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Abstract
Objective—The objective of this study was to determine whether metabolic parameters derived
from ex vivo analysis of tissue samples are predictive of biologic characteristics of recurrent low
grade gliomas (LGGs). This was achieved by exploring the use of multivariate pattern recognition
methods to generate statistical models of the metabolic characteristics of recurrent LGGs that
correlate with aggressive biology and poor clinical outcome.

Methods—Statistical models were constructed to distinguish between patients with recurrent
gliomas that had undergone malignant transformation to a higher grade and those that remained
grade 2. The pattern recognition methods explored in this paper include three filter-based feature
selection methods (chi-square, gain ratio, and two-way conditional probability), a genetic search
wrapper-based feature subset selection algorithm, and five classification algorithms (linear
discriminant analysis, logistic regression, functional trees, support vector machines, and decision
stump logit boost). The accuracy of each pattern recognition framework was evaluated using
leave-one-out cross-validation and bootstrapping.

Materials—The population studied included fifty-three patients with recurrent grade 2 gliomas.
Among these patients, seven had tumors that transformed to grade 4, twenty-four had tumors that
transformed to grade 3, and twenty-two had tumors that remained grade 2. Image-guided tissue
samples were obtained from these patients using surgical navigation software. Part of each tissue
sample was examined by a pathologist for histological features and for consistency with the tumor
grade diagnosis. The other part of the tissue sample was analyzed with ex vivo nuclear magnetic
resonance (NMR) spectroscopy.

Results—Distinguishing between recurrent low grade gliomas that transformed to a higher grade
and those that remained grade 2 was achieved with 96% accuracy, using areas of the ex vivo NMR
spectrum corresponding to myoinositol, 2-hydroxyglutarate, hypo-taurine, choline,
glycerophosphocholine, phosphocholine, glutathione, and lipid. Logistic regression and decision
stump boosting models were able to distinguish between recurrent gliomas that transformed to a

© 2012 Elsevier B.V. All rights reserved.
alexandra@berkeley.edu (Alexandra Constantin).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Artif Intell Med. Author manuscript; available in PMC 2013 May 1.

Published in final edited form as:
Artif Intell Med. 2012 May ; 55(1): 61–70. doi:10.1016/j.artmed.2012.01.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



higher grade and those that did not with 100% training accuracy (95% confidence interval [93%–
100%]), 96% leave-one-out cross-validation accuracy (95% confidence interval [87%–100%]),
and 96% bootstrapping accuracy (95% confidence interval [95%–97%]). Linear discriminant
analysis, functional trees, and support vector machines were able to achieve leave-one-out cross-
validation accuracy above 90% and bootstrapping accuracy above 85%. The three feature ranking
methods were comparable in performance.

Conclusions—This study demonstrates the feasibility of using quantitative pattern recognition
methods for the analysis of metabolic data from brain tissue obtained during the surgical resection
of gliomas. All pattern recognition techniques provided good diagnostic accuracies, though
logistic regression and decision stump boosting slightly outperform the other classifiers. These
methods identified biomarkers that can be used to detect malignant transformations in individual
low grade gliomas, and can lead to a timely change in treatment for each patient.

Keywords
pattern recognition; spectroscopy; high resolution magic angle spinning spectroscopy; glioma;
malignant transformation; tumor grade

1. Introduction
Ever year, approximately 17,000 adults in the United States are diagnosed with glioma,
which is one of the most aggressive types of brain tumor [1]. Approximately 10,000 adults
per year die from this disease [1]. Gliomas have a complex evolution process which is
characterized by a high degree of biological and clinical diversity. Thus, despite major
advances over the last two decades, the prognosis for patients with high grade lesions is
poor. Survival depends on the tumor type and grade of malignancy, and has a median of 7–
10 years for grade 2 tumors, 2–5 years for grade 3 tumors, and less than 1 year for grade 4
tumors [1]. Significant progress in the diagnosis, treatment and prevention of these tumors
will require both the timely harnessing of the advances in basic and clinical brain tumor
research, and a continuing effort to increase the understanding of brain tumor biology.

