nA

i þ vsB
i nB

i ¼ 0 (10)

jApA
;in

A
i þ jBpB

;in
B
i ¼ 0 (11)

pA � pB ¼ 0 (12)

rEA
ij nA

i nA
j � rEB

ij nB
i nB

j ¼ 0 (13)

These equations correspond to kinematic conditions on the conti-
nuity of location of points in contact [Eq. (10)]; continuity of the
relative flow across the contact boundary [Eq. (11)]; kinetic conti-
nuity conditions on the fluid pressure [Eq. (12)]; and the normal
component of solid phase elastic stress [Eq. (13)], on the contact
boundary.

To enforce the contact constraint based on augmented Lagran-
gian method, let the normal component of the contact pressure be
given by

tn ¼
gng g < 0

0 g � 0

�
(14)

where g is the gap distance from the destination boundary cB to
the source boundary cA in the direction normal to the destination
surface, and gn is the normal penalty factor with units of force per
volume. As the boundaries approach one another, the source point
XA converges to the closest destination point XB. The augmented
Lagrangian method ensures that the contact boundaries overlap by

an acceptably negligible amount g as the penalty factor goes to
infinity.

The augmented Lagrangian framework for single-phase contact
problem [5] was adapted to the current biphasic contact frame-
work (Table 1). An augmentation component is introduced for the
contact pressure tn, and an additional iteration level is added
where the usual displacement and fluid pressure variables are
solved separately from the contact pressure. The algorithm repeats
this procedure until it fulfills a convergence criterion.

The biphasic contact equations were implemented in commer-
cial finite element software (COMSOL Multiphysics 4.1

VR

,
COMSOL, Inc., Burlington, MA). As with earlier biphasic imple-
mentations in COMSOL [18], solid mechanics in the structural
mechanics module and Darcy’s Law in the earth science module
were used and coupled to obtain the linear biphasic equations.
The contact pair feature was used to enforce contact constraint for
the solid phase and the identity pair feature was used to enforce
fluid continuity constraint for the fluid phase. The penalty factor
was set as E=hm*c, where E is the elastic modulus of the materi-
als, hm is the mesh size, and c is a user-defined constant with typi-
cal range of 0.1 to 10.

3 Example Problems

3.1 Indentation Test With Flat-Ended Indenter. Figure 1
illustrates the indentation with a flat-ended indenter which is mod-
eled as 2D axisymmetric problem. A layer of soft tissue of uni-
form thickness h¼ 0.75 mm is attached to subchondral bone at its
lower surface, and indented normal to the tissue surface by a flat-
ended cylindrical indenter of radius and height Rind¼ 0.75 mm.
The radius of soft tissue is R0¼ 4Rind mm since a previous study
has demonstrated that the tissue response is negligible for
R0> 4Rind [19]. The subchondral bone is modeled as an imperme-
able, fixed boundary. The top of the indenter is subjected to a dis-
placement of �0.075 mm applied in a ramp time of 500 s and
then held. A free-draining boundary condition is applied on the
top of the indenter and on the cartilage surface outside of the con-
tact area. Material properties of the cartilage are Young’s modulus
EA ¼ 0:5417 MPa, Poisson’s ratio �A ¼ 0:0833, permeability
jA ¼ 4:0� 10�15 m4=N s�1, and solid content /sA ¼ 0:2. Mate-
rial properties of the indenter are EB ¼ 541:7 MPa, �B ¼ 0:125,
jB ¼ 4:0� 10�12 m4=N s�1, and /sB ¼ 0:95. The model was dis-
cretized with a total of 2387 triangular element. The bottom
boundary of the indenter was set as source boundary, and the top
boundary of the cartilage was set as destination boundary.

Table 1 Augmented Lagrangian algorithm for biphasic contact
of soft tissue

1. Initialization
Set k¼ 0
Set kðkÞn ¼ kn from last time step

2. Solve step

Set tn ¼ kðkÞn þ gng g < 0

0 g � 0

�

Set
pA � pB ¼ 0 g < 0

pA ¼ pB ¼ 0 g � 0

�

Solve for u and p

3. Check for constraint satisfaction
If jg(XB)j � GTOLa for all XB [ cB

Converge. Exit
Else

Augment:

kðkþ1Þ
n ¼ kðkÞn þ gng g < 0

0 g � 0

�

k / kþ 1
Goto 2.

