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Abstract
The decoy-database approach is currently the gold standard for assessing the confidence of
identifications in shotgun proteomic experiments. Here we demonstrate that what might appear to
be a good result under the decoy-database approach for a given false-discovery rate could be, in
fact, the product of overfitting. This problem has been overlooked until now and could lead to
obtaining boosted identification numbers whose reliability does not correspond to the expected
false-discovery rate. To remedy this, we are introducing a modified version of the method, termed
a semi-labeled decoy approach, which enables the statistical determination of an overfitted result.
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The decoy-database approach [1,2] is currently the gold standard for assessing
identifications in shotgun proteomic experiments. Briefly, this method relies on using a
protein identification search engine to match experimental spectra against theoretical ones
generated from a database containing target protein sequences and labeled decoys (e.g.,
reversed target sequences), usually occurring in the same number. According to Elias and
Gygi, “one can estimate the total number of false positives (FPs) that meet specific selection
criteria by doubling the number of selected decoy hits” [2]. This rationale is applied to the
final lists of identifications, which include the decoy hits (i.e., hits known to be incorrect),
and in the end the user generally only counts the identifications assigned as target.

The proteomics community has developed tools (e.g., DTASelect [3] and IDPicker [4])
having roots in this approach to automatically filter out low-quality identifications. New
filtration tools and methods are usually benchmarked entirely by how many peptide
sequence matches (PSMs) are identified under a specified false-discovery rate (FDR) [5].
The ensuing efforts to maximize PSMs tend to push authors to use increasingly complex
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discriminant functions to improve results under the same FDR. This, in turn, can give rise to
a limitation not anticipated in the Elias-Gygi guideline.

Here we show that what might seem to be a good result under the decoy-database approach,
henceforth referred to as the labeled decoy approach, can actually be the product of
overfitting a discriminant model to the dataset. To overcome this limitation we introduce a
modified decoy method, here termed a semi-labeled decoy approach, which relies on labeled
decoys, but also on unlabeled decoys; the last one are sequences that the discriminator does
not know to be decoys. These unlabeled decoys serve as an internal error reference that
helps to statistically deal with overfitting.

We demonstrate the overfitting problem and the effectiveness of our approach on datasets of
mass spectra obtained by analyzing Pyrococcus furiosus and Trypanosoma cruzi lysates
with an Orbitrap XL (Thermo, San Jose, CA) under conditions previously described
literature [6]. These spectra were searched using ProLuCID [7] against three types of
database generated as follows:

1. The first is the widely adopted Target–Reverse database (T-R DB). In it, for every
target sequence a decoy sequence is generated by reversing the target. Clearly, this
produces a final database with target and decoy sequences in the same number.

2. The second database is here termed the Target-Scrambled0-Scrambled1 database
(T-S0-S1 DB). In it, for every target sequence two decoy sequences, S0 and S1,
having the same length as the target, are generated by randomly scrambling the
contents of the target sequence. The number of non-target sequences is twice that of
the target. The reason for generating two layers of decoys is that one will serve as
labeled decoys and the other as unlabeled.

3. The third database is referred to as the Target-PairReversed-MiddleReversed
database (T-PR-MR DB). In it, for every target sequence a PR and an MR sequence
are generated as a function of the digestion enzyme used in the project. For each
target sequence, first the peptides that the enzyme in question will produce are
listed. For each one a PR peptide is generated by first swapping the two outermost
amino acids, then treating pairs of the remaining amino acids as units and reversing
their order. To exemplify, given the target peptide ABCDEFGHI, its PR peptide is
IGHEFCDBA. The final PR sequence is obtained by concatenating all PR peptides.
Similarly, for each target peptide an MR peptide is generated by first swapping the
two outermost amino acids, then dividing the remaining portion in half and
reversing each of the halves separately. To exemplify, the former target peptide
becomes IEDCBHGFA. The final MR sequence is obtained by concatenating all
MR peptides.

The T-PR-MR format is useful to reproduce the advantages of the widely adopted target-
reverse approach when using two layers of decoys. As is known, randomizing each sequence
independently does generate higher peptide diversity than reversing each sequence,
especially in proteomes with high redundancy in the sequences or having conserved regions,
such as those of mammals. The search engine will then compare each spectrum to more
candidates from the randomized sequences than from the target sequences. This will
generate a bias when estimating the FDR, as most search engines will not consider the
number of distinct peptides generated from each protein database and most FDR
computations assume the number of comparisons to targets and decoys to be the same. As
an example, the Human IPI database contains some 140% more unique tryptic peptides in
the scrambled decoy sequences than in the targets. The T-PR-MR format, similarly to the T-
R format, addresses these issues by acceptably reproducing the diversity found when
generating decoys. We created the T-PR-MR format by empirically testing different ways of
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rearranging the sequences to minimize overlapping peaks of theoretically generated mass
spectra of corresponding T, PR, and MR peptides. We have included the T-S0-S1 format for
benchmarking purposes only, as there are still various groups from the proteomics
community that use randomized databases instead of reversed ones. However, for the
reasons above and as demonstrated later by our results, we do not recommend using them.

We implemented two widely adopted pattern recognition strategies to generate discriminant
models based on the search results to filter out low-quality identifications. These are the
well-known Bayesian discriminator and a weightless artificial neural network (WNN),
known as WiSARD [8], in its recently improved form [9]. A description of these approaches
is available in Supplementary File I. Next we benchmarked both strategies by using the three
database formats and accepting a 1% FDR at the spectral level, calculated by dividing the
number of PSMs originating from labeled decoys by the total number of PSMs. The results
from the P. furiosus dataset are presented in Tables I and II.