Recent oncology research shows that the evaluation of cellular metabolism can be very
helpful for the diagnosis and assessment of treatment effects for patients with brain tumors.
High resolution magic angle spinning (HRMAS) spectroscopy provides detailed metabolic
data of whole biopsy samples for investigating tumor biology (see Figures 1, 2, 3). Analysis
of such data can lead to identification of metabolites that may be used as biomarkers for
discriminating different types of cancer, for grading tumors, and for assessing their
evolution. The identification of ex vivo metabolites can also inform the acquisition of in vivo
magnetic resonance spectroscopy (MRS), which can lead to a non-invasive assessment of
tumor biology.

Low grade gliomas (LGGs) include a diverse group of tumors, with distinct characteristics,
patterns of occurrence, response to treatment, and survival timelines. The objective of this
study is to determine whether quantitative metabolic parameters derived from HRMAS data
are predictive of the biologic behavior of recurrent low grade gliomas. This is an important
clinical question because of the need to determine whether a lesion has transformed to a
more malignant phenotype and to treat each patient with the therapy that is most likely to be
effective for their particular lesion. Thus, the goal of this study was to explore multivariate
pattern recognition methods to generate statistical models of the metabolic characteristics of
recurrent LGGs that correlate with aggressive biology and poor clinical outcome. These
models can be used for the early detection of malignant transformations in individual low
grade gliomas, and can lead to a timely change in treatment for each patient.
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2. Related work
The clinical presentation of brain tumors varies greatly depending on tumor type and
location. There is a growing body of evidence that MRS contributes to the clinical
evaluation of a number of pathologies and therapeutically induced changes in tumor
biochemistry [2–28].

MRS provides information on the metabolic processed occurring within an area of tissue. By
comparing the relative concentration of metabolites in MRS data, clinicians can evaluate
neuronal viability, neurotoxins, and membrane turnover within the volume of interest and,
therefore, characterize the underlying pathology [2]. The clinical impact of MRS in
medicine has been reviewed by Hollingworth et al. [2], Nelson [3, 4], and Smith et al. [5],
and shows promise as a method to complement routine diagnostic investigation.

In vivo MRS suffers from some internal and external limitations. In particular, the
restrictions on in vivo spectral resolution lead to the presence of overlapping peaks and
ambiguity in identifying resonances, which lower the signal to noise ratio. Even among
metabolites that are detectable with in vivo MRS, subtle differences in the concentrations of
metabolites between normal and pathological tissue can go unnoticed and result in a
diagnostic error. HRMAS techniques make it possible to examine the biochemical
composition of tissue by spectroscopic analysis directly from tissue specimens [29].
HRMAS offers improved spectral resolution over the standard in vivo nuclear magnetic
resonance (NMR) spectroscopy techniques. It is a non-destructive technique that can be
applied to tissue prior to immunohistochemical analysis, thus providing a link between
metabolite concentrations, pathology, and in vivo magnetic resonance imaging and
spectroscopy. To this end, a large body of research tried to identify biomarkers for brain
tumor characterization and typing using HRMAS [6, 7, 30–33]. The quest for biomarkers
usually involves analyzing the behavior of single metabolites or ratios of two metabolites in
different groups of patients, but does not exploit the relationship between large numbers of
metabolites. In contrast, multivariate pattern analysis methods exploit the potential of ex
vivo and in vivo NMR spectroscopy for a series of applications, such as the separation
between normal brain and brain tumors [6, 34, 35] as well as for the characterization of
different types and degrees of malignancy in tumors [7–17, 36–46]. Recent work using
HRMAS for brain tumors showed that it is possible to classify spectroscopy samples
according to tumor histological type [8, 12, 16, 18, 20, 22, 27, 44, 46] and grade [10, 12, 14,
16, 27, 46, 47] using multivariate methods such as linear discriminant analysis [14, 16],
support vector machines [12, 14, 16], logistic regression [10, 47], partial least squares
discriminant analysis [8], and multi-layer perceptrons [12]. Moreover, HRMAS multivariate
studies successfully revealed the status of tumor microheterogeneity [9, 13, 15, 17] and
detected alterations in tumor metabolism before changes in morphology occurred [12].
These studies combined dimensionality reduction methods such as principal component
analysis [14, 20, 22] and metabolite quantification [10, 14–17, 22, 30, 47] with the robust
classification methods listed above. Many of the dimensionality reduction methods and
classifiers employed combine the data in such a way that the extracted components lack
physical meaning. For example, in principal component analysis, the entire spectra may
participate in the principal components, and the linear combination may mix both positive
and negative weights, which might partly cancel each other out, thus making the results
difficult to interpret. On the other hand, quantification methods such as LCModel [48],
QUEST[49], and AQSES [50] quantify previously known chemicals in NMR spectra by
incorporating prior knowledge about the set of frequencies that resonate for each chemical,
the relative area of the various resonance peaks, and the shape of chemicals’ spectra. These
methods could potentially overlook important information in the spectrum, such as the
presence of previously unquantified metabolites. In addition, methods that search for
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metabolites independently based on their shape cannot distinguish between low levels of a
chemical or bad fits. In order to avoid some of these disadvantages, this study explored
whole-spectrum analyses with statistical feature selection methods that maintain a link to the
biological meaning of the features. Robust feature selection and classification methods were
combined to obtain accurate classifications with parsimonious and interpretable sets of
features. The features identified can be used to inform in vivo MRS acquisition, and thus to
better categorize tumor properties non-invasively.