EndIf

aGTOL is the tolerance for gap distance.
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Results on axial stress rz, axial strain ez, shear stress rrz, and
fluid pressure p at several depths are compared to Spilker
et al. [19], and they are in good agreement (Fig. 2). For axial stress
and strain at top level of the tissue, smooth distribution is found
under the loaded surface; minimum values are found at the edge
of the indenter; the stress and strain increase rapidly to zero where
r>Rind. Shear stress at top level of the tissue has a similar distri-
bution except that it increases rapidly to a maximum value at the
indenter edge and then decreases rapidly to zero for r>Rind. Axial
stress, axial strain, and shear stress at the midthickness and bottom
surface of the tissue vary smoothly with no boundary layers. In
contrast to the stress and strain components, the fluid pressure
increases with increasing depth, and varies smoothly.

Distributions of fluid pressure p [Fig. 3(a)] and axial stress rz

[Fig. 3(c)] are in good agreement with results of 3D contact finite

element solution of this axisymmetric problem published by Yang
and Spilker [9]. Large fluid pressure is found at the midthickness
and bottom surface of the tissue under loaded area, and fluid pres-
sure is negligible at the indenter and the tissue where r> 2Rind.
Very large negative axial stress is found at the edge of the in-
denter. Negligible axial stress is found in the tissue for r>Rind.
For the primary parameters, displacement (result not shown since
the uniform displacement is essentially prescribed through the
rigid indenter) and fluid pressure [Fig. 3(b)], the continuity condi-
tions are accurately satisfied. For the derived quantity, axial stress
[Fig. 3(d)], good agreement is also observed.

3.2 Indentation Test With Spherical-Ended Indenter.
Figure 4 illustrates the indentation test with a spherical-ended cy-
lindrical indenter and it is modeled as 2D axisymmetric problem.
The indenter radius is Rind¼ 100 mm, radius of the cartilage is
R0¼ 20 mm, and thickness of the cartilage is h¼ 1 mm. The sub-
chondral bone is modeled as an impermeable, fixed boundary.
The top of indenter is subjected to a displacement of �0.04 mm
applied in a ramp time of 100 s and then held, and a no-flow
boundary condition is set for the top of the indenter. A free drain-
ing boundary condition is applied on the cartilage surface outside
of the contact area. The material properties of the cartilage are
Young’s modulus EA ¼ 0:5 MPa, Poisson’s ratio �A ¼ 0, perme-
ability jA ¼ 2:0� 10�15 m4=N s�1, and solid content /sA ¼ 0:25.
Material properties of the rigid impermeable indenter are
EB ¼ 500 MPa, �B ¼ 0:125, jB ¼ 2:0� 10�18 m4=N s�1, and
/sB ¼ 0:99. The model was discretized with a total of 2978 trian-
gular elements. The curved boundary of the indenter tip was set as
source boundary, and the top boundary of the cartilage was set as
destination boundary.

Fig. 1 A schematic diagram of the biphasic indentation test
with a flat-ended cylindrical indenter

Fig. 2 The (a) axial stress rz, (b) axial strain ez, (c) shear stress rrz, and (d) fluid pressure p at several depths pre-
dicted by the biphasic contact finite element model and the model of Spilker et al. [19]
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Results of axial displacement and fluid pressure (Fig. 5) show
good agreement with that of 2D axisymmetric and 3D models of
this axisymmetric problem based on Lagrange multiplier method
[7,9]. Tensile displacement is found on cartilage surface beside
the contact area. This region also experiences an efflux of fluid as
depicted by the fluid velocity [Fig. 5(b)]. Fluid pressure is fairly
uniform through the depth. Maximum fluid pressure is found at
the center and decreases toward the edge of contact. The continu-
ity condition for fluid pressure is satisfied along the contact
surface.

The normal traction along the contact surface at t¼ 100 s is
compared to results published by Donzelli and Spilker [7], and
they are in good agreement (Fig. 6). Fluid traction is nearly twice
the solid traction, indicating that the fluid phase carries twice the
load of the solid phase on the contact surface. As the fluid flow

Fig. 3 (a) and (c) Distribution of fluid pressure p and axial stress rz (in kPa) at 250 s on the deformed geometry,
red arrows indicate fluid velocity. (b) and (d) Continuity of fluid pressure and axial stress between the two bodies
along the contact boundary at 250 s.

Fig. 4 A schematic diagram of the biphasic indentation test
with a spherical-ended cylindrical indenter

Fig. 5 Distribution of (a) axial displacement (in mm) and (b)
fluid pressure (in kPa) at 100 s on deformed geometry, red
arrows indicate fluid velocity (b)
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diminishes with time, the fluid pressure will decrease, and the
total load is increasingly carried by the solid phase.