The results from Tables I and II favor the WNN over the Bayesian discriminator, as the
former yielded more PSMs. However, by introducing unlabeled decoys we see that the
premise of having roughly the same number of false positives and of decoys does not always
withstand detailed scrutiny: the results from the Bayesian discriminator appear to be
consistent but those from the WNN do not. We also note that our new DB format (T-PR-
MR) yields better results (i.e., less overfitting and more PSMs), as they reflect peptide
diversity better than the randomized approach.

Clearly, what lies behind the apparent success of the WNN is related to its increased
complexity, which has enabled it to overfit the data (i.e., achieve better separation of the
labeled decoys from the rest). In this regard, even though it provided more PSMs meeting
the FDR criterion, the elevated number of unlabeled decoys demonstrates that the results are
not as reliable as those of the Bayesian discriminator.

As the number of unlabeled decoy identifications is expected to be roughly the same as that
of labeled decoys in a database containing target, decoys, and unlabeled decoys in equal

numbers, an overfitting p-value can be approximated by .
Here X is a random variable indicating the number of unlabeled decoys identified, s is the
value of X reported by the discriminator, n is the total number of identifications, p is the
expected fraction of unlabeled decoys (i.e., p 0.01 for an FDR of 1%), and Bin is the
binomial distribution function. This approach only applies to databases in which peptide
diversity can be assumed to be nearly equal among the target, decoy, and unlabeled decoy
sequences. By re-analyzing the tables above it follows that indeed only the results from the
Bayesian discriminator can be taken with confidence (P ≫ 0.05) for the experiment at hand.

In a handpicked analysis from the T. cruzi dataset we show that the nature of the experiment
can lead to overfitting (P < 0.05) even for discriminators, like the Bayesian one, that have
done well in other circumstances. These results are presented in Table III.

Table III presents a marginally overfitted result for the T-PR-MR approach (P = 0.03). Such
results could be improved by employing widely adopted ad-hoc filtration strategies.
Examples are only considering proteins with two spectral counts or two sequence counts.
Nevertheless, an effective discriminator still remains the core of a filtration algorithm, as it
is the one responsible for sorting the results according to confidence.

From our experience, in general overfitting should not be a problem for the majority of the
widely adopted tools (e.g., Scaffold (Proteome Software), DTASelect, IDPicker, etc.), as
they have already matured and have been extensively tested by the proteomics community.
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Nevertheless, it can be advisable to test for overfitting when experimenting with new
parameters, even for a tool that one has experience with. Once it has been verified that
overfitting is not a problem, it becomes unnecessary to search in databases with two layers
of decoys, with the advantages of avoiding the increased search time and the loss in
sensitivity caused by a database with more decoys and therefore more “distractions” for the
search engine.

We strongly recommend adopting the semi-labeled decoy approach when benchmarking
new tools. Without proper awareness, it would be easy to advocate in favor of our WNN
discriminator over the Bayesian one. In fact, we claim we can ultimately build a filtration
tool capable of outperforming any of the widely adopted filtration tools under current
benchmarking standards (i.e., number of PSMs under a given FDR). As we demonstrated,
however, its results would not be trustworthy.

In summary, the semi-labeled decoy approach complements the labeled decoy approach by
statistically dealing with the overfitting problem. The method is simple and therefore makes
it easy for authors of filtration tools to adopt overfitting p-values. As far as we know, this is
the first strategy that can empirically demonstrate the overfitting in proteomic FDR
experiments. We have limited ourselves to demonstrating the approach at the spectral level,
but variations can be easily developed for use at the peptide and protein levels. Most
importantly, we have shown that basing one’s decision exclusively on the FDR can be
misleading. The mass spectra, search databases, and Java source code generated for this
study are available at: http://max.ioc.fiocruz.br/pcarvalho/overfitting/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table I
Bayesian discriminator results on the P. furiosus dataset

T-R DB, T-S1-S0 DB, and T-PR-MR DB are the databases described in the main text. The numbers in the
Spectra rows indicate how many PSMs were obtained. The numbers in the Peptides rows indicate how many
unique peptides were identified.

T-R DB

Labeled Decoys Total Target Total

Spectra 1073 106280 107353

Peptides 900 19532 20432

T-S1-S0 DB

Labeled Decoys Unlabeled Decoys Total Target Total

Spectra 1083 1105 106184 108372

Peptides 982 983 19609 21574

T-PR-MR DB

Spectra 1083 1064 106229 108376

Peptides 936 939 19587 21462
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Table II
WNN discriminator results on the P. furiosus dataset

T-R DB, T-S1-S0 DB, and T-PR-MR DB are the databases described in the main text. The numbers in the
Spectra rows indicate how many PSMs were obtained. The numbers in the Peptides rows indicate how many
unique peptides were identified.

T-R DB

Labeled Decoys Total Target Total

Spectra 1162 115074 116236

Peptides 1099 26142 27241

T-S1-S0 DB

Labeled Decoys Unlabeled Decoys Total Target Total

Spectra 1150 4917 108945 115012

Peptides 1126 4513 22714 28353

T-PR-MR DB

Spectra 1152 4656 109440 115248

Peptides 1100 4291 22803 28194
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Table III
Bayesian discriminator results on the T. cruzi dataset

T-R DB, T-S1-S0 DB, and T-PR-MR DB are the databases described in the main text. The numbers in the
Spectra rows indicate how many PSMs were obtained. The numbers in the Peptides rows indicate how many
unique peptides were identified.

T-S1-S0 DB

Labeled Decoys Unlabeled Decoys Total Target Total

Spectra 12 43 1221 1276

Peptides 9 12 267 288

T-PR-MR DB

Spectra 12 20 1235 1267

Peptides 11 17 273 301
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