In comparison to other multivariate studies, this work examines the metabolic
transformations occurring in tumors that were previously of the same category, thus gaining
insight into malignant transformations in low grade gliomas that are undergoing standard-of-
care treatment. It also includes a relatively large number of gliomas of each grade compared
to previous studies.

3. Data acquisition
This study involved 53 patients who had previously been diagnosed with World Health
Organization (WHO) grade 2 gliomas and were presenting for surgical resection due to
suspected disease recurrence. The patients had received prior standard-of-care treatment
with surgical resection, radiation, or chemotherapy. Table 1 provides information about the
patient baseline characteristics and treatment prior to recurrence, broken down by grade of
recurrence. The differences in baseline characteristics and prior treatment between patients
with gliomas that recurred at different grades were not statistically significant.

Pre-surgical in vivo MR examinations enabled the planning of targeted biopsies for sampling
tissue from patient lesions. Imaging parameters derived from post-processed data helped
guide the designation of small (5 mm3), putative tumor regions. Regions of suspected tumor
located in relatively homogenous areas of the MR images were designated as targets for
tissue sampling using surgical navigation software.

Tissue samples were divided into two parts. One part was flash-frozen in liquid nitrogen and
the other was fixed using conventional pathological techniques. The fixed component was
examined by a pathologist for histological features and for consistency with the tumor grade
diagnosis. Only tissue samples that contained tumor cells and that were consistent with the
diagnosis were included in the analysis. Histological analysis of tissue samples collected
from the patients revealed that 7 tumors transformed to grade 4, 24 transformed to grade 3,
and 22 remained grade 2.

The frozen part of the tissue sample was analyzed with ex vivo HRMAS. Tissue samples
weighing between 0.78 and 28.14 mg (mean = 9.56 mg) were loaded into a 35-µl zirconium
rotor (custom-designed by Varian) with 3 µl of 99.9% atom-D deuterium oxide containing
0.75 wt% 3-(trimethylsilyl) propionic acid (TSP) for chemical shift referencing. Data were
acquired at 11.7 T, 1°C, 2250 Hz spin rate in a 4-mm gHX nanoprobe with a Varian INOVA
500 MHz multi-nuclear spectrometer. The nanoprobe gHX is an inverse probe, optimized
for the direct detection of protons and the indirect detection of X-nuclei (e.g., 13C, 31P,
15N), and was equipped with a magic-angle gradient coil. A rotor-synchronized 1D CPMG
pulse sequence was run with TR/TE=4s/144 ms, 512 scans, 40,000 acquired points, and 20
KHz spectral width for a total time of 35 minutes. The 180° hard pulses were spaced 888 ms
apart and synchronized to two turns of the rotor, resulting in 162 pulses.
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4. Analysis
Pattern analysis methods were used to build models capable of distinguishing between
patients with recurrent low grade gliomas that transformed to a higher grade and those that
remained low grade.

The development of pattern recognition systems involves four major steps that can be
identified as follows: preprocessing the data, reducing the data dimensionality, and selecting
relevant features, constructing a classifier, and predicting its performance on previously
unseen data.

4.1. Preprocessing
The raw free induction decay HRMAS signal was preprocessed using jM-RUI [51]. The
original time domain representation of the signal was transformed into the frequency domain
using the fast Fourier transform. The frequency domain signal was shifted using TSP as a
reference, and phased using zero-order phase correction. Residual water signal was then
removed using Hankel-Lanczos singular value decomposition. Each data sample in the
frequency domain was normalized using the electronic reference to access in vivo
concentrations (ERETIC) method [52] and the tissue weight of each sample.