3.3 Glenohumeral Joint Contact. A physiologically rele-
vant problem, the glenohumeral joint contact of the human
shoulder (Fig. 7), is modeled as a 2D axisymmetric problem. The
idealized glenoid and humeral head cartilage layers are modeled
based on the average values of stereophotogrammetric data [20].
The thickness of the two cartilage layers at center are
h1¼ h2¼ 1.5 mm, and the width of the glenoid and the humeral
head are w1¼ 11.5 mm and w2¼ 19.1 mm, respectively. Radiuses
of the glenoid cartilage are R1¼ 34.5 mm and R2¼ 26 mm. The
humeral head cartilage is uniformly thick and its radius is
R3¼ 23.5 mm. Impermeable boundary conditions are applied to
the cartilage-bone interface instead of explicit modeling of the
subchondral bones. The humerus-bone interface is subjected to a
compressive axial displacement of 0.2 mm applied in a ramp time
of 10 s and then held. The glenoid-bone interface is held fixed. A
free draining boundary condition is applied on the right boundary
of the cartilage layers and on the cartilage surface outside of the
contact area. The material properties of the glenoid cartilage are
Young’s modulus EA ¼ 0:559 MPa, Poisson’s ratio �A ¼ 0:02,
permeability jA ¼ 1:16� 10�15 m4=N s�1, and solid content

/sA ¼ 0:2. The material properties of the humeral head cartilage
are Young’s modulus EB ¼ 0:5565 MPa, Poisson’s ratio
�B ¼ 0:05, permeability jB ¼ 1:7� 10�15 m4=N s�1, and solid
content /sB ¼ 0:2. The model was discretized with total of 3494
triangular elements. The bottom boundary of the humeral head
cartilage layer was set as source boundary, and the top boundary
of the glenoid cartilage layer was set as destination boundary.

Axial displacement on deformed geometry (Fig. 8) shows good
agreement with the results of 3D finite element solution based on
the Lagrange multiplier method [9]. The contact surface evolves
with time as the compressive axial displacement increases. The
tissue surface undergoes a tensile deformation in the outer portion
of the contact surface.

Fluid pressure distribution [Fig. 9(a)] agrees with the results of
3D finite element solution published by Yang and Spilker [9].
Maximum fluid pressure is found at the center of the cartilage
layers and decreases toward the edge of contact. Continuity condi-
tion for fluid pressure across contact interface is accurately satis-
fied. As 0.2 mm compressive axial displacement applied on the
glenohumeral joint, approximately 87% of the glenoid surface is
in contact with the humeral head, and a majority of the load is
supported by the fluid phase in the contact surface [Fig. 9(b)].

Peak maximum and minimum principal elastic stress occur at
the cartilage-bone interface, away from the center (Fig. 10). These

Fig. 6 Normal traction distributions along the top boundary of
cartilage at 100 s in the biphasic indentation test with a
spherical-ended indenter. Lines are the results of finite element
contact solution using augmented Lagrangian method, and
symbols are results of finite element solution based on
Lagrange multiplier method [7].

Fig. 7 A schematic diagram of axisymmetric glenohumeral
joint in contact. Regions with dots represent cartilage layers,
and open regions are bone.

Fig. 8 Axial displacement (in mm) of the shoulder cartilage on deformed geometry at (a) 5 s and (b) 10 s. Boundary lines are
initial position.
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peak values have the shape of a circular band and are smaller than
the contact radius. The glenoid cartilage has a wider area of peak
stresses than the humerus cartilage. These findings agree with the
results of the 2D axisymmetric and 3D finite element solutions
based on the Lagrange multiplier method [8,9,21].

4 Concluding Remarks

A biphasic finite element formulation has been developed for
the frictionless contact of soft tissues. The mixed v-p formulation
of linear biphasic theory was adopted to model soft tissue as a
mixture of solid and fluid phases. An augmented Lagrangian
method was used to enforce the continuity of contact traction and
fluid pressure across the contact interface. The biphasic finite ele-
ment contact formulation was implemented in COMSOL Multi-
physics. The implementation has been verified via several
example problems, including indentation with a flat-ended in-
denter, indentation with a spherical-ended indenter, and contact of
idealized glenohumeral cartilage layers. The biphasic finite ele-
ment contact formulation and its implementation have proven to
be robust, and able to handle physiologically relevant problems.

Before the biphasic finite element contact formulation devel-
oped in this paper can be used in the analysis of realistic physio-
logical problems of joint contact, it needs to be verified in 3D
contact problems. Linear biphasic theory adopted in this study is
under the assumption of small deformation, so for studies of soft

tissue with large deformation and sliding, geometric nonlinearity
should be added in the formulation.
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