The preprocessed data were grouped into frequency bins of widths 5, 10, 15, 20, and 25
samples to account for the fact that different metabolites have different linewidths. The
value used for each bin was obtained using trapezoidal numerical integration for the 5, 10,
15, 20, or 25 samples corresponding to that bin. This resulted in an input vector with 18,266
dimensions. This method is equivalent to identifying areas of parts of the spectrum, and is
therefore less susceptible to noise than using all the spectral data points.

4.2. Dimensionality reduction
Because one of the goals of this project was to obtain parsimonious models that can be
easily interpreted biologically, non-linear dimensionality reduction methods or methods that
transform the original features into a smaller set of mathematically related features that
combine information from all the available data (such as PCA) were not employed. Instead,
the dimensionality of the data was reduced by identifying regions in the HRMAS spectrum
that have a mutual association with disease stage or tumor grade, using three feature ranking
metrics that lead to easily interpretable results. The three measures of association between
features and classification output that we compared are based on the value of the chi-squared
statistic with respect to the class [53], the information gain ratio with respect to the class
[54], and a conditional probability-based technique that measures the mutual association
between class decisions and feature values based on conditional probabilities [55]. The forty
highest-ranked features in the HRMAS spectra were obtained for each of the three
association metrics, for each classification problem. Selecting forty features was a heuristic
loose enough to include most features with high and moderate levels of association, while
keeping the second feature selection step computationally tractable.

A second feature selection step was performed in order to obtain a stable, parsimonious
model capable of diagnosing new patients. A wrapper-based feature selection method was
used to evaluate the suitability of subsets of features as a group, not just individually. The
wrapper-based method [56] used genetic algorithms [57] to search through the space of
possible feature sets and evaluate each subset of features by determining its performance
when used in conjunction with a classification method. The genetic algorithm represented a
solution as a binary vector that encoded whether a feature was included in the subset or not.
Leave-one-out cross-validation accuracy was used to measure the fitness of a possible
solution. At first, fifty individual solutions were randomly generated to form an initial
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population. During each successive iteration, a subset of the population was chosen to breed
a new generation of solutions. Fitter solutions were more likely to be selected to breed. The
new generation of solutions was obtained from pairs of parent solutions by combining the
two parents using cross-over and mutation. Fifty iterations were performed, after which the
highest ranked solution was selected.

4.3. Classification
The classification methods used to build diagnostic models were linear discriminant analysis
[58] (which attempts to express the target class as a linear combination of predictors),
logistic ridge regression [59] (which models the probability of occurence of an event by
fitting the data to a logit function), functional trees [60] (which use decision nodes with
multivariate tests and leaf nodes that make predictions using linear functions), support
vector machines with a polynomial kernel [61] (which project the data into a different space
and separate positive and negative examples using a hyperplane with maximum margin),
and logit boost decision stumps [62] (which sequentially apply decision stump classification
to re-weight versions of the training data and then take a weighted majority vote of the
sequence of classifiers thus produced). These methods were chosen because of their
popularity and ease of interpretation.

Parsimonious diagnostic models based on very few relevant features were obtained after
data preprocessing, dimensionality reduction, and model learning. The features chosen as
part of the most discriminative subset for each model were then traced back to metabolites
that are known to appear in the chemical shift range corresponding to the regions that were
identified. These metabolites correspond to the best set of discriminatory features and their
in vivo acquisition would be beneficial for assessing glioma grade non-invasiveley.

4.4. Validation
For classification problems, it is natural to measure a classifier’s performance in terms of the
accuracy. The classifier predicts the class of each instance: if it is correct, it is counted as a
success; if not, it is an error. The accuracy is just the proportion of correct classifications
over a whole set of instances, and it measures the overall performance of the classifier. The
classifier’s likely future performance on new data is, of course, more interesting than its past
performance on old data. To predict the performance of the classifier on new data, the
classification accuracy needs to be assessed on a test set that played no role in the formation
of the classifier. When a large amount of data is available, a model can be learned based on
a large training set, and evaluated based on another large test set. Once the accuracy has
been determined, it is acceptable to produce a final classifier for actual use based on both the
training and the test data [63].

When the amount of labeled data is limited, the question becomes how to make the most of
the limited data set. From this dataset, a certain amount is held out for testing, and the
remaining is used for training. The more data are used for the training, the better the
classifier. The more data are used for testing, the better the accuracy estimate. Cross-
validation and bootstrapping are techniques for dealing with this dilema. Among these,
bootstrapping is probably the evaluation method of choice in most practical limited-data
situations [63].

Cross-validation reserves a certain amount of data for testing and uses the remainder for
training, but in order to mitigate any bias caused by a particular set being chosen for
holdout, the whole process is repeated, training and testing, several times, with different
random samples. The initial data set is split into a fixed number of partitions, or folds. Each
partition is in turn used for testing while the remainder of the data is used for training. The
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accuracy estimates obtained during the different iterations are averaged to yield the overall
accuracy. Leave-one-out is a special case of cross-validation, in which each fold contains
only one data sample; thus one sample is in turn held out for testing, while the rest of the
data is used for training. This procedure is attractive because it uses the greatest possible
amount of data in each case, and no random sampling is involved. Thus, leave-one-out
offers the chance to make the most out of a small data set and to obtain as accurate an
estimate of the classifier’s performance on unseen data as possible [63].

Cross-validation methods provide unbiased, but high variance estimates of a classifier’s
prediction accuracy. This means that if the whole validation process were to be repeated,
cross-validation estimates could vary significantly. Bootstrapping, on the other hand,
provides nearly unbiased estimates of the prediction accuracy that are relatively low in
variance, by repeating the validation process several times on different samples of the data,
thus also avoiding overfitting. Bootstrapping is based on the statistical procedure of
sampling with replacement. The data set is sampled with replacement to form a training set.
For this, a data set with N instances is sampled N times, with replacement, to give another
data set of N instances. Because some elements in this second data set will very likely be
repeated, there must be some instances in the original data set that have not been picked -
the test instances. For a reasonably large data set, the test set will contain about 36.8% of the
instances, and the training set will contain about 63.2% of them [63], leading to the name
0.632 bootstrapping. Some instances will be repeated in the training set, bringing it up to a
total size of N, which is the same as the original data set. The accuracy estimate obtained by
training a classifier on the training set and calculating its accuracy on the test set will be a
pessimistic estimate of the true prediction accuracy of a model on new data drawn from the
sampling distribution, because even though the training set has size N, it only contains 63.8
% of the original data, which is far less than the amount used in leave-one-out cross-
validation. To compensate for this, the accuracy on the test sample is combined to that of the
training sample, to give an unbiased estimate of the overall accuracy:

(1)

Then, the whole bootstrap procedure is repeated several times, with different replacement
samples for the training set, and the results are averaged.

The bootstrap procedure offers the best way to estimate prediction accuracy for very small
data sets [63]. The estimate of the accuracy represents an unbiased estimate of the
performance of the classifier on new data drawn from the sampling distribution [63].
However, before a model can be used with confidence in clinical practice, it is necessary to
validate it on a completely independent data set, because the sampling distribution may not
always accurately summarize the population distribution.

In this study, both leave-one-out cross-validation and 0.632 bootstrapping with 200
repetitions [64] were used in order to evaluate the ability of the pattern recognition methods
employed to generalize to unseen examples drawn from the sampling distribution. The
pseudo-code for these methods is provided in Algorithms 1 and 2. Thus, the data set given
as input to these algorithms contains 53 samples. The cross-validation algorithm calls
Algorithm 3 using only 52 of the original samples each time. The bootstrapping algorithm
calls Algorithm 3 using 53-sample data sets obtained by resampling the original data set.
Algorithm 3 calls the wrapper-search algorithm (Algorithm 5) using the reduced or
resampled data set. The wrapper-search algorithm, in turn, calls the cross-validation or
bootstrapping algorithms respectively in the Evaluate step, thus ensuring that all of the
prediction accuracy estimates are based on data that was left out during the model building.
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5. Results
5.1. Classification

In order to determine whether quantitative metabolic parameters derived from HRMAS data
are predictive of malignant transformations in recurrent low grade gliomas, the performance
of diagnostic models for distinguishing between patients with recurrent gliomas that
transformed to a higher grade and those that remained grade 2 were compared. The results
of this analysis are illustrated in Tables 2 and 3. Logistic regression and decision stump
boosting models were able to distinguish between recurrent gliomas that transformed to a
higher grade and those that did not with 100% training accuracy, 96% leave-one-out cross-
validation accuracy, and 96% bootstrapping accuracy. Linear discriminant analysis,
functional trees and support vector machines were able to achieve leave-one-out cross-
validation accuracy above 90% and bootstrapping accuracy above 85%. The three feature
ranking methods were comparable in performance. The pattern recognition methods for this
classification task were further compared using a plot of precision and recall, illustrated in
Figure 4, and receiver operating characteristic (ROC) curves, illustrated in Figure 5. These
curves show that the five classification methods are comparable, but the logistic regression
and decision stump boosting methods have a slight advantage. The difference in
performance between logistic regression and decision stump boosting and the other three
methods is statistically significant, as can be seen from the non-overlapping 95 %
confidence intervals of the bootstrapping accuracy presented in Table 3.

An additional validation experiment was performed in order to address the concern that the
high classification accuracies obtained may be due to overfitting caused by the large number
of features explored. Transformed/not transformed labels were randomly assigned to the
HRMAS spectra, and bootstrapping accuracy results were obtained using the same methods
that generated the best model in the previous analysis. Logistic regression models were built
based on the data with random labels. The features were filtered using information gain
ratio. The best subset of features was then selected using a genetic wrapper-based search.
The experiment was repeated one hundred times, for different random generations of the
labels. The average bootstrapping classification accuracy was 63% with a 95% confidence
interval of [49%–77%] (range 42%–81%), significantly lower and more variable than the
96% bootstrapping accuracy with a 95% confidence interval of [95%–97%], obtained using
the true labels. The random labels of the data sets that resulted in bootstrapping accuracies in
the high end of the range actually had a significant number of labels that matched the true
labels.

In order to assess the ability to distinguish between different degrees of disease malignancy
based on HRMAS data, two other comparisons were performed. Statistical models were
built to distinguish between recurrent low grade gliomas that upgrade to grade 3 and those
that remained grade 2 (100% training accuracy, 96% cross-validation and bootstrapping
accuracy), and between recurrent low grade gliomas that transformed to grade 4 and those
that transformed to grade 3 (100% training accuracy, 98% cross-validation and
bootstrapping accuracy). These comparisons also show a slight advantage when using
logistic regression and decision stump boosting.

Overall, the results suggest that metabolic parameters derived from HRMAS are predictive
of malignant transformations in low grade gliomas. Models that were built based on these
parameters are specific and sensitive enough to be used for diagnosing individual patients,
and do not merely reflect average differences between different patient groups. All
classification and feature selection methods exhibit good performance, with logistic
regression and decision stump boosting slightly outperforming the other classification
methods.

Constantin et al. Page 8

Artif Intell Med. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.2. Feature selection results
Although the direct identification of metabolites that are predictive of malignant
transformations is not necessary to distinguish those patients who exhibit malignant
transformations, analyzing the different metabolites that lead to high classification accuracy
can lead to the detection of metabolic biomarkers and to the better understanding of tumor
metabolism. Thus, one of the goals of this study was to model the metabolic transformations
in gliomas in such a way that the results are easy to interpret biologically, and able to inform
in vivo data acquisition. To this effect, feature selection results are presented. The features in
this study represent normalized concentrations found in small chemical shift ranges. In order
to interpret these features, their chemical shift ranges were linked to metabolites typically
found in those spectral regions using the QUEST [49] quantification algorithm.

There was significant overlap in the forty highest-ranking features selected using the chi-
squared statistics, the information gain ratio, and the conditional probability-based
association techniques. These features corresponded to nine metabolites, listed in Table 5.
The highest-ranking of the forty features were very similar across the three measures, even
though the ranks differed slightly. Parameters corresponding to My-I, 2HG, Hyp-Tau, and
Cho compounds were identified among the forty highest-ranking features by all three
association techniques, while parameters corresponding to GSH and Ala were identified
only by some of the methods.

Table 4 shows the percentage of times each metabolite was identified by the logistic
regression genetic search wrapper-based feature subset selection algorithm as being part of
the feature subset which was best at discriminating between tumor grades, during the
bootstrapping process. Thus, for each comparison, up to 200 models were built on
resampled versions of the original data set, and the percentage of times certain features were
selected as part of these models is reported in Table 4, grouped by corresponding metabolite.

Distinguishing between recurrent low grade gliomas that transformed to a higher grade and
those that remained grade 2 was possible using areas of the ex vivo NMR spectrum
corresponding to myoinositol (My-I), 2-hydroxyglutarate (2HG), hypo-taurine (Hyp- Tau),
choline (Cho), glycerophosphocholine (GPC), phosphocholine (PC), glutathione (GSH), and
lipid (Lip). The abbreviations used in the table are linked to their corresponding metabolites
in Table 5. On average, the relative levels of My-I parameters were 56% lower in gliomas
that transformed to a higher grade compared to those that remained grade 2. The gliomas
that transformed to a higher grade also had 2HG levels in the [2.24–2.3] chemical shift range
that were 120% higher, 2HG levels in the [1.75–1.87] range that were 30% higher, Hyp-Tau
levels in the [2.62–2.69] range that were 137% higher, Hyp-Tau levels in the [3.35–3.39]
range that were 57% higher, Cho compound levels in the [3.21–3.29] range were 26%
higher, Cho compound levels in the [3.69–3.71] range were 83% higher, Lip levels that were
53% higher, GSH levels that were 39% higher, and Ala levels that were 25% higher.

Distinguishing between recurrent low grade gliomas that transformed to grade 4 and those
that recurred as grade 3 was possible using features corresponding to Hyp-Tau, GSH,
alanine (Ala), and Cho. Another predictive feature shows increased activity in the 3.79
chemical shift range, where metabolites are very hard to quantify. Levels of Hyp-Tau, GSH,
Cho, My-I, and 2HG were useful in distinguishing between gliomas that transformed to
grade 3 and those that remained grade 2.

While some of the differences in metabolite levels between tumors that transformed to a
higher grade and those that remained grade 2 are very large, individual metabolites are not
sensitive or specific enough to distinguish between the two groups of lesions. Pattern
recognition methods were able to objectively combine the information provided by all of
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these metabolites into a model that can accurately identify lesions that have undergone
malignant transformations.

6. Discussion
The methods presented in this study were able to accurately detect malignant
transformations in recurrent low grade gliomas based on small sets of metabolites, without
any prior knowledge. While the bootstrapping accuracies of the models created are very
promising, the confidence in the models could be further strengthened by performing
validation on an independent data set.

Distinguishing between low grade gliomas that recurred at different grades was possible
based on features corresponding to My-I, 2HG, Hyp-Tau, Cho compounds, GSH, Lip, and
Ala. The fact that some features were selected in very different percentages of the models
when using different filtering methods shows that that the features are highly correlated.
Including all of these features in a model would be superfluous. In fact, the models created
during the bootstrapping phase were based on three to eight features each. This also explains
why some metabolites identified as important biomarkers in the literature were not selected
as features in these models. There are two reasons why a feature may not be selected by the
algorithm: either because it is not well correlated with the outcome, or because it is highly
correlated with some of the other features already in the model and it does not provide any
additional information for the classification. Thus, the features identified by the pattern
classification methods are a parsimonious set of metabolites that are specific and sensitive
enough to lead to a quantitative formula that can be used to diagnose individual patients and
can be applied to unseen data.

This analysis identified 2HG as a metabolite whose increased concentration is highly
predictive of malignant transformations in recurrent low grade gliomas, but whose
concentration is generally low in newly diagnosed grade 4 gliomas. Recent studies have
demonstrated that cancer-associated IDH1 mutations lead to the accumulation of 2HG [65].
These mutations have also been reported in Acute Myeloid Leukemia (AML) [65],
suggesting that a common mechanism may underpin both these AML and secondary grade 4
glioma malignancies. These studies offer novel opportunities to develop tumor directed
therapeutic strategies.

Several of the metabolites selected by the pattern recognition methods for their
discriminative power, such as Cho, Lip, and My-I, can be acquired using current in vivo
MRS methods, implying that using pattern recognition methods in conjunction with in vivo
spectroscopy may be successful in determining whether patients with recurrent low grade
gliomas have transformed to a more malignant phenotype without the need for a tissue
diagnosis. Lip, lactate, Cho, NAA and creatine are already being acquired in in vivo patient
studies. My-I is one of the most important metabolites in terms of its discriminative power
in all of the models explored. This metabolite can be acquired in vivo, and the results in this
study lead us to believe that it should be included in future in vivo acquisition protocols.

7. Conclusion
This study demonstrates the feasibility of using quantitative pattern recognition methods for
the metabolic assessment of tissue samples obtained from brain tumor biopsies. The findings
in this study enhance the knowledge obtained from previous HRMAS and MRS
classification studies, because they suggest that it is possible to obtain high classification
accuracy by using only a few spectral features obtained without any prior knowledge. The
pattern recognition methods described in this paper identified biomarkers of importance in
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detecting malignant transformations in low grade gliomas. Most of the metabolite
parameters revealed by this method can be acquired in vivo. The use of MRS at high
magnetic fields and with a robust classification approach should improve the
characterization, typing, and prognostication of brain tumors. It can also be applied to assist
in stratifying patients for appropriate therapeutic protocols and in the monitoring of new
therapies.
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Figure 1.
HRMAS spectrum for a recurrent grade 2 glioma.
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Figure 2.
HRMAS spectrum for a recurrent low grade glioma that transformed to grade 3.
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Figure 3.
HRMAS spectrum for a reccurent low grade glioma that transformed to grade 4.
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Figure 4.
Plot of specificity and sensitivity for different thresholds of the logistic regression model
with features selected using the gain ratio filter and a genetic search wrapper-based method.
The response variable is whether the tumor transformed to a higher grade or not.
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Figure 5.
ROC curves comparing five classification methods used to distinguish between gliomas that
transformed to a higher grade and those that did not, based on features selected using the
gain ratio filter and a genetic search wrapper-based method.
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Table 1

Characteristics of recurrent low grade glioma patients enrolled in the study and treatment received prior to
recurrence, tabulated according to the tumor grade at recurrence.

Characteristic Grade 2 Grade 3 Grade 4 Total

Male 9 13 4 26

Female 13 11 3 27

Mean age (years) 37.6 49.5 46 44.4

Biopsy 22 24 7 53

Resection 17 18 5 40

Chemotherapy 10 14 1 25

Radiation 4 6 1 11

Total 22 24 7 53
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Table 5

Abbreviations for metabolites found to be useful in detecting malignant transformations in recurrent low grade
gliomas.

Abbreviation Metabolite

My-I myoinositol

2HG 2-hydroxyglutarate

Hyp-Tau hypo-taurine

Cho choline

PC phosphocholine

GPC glycerophosphocholine

Lip lipid

GSH glutathione

Ala alanine
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Algorithm 1

Leave-One-Out Cross-Validation(D)

Require: D = {(x1, y1), … (xN, yN)}

  1: for i = 1 to N do

  2:    Di ← D{(xi, yi)}.

  3:    Mi ← BuildModel(Di)

  4:    errori ← |Mi(xi) − yi|

  5: end for

  6: return 
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Algorithm 2

Bootstrapping(D)

Require: D = {(x1, y1), … (xN, yN)}

  1: for i = 1 to N do

  2:  for b = 1 to NFOLDS do

  3:    Si ← Resample(D)

  4:    errorb = 0

  5:    totalb = 0

  6:    if (xi, yi) ∉ Si then

  7:      Mi,b ← BuildModel(Si)

  8:      errori,b ← |Mi,b(xi) − yi|

  9:      errorb ← errorb + errori,b

10:      totalb ← totalb + 1

11:      errorb ← errorb/totalb

12:    end if

13:  end for

14: end for

15: 

16: M ← BuildModel(D)

17: 

18: return accuracy ← 0.632 × accuracyb + 0.368 × accuracyt
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Algorithm 3

BuildModel(S)

Require: S = {(x1, y1), … (xK, yK)}

  1: S′ ←Filter(S)

  2: S* ←WrapperSearch(S′).

  3: M ← TrainClassifier(S*)

  4: return M
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Algorithm 4

Fliter(S′)

Require: S = {(x1, y1), … (xK, yK)}

Require: length(xi) = F

  1: for i = 1 to F do

  2:    Rank(feature i, S)

  3: end for

  4: S′ = (Highest Ranked Features(X), Y)

  5: return S′
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Algorithm 5

WrapperSearch(S*)

Require: S = {(x1, y1), … (xK, yK)}

  1: i ← 0

  2: while Stopping criterion not met do

  3:    Si = Generate Feature Subset(S)

  4:    accuracyi = Evaluate(Si)

  5: end while

  6: return 